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ABSTRACT 
 
Concentric mosaics have the ability to quickly capture a complete 3D view of a realistic environment and to 
enable a user to wander freely in the environment. However, the data amount of the concentric mosaics is huge. 
In this paper, we propose an algorithm to compress the concentric mosaic image array through motion 
compensation and residue coding, which we called reference block codec (RBC). A two-level index table is 
embedded in the compressed bitstream for random access. During the rendering, the entire compressed 
concentric mosaic scene is not fully expanded at any time. In stead, only the contents necessary to render the 
current view are decoded in real time. We denote such rendering scheme as just-in-time (JIT) rendering. Four 
decoder caches are implemented to speed up the rendering.  
 
Keywords: Image-based rendering (IBR), concentric mosaics, reference block codec (RBC), data compression, 
just-in-time (JIT) rendering, cache management. 
 

1. INTRODUCTION 
 
Image-based rendering (IBR) has attracted much attention recently in realistic scene/object representation. 
Proposed by Adelson and Bergen [1] as a 7D plenoptic function, IBR models a 3D dynamic scene by recording 
the light rays at every space location, towards every possible direction, over any range of wavelengths and at any 
time. By ignoring time and wavelength, McMillan and Bishop [2] defined plenoptic modeling as generating a 
continuous 5D plenoptic function from a set of discrete samples. The proposals of Lumigraph [3] and Lightfield 
[4] made IBR more popular, as they provided a clever 4D parameterization of the plenoptic scene under the 
constraint that the object or the viewer could be constrained within a 3D bounding box. Even though most IBR 
scenes are synthetic, it is possible to capture Lumigraph/Lightfield of a realistic scene/object. However, there 
remain technical challenges, e.g., careful motion control of the camera array so that pictures can be taken from 
regular grid points parallel to the image plane. Shum and He [5] proposed concentric mosaics, a 3D plenoptic 
function restricting viewer movement inside a planar circle and looking outside. A concentric mosaic scene can 
be constructed very easily by rotating a single camera at the end of a round-swinging beam, with the camera 
pointing outward and shooting images as the beam rotates. At the time of rendering, we just split the view into 
vertical ray slits, and reconstruct each slit through similar slits captured during the rotation of the camera.  
 
Compared with a top-notch graphic rendering algorithm such as ray tracing, the concentric mosaics can render a 
scene realistically yet fast, and regardless of the scene complexity. However, the data amount of the concentric 
mosaics is huge. As an example, the Lobby scene (shown in Figure 7) consists of 1351 frames with resolution 
320x240 and occupies a total of 297 mega bytes. Compression is essential through the birth of concentric 
mosaics. High compression ratio is also achievable because of the strong correlation within frame and across 
frames of the concentric mosaics. Moreover, there are novel characteristics of the concentric mosaics that need 
special attention in the design of the compression algorithm. The rendering of the concentric mosaics never 
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requires the entire dataset. In fact, each time a novel view is rendered, only a small portion of the dataset is used 
by the rendering engine. To save the system cost and reduce the rendering memory, a well-designed concentric 
mosaic codec should allow portion of the dataset to be randomly accessed and decoded from the compressed 
bitstream. We term such functionality as just-in-time (JIT) rendering or JIT decoding, i.e., to decode only the 
content needed for the rendering of the current view. The JIT decoding should also be reasonably fast to power 
the rendering engine.  
 
A spatial domain vector quantizer (SVQ) was used in [5] to compress the concentric mosaic scene. The SVQ 
compressed bitstream can be fast decoded through a simple table lookup operation, and each SVQ lookup table 
index is of equal length, which makes the bitstream required for the current rendered view easy to access. 
However, SVQ is complex and time-consuming at the encoding stage, and the compression ratio of SVQ is 
limited. For example, SVQ in [5] achieves a compression ratio of 12:1, which leaves a compressed Lobby scene 
at 25 mega bytes. We may choose to compress each individual shot of the concentric mosaics with baseline 
JPEG or JPEG 2000. This may not be the most efficient way because correlation between multiple shots is not 
utilized. Moreover, during the rendering of new views, the concentric mosaic data set is accessed by slits rather 
than images. Therefore, a bitstream formed by concatenation of individually compressed images may not be easy 
to access. Video-based codec such as MPEG [6] is another choice for the compression of concentric mosaics. 
MPEG achieves a very high compression ratio by exploring the redundancy in neighboring frames. However, 
MPEG decoder is designed to access the compressed image sequentially and does not support random access. It 
thus may not be practical for use in the concentric mosaic environment. A 3D wavelet approach has also been 
proposed for the compression of the concentric mosaics [8] . The 3D wavelet algorithm achieves a good 
compression ratio, and may also access a portion of the compressed bitstream for a rendered scene with different 
resolution and quality through a progressive way. Such resolution and quality scalability is very useful in the 
Internet environment. However, scalable 3D wavelet decompression is highly complex and may not be feasible 
in the near future.  
 
Even though MPEG and 3D wavelet codec can both achieve good compression efficiency, substantial 
computation resources must be devoted to decode the concentric mosaic data in real time. Alternatively, we may 
predecode the entire bitstream and render on the decoded data set. This is not feasible because it not only 
introduces a long delay at the beginning, but also requires a huge memory to hold the entire decoded 
environment. The challenge is thus to develop a codec which provides good compression performance, yet at the 
same time enables the view of the environment to be accessed and rendered in real time, with minimum decoder 
cache support. That is the essence of just-in-time (JIT) decoding.  
 
In this work, we compress the concentric mosaics with a new scheme called reference block codec (RBC). For 
the first time, we realize the JIT rendering for a highly compressed concentric mosaic scene with predictive 
coding across frames. RBC splits the concentric mosaic images into blocks and predictively encodes them. 
Though RBC bears strong resemblance to MPEG, the frame structure of RBC is redesigned to improve the 
compression efficiency and to enable the bitstream to be easily random accessed. The shots or frames of the 
concentric mosaics are classified into two categories – the anchor (A) frame and the predicted (P) frame. The 
anchor frames are encoded independently, while the predicted frames are referred to an anchor frame by motion 
compensation and predictively encoded. We restrict any predicted frame to only refer to an anchor frame, not 
another predicted frame. A two-stage motion description is employed in RBC, so that the motion of each 
macroblock is a combination of the frame translation motion and the local refinement motion. Moreover, a 
built-in two level index table is included in the compressed bitstream for easy access at the rendering stage. Four 
elaborate caches are designed with special queue structure to avoid decoding contents over and over again. The 
access and decoding speed of RBC is fast enough to power real-time rendering of concentric mosaics.  
 
The paper is organized as follows. The concentric mosaics and its rendering scheme are introduced in Section 2. 
Section 3 explains the details of the RBC codec, including the two-stage motion estimation, the frame structure 



and the bitstream syntax. In Section 4, we discuss the JIT rendering implementation of RBC with the decoder 
cache. Simulation results and conclusions are presented in Section 5 and 6, respectively.  
 

2. THE CONCENTRIC MOSAIC SCENE 
 

 
 

Figure 1: Capturing device of concentric mosaics. 

A concentric mosaic scene is captured by mounting a camera at the end of a rotating beam, and shooting images 
at regular intervals as the beam rotates, as demonstrated in Figure 1. The dataset of concentric mosaics is a shot 
sequence, which can be denoted as c(n,w,h), where n indexes the camera shot, w and h represent the horizontal 
and vertical position of each ray within a shot, respectively. Let N be the total number of shots during the 360 
degrees rotation, W and H be the width and the height of each shot. N is often set between 900 and 1500, which 
means that the camera shots are very dense, typically 2.5 to 4 shots per degree. In [5] , the shot sequence is 
rearranged into concentric mosaic images, where each image is the combination of vertical slits with the same w. 
However, such a rearrangement is not necessary for either the compression or the rendering of concentric 
mosaics. In the proposed reference block codec (RBC), we use the original shot sequence for both compression 
and accessing.  
 
Rendering concentric mosaics involves reassembling slits from existing shots. Shown in Figure 2, let R be the 
length of the beam, θFOV be half of the horizontal field of view (FOV) of the camera, a concentric mosaic scene 
can render an arbitrary view with the same FOV within an inner circle of radius r = RsinθFOV. Let P be a novel 
viewpoint and AB be the field of view to be rendered. We split the view into multiple slits, and render each of 
them independently. For example, when the slit PV is rendered, we simply search for the slit P’V in the captured 
dataset, where P’ is the intersection between ray PV and the camera path, as they are just the same because the 
intensity of the ray does not change along a line. Since the concentric mosaics consist of a discrete number of 
shots, and each shot consists of a discrete number of vertical slits, there may not be an exact slit for P’V in the 
dataset. The four sampled slits closest to P’V may be P1V1, P1V2, P2V3 and P2V4, where P1 and P2 are the two 
nearest captured shots on the two sides of the intersection point P’ along the camera path, P1V1 and P1V2 are slits 
just beside P1V in shot P1, and P2V3 and P2V4 are slits beside P2V in shot P2. We may bilinearly interpolate the 
four slits to get the content of P’V  (denoted as bilinear interpolation mode), or, if due to complexity concern, 
we may use the one slit closest to P’V to represent it (denoted as point sampling mode). It is obvious that the 
bilinear interpolation mode will result in a better rendering quality of the scene, with the price of a slower 
rendering speed. In either case, the content of the slit P’V is recovered, which is then used to render slit PV in the 
rendered view. The environmental depth information may be helpful to find the best approximating slits and 
alleviate the vertical distortion. More detailed description of concentric mosaics rendering may be found in [5] .  
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Figure 2: Concentric mosaics capturing and rendering. 

It is observed in Figure 2 that when we are rendering a novel view from a camera at any position, only the 
captured shots within the horizontal field of view of the camera is involved. Moreover, even for the shots within 
the field of view, only a small portion of the vertical slits needs to be known. The number of the accessed 
vertical slits is inverse proportional to the distance between the viewpoint and the capture path. Therefore, it is 
essential to provide random access to a cluster of vertical slits. In the proposed RBC, 16 vertical slits are grouped 
and accessed as an elementary unit.  
 

3. REFERENCE BLOCK CODING 
 
The data structure of the reference block codec (RBC) is shown in Figure 3. The concentric mosaic shots are 
divided into two categories, the anchor (A) and the predicted (P) frames. The A frames are distributed uniformly 
across the concentric mosaic dataset and provide the anchor of access for the decoding operation. The A frames 
are encoded independently, while the P frames are predictively encoded with reference to the two nearby A 
frames. Let D be the ratio of P frames to A frames. The smaller the value of D is, the more the A frames are, and 
the easier the random access becomes. However, the compression efficiency will suffer, as the correlation 
between neighbor shots is not fully utilized. In the current implementation, D is set to be 7, i.e., one out of eight 
frames is an A frame.  
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Figure 3: The data structure of the reference block codec. 

Both A and P frame are segmented into square blocks of size 16x16. We call it a macroblock (MB), for its 
similarity with the macroblock used in JPEG and MPEG. All MBs at the same vertical position of a shot are 



grouped together and form a macroblock group (MBG), which is the smallest unit of accessing and decoding. 
The width of the MBG is a compromise between the access granularity and the coding efficiency. Without 
consideration of the coding efficiency, an access granularity of 1 slit is the optimum choice. However, it is 
shown [7] that image correlates over 20 neighbor pixels, thus coding the image slit by slit is not efficient. In this 
work, we cluster 16 vertical slits to form an MBG that is accessed and decoded together. Though redundant slits 
are accessed for an individual view, the rendering speed is satisfiable in interactive wandering due to the use of 
cache.  
 
The MBs in A frame are independently encoded. Each MB is split into six 8x8 subblocks, with four of which 
luminance subblocks, and the other two chrominance subblocks which are sub-sampled by a factor of 2 in both 
the horizontal and vertical direction. The subblocks are transformed by a basis-8 discrete cosine transform 
(DCT), quantized by an intra Q-table with a quantization scale QA, and then entropy encoded by a run-level 
Huffman coder with an A frame Huffman table. The compressed bit streams of all MBs belong to the same A 
frame MBG are then grouped together.  
 
MBs in the P frames are predictively encoded with reference to a nearby A frame. The P frame may refer to two 
nearby A frames, however, for a single MB in the P frame, it only refers to one of the two. In fact, we restrict all 
MBs in a single MBG to refer to the same A frame. This restriction reduces the amount of accessed data when a 
slit in the P frame MBG is accessed. Since the concentric mosaic frames are shot by swinging a single camera 
mounting on a beam, the motion between two concentric mosaic images is predominantly horizontal translation, 
with little to none vertical motions. A two-stage motion estimation, including a global translation motion and a 
local refinement motion, is thus applied to calculate the motion vector of each MB. The camera motion between 
shots is modeled by a global horizontal translation motion. We do not use more complex model such as affine or 
perspective model, because the camera only moves a very small interval between shots with dominant translation 
motion, and more complex motion model is not justified. The dominant global horizontal translation vectors mv1 
and mv2 of the P frame with regard to the two referring A frames are calculated and recorded. The vector mv will 
be used to reduce the search range and the entropy of the P frame MB motion vector. The individual refinement 
motion vector of the P frame MB is restricted to +/-5 pixels of the global translation vector mv with half pixel 
accuracy, because we know most MBs just move along the underlying P frame. In fact, around half of the local 
refinement motion vectors of the P frame MBs are zeros. To encode a P frame MBG, we encode the MBG 
against both reference A frames. The MBG is split into a number of MBs. For each MB, its best match is 
searched in the two reference A frames. Since the search is restricted, it can be performed very fast. The 
prediction residue of the MB is then split into six subblocks, with each subblock transformed by a basis-8 DCT, 
quantized by scale QP, and then run-level Huffman coded with a P frame Huffman table. After all the MBs in the 
MBG are encoded, the rate and distortion of MB codings with reference to the two nearby A frames are 
compared. The one that offers a better rate-distortion trade off is selected as the reference frame for the MBG. 
One bit is encoded for each MBG to identify the reference A frame. After that, the motion vector and the 
prediction residue of the MBs are grouped together and encoded.  
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Figure 4: Flow of the RBC encoder. 



The flowchart of the RBC encoding is shown in Figure 4. Given a concentric mosaic scene, the global translation 
vector of each P frame is calculated and encoded with a Huffman coder. After that, we encode all A frames. The 
A frames are decompressed immediately and used as reference for motion compensation, because the decoder 
can only access the compressed A frames, not the original ones. The P frames are then encoded, with each MB 
predicted and its residue compressed. Typically, it costs more bits to encode an A frame than a P frame, because 
the entropy of the A frames is much higher than that of the residue of the P frames.  
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Figure 5: Syntax of the compressed concentric mosaics file. 

The bitstream syntax of RBC compressed concentric mosaics is indexed by a two-level hierarchical table, and 
can be shown in Figure 5. After the file header, the global translation motion vectors are stored. It is followed by 
a first level index table, which records the encoded bitstream length of each A and P frame. The second level 
index table is located within the bitstream of each frame, and records the bit-stream length of each MBG. The 
overhead of the two-level index table is about 1% of the entire compressed bitstream and is thus very light. The 
two-level index table is loaded into the memory whenever the concentric mosaics are accessed. 
 
The RBC coding scheme bears a strong resemblance to MPEG. In fact, the MB of an A frame and the MB 
prediction residue of a P frame are encoded exactly the same way as those in MPEG. However, RBC has a very 
different frame structure, motion model, and bitstream syntax from that of MPEG. In contrast to MPEG, which is 
a general-purpose video codec, RBC is tuned specifically for the compression of the concentric mosaics. Unlike 
MPEG, where a predicted P frame can refer to another predicted P frame, the P frame in RBC only refers to an A 
frame. MPEG allows strong motion for each MB, while the motion model in RBC is predominantly global 
horizontal translation, with only small local variation for individual MB due to the parallax. The two-level 
hierarchical index table is also unique for RBC. The modifications enhance the compression performance of 
RBC and enables the RBC compressed bitstream to be random accessed at the rendering stage. 
 

4. JUST-IN-TIME RENDERING 
 
Care must be taken not to decode the entire compressed concentric mosaic at any time, as a concentric mosaic 
scene can be very large. Another requirement for the decoder engine is a low computation load, so that decoding 
does not consume all computer resources, which are also needed for the rendering and user interaction. With the 
two-level index structure provided by the RBC, it is possible to access and decode only the data necessary to 
render the current view. When a user selects a new view of the environment, a series of slit access requests are 
sent by the rendering engine. It is the task of the decoder engine to provide the slits quickly. To reduce the 
computation load of the decoder, a number of caches have been implemented, so that recently decoded content 
need not be redecoded again. The key is to balance between the computation load and memory requirement.  
 
The structure of the decoder is shown in Figure 6. There are altogether four caches, which hold the slits (in RGB 
space), the A and P frame MBGs (in YUV space), and the compressed concentric mosaic bitstream. The 
rendering engine accesses the data by slits. Whenever a slit is not in the slit cache, it will be further accessed 
from the A or the P frame cache, depending on where the slit is located. The engine checks if the MBG in which 
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Figure 6: Just-in-time rendering flow of the reference block coding. 

the slit is located is in cache. If it is, the accessed slit is converted from YUV to RGB, and it will be put in the slit 
cache. Otherwise, the corresponding MBG is decoded. If the MBG belongs to an A frame, it is decoded directly 
from the compressed bitstream with the aid of the two-level index structure. If the MBG belongs to a P frame, 
we must first check if all the referred A frame MBGs are in the A frame cache. The referred A frame MBG will 
be decoded if it is not in cache. The prediction residue of the P frame MBG is then decoded, added to the motion 
compensation, and stored in the P frame cache. Accessing the compressed bitstream is through the bitstream 
cache.  
 
The slit, A and P frame caches are managed with a FIFO cache management strategy. A doublelink is 
established for each cache. Whenever a slit/MBG is accessed, the accessed content is moved to the head of the 
link. Whenever a slit/MBG not in cache is decoded, it is also added to the head of the link, and if the memory 
allocated to the cache is full, the content at the end link is dropped. The memory allocated to each cache should 
be large enough to cover the rendering of the current view as well as the most common movement of the user. 
The rendering engine typically requires that the slit cache holds 2048 slits, and the bitstream cache holds the 
entire compressed concentric mosaics. In the current design, the A and P frame caches hold 500 and 200 MBGs, 
respectively.  
 

5. SIMULATION RESULTS 
 
To demonstrate the effectiveness of the reference block codec (RBC), we compare the compression performance 
of RBC versus that of MPEG-2. Note that MPEG does not offer random access and is thus not a suitable coding 
tool for the concentric mosaics rendering. Nevertheless, we use the popular MPEG-2 as a benchmark to 
demonstrate the effectiveness of RBC. We obtain the MPEG-2 encoder from http://www.mpeg.org. In the 
MPEG-2, the first frame is independently encoded as I frame, and the rest frames are predictively encoded as P 
frames. The test concentric mosaic scenes are Lobby and Kids, as shown in Figure 7 and Figure 8, respectively. 
The scene Lobby is shot with 1351 frames at resolution 320x240, and the scene Kids is shot with 1463 frames at 
resolution 352x288. The Kids scene has more details, and is much more difficult to compress than the Lobby 
scene. 



 
Figure 7: Concentric mosaic scene Lobby.  

 
Figure 8: Concentric mosaic scene Kids.  

The objective peak signal-to-noise ratio (PSNR) is measured between the original concentric mosaic scene and 
the decompressed scene. The PSNR is calculated by: 
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where c(n,w,h) and c’(n,w,h) are the original and reconstructed concentric mosaic scene, respectively. We 
compress the Lobby scene at ratio 120:1 and 60:1, and the Kids scene at ratio 100:1, 60:1 and 40:1. In the 
current implementation, no rate control is used in RBC, i.e., the quantization scale Qa and Qp is the same 
throughout the compression. While in MPEG2, the rate control is turned on in order to get the best performance. 
The two-level index table of RBC is counted in the comparison, thus the bitstream of RBC bears the property of 
random access, but that of MPEG-2 does not. The results are listed in Table 1. It is observed that for the Y 
component (luminance) that is most important in evaluation, RBC beats MPEG-2 for 0.4 to 1.7dB, with an 
average gain of 1.1dB. Considering that MPEG-2 is a highly optimized coder, the gain is significant. The 
rendered Kids scenes compressed at ratio 40:1 and 100:1 are shown in Figure 12. At compression ratio 40:1, the 
scene shows very little distortion. Artifacts such as ringing and blur show up when we raise the compression 
ratio to 100:1, however, the quality of the rendered view is still pretty good.  

Table 1. Compression performance of RBC and MPEG2.  
Lobby Kids Scene 

Approach (0.2bpp)  (0.4bpp) (0.24bpp)  (0.4bpp)  (0.6bpp) 

MPEG2 (dB) 
Y: 32.2 
U: 38.7 
V: 38.1 

Y: 34.8 
U: 39.9 
V: 39.1 

Y: 28.3 
U: 34.8 
V: 34.9 

Y: 30.1 
U: 36.6 
V: 36.7 

Y: 31.9 
U: 38.0 
V: 38.1 

RBC (dB) 
Y: 32.8 
U: 39.7 
V: 40.5 

Y: 36.1 
U: 40.7 
V: 41.8 

Y: 28.7 
U: 37.1 
V: 36.6 

Y: 31.5 
U: 39.3 
V: 38.9 

Y: 33.6 
U: 40.9 
V: 40.5 

 
In the second experiment, we investigate the rendering speed of RBC. The comparison codec is the spatial 
domain vector quantization (SVQ) used in [5] with compression ratio 12:1. We simply replace the SVQ codec of 
[5] by the RBC codec. The test scene is the Kids scene, with original data size 424 mega bytes. The compression 



ratio of RBC is 60:1, i.e., five times that of SVQ. The bitstream cache of RBC holds 7.2 mega bytes. The slit, A 
and P frame caches hold 2048 RGB slits, 500 and 200 YUV macroblock groups (MBGs) with size of 1.7, 3.6 
and 1.3 mega bytes, respectively. The SVQ codec needs to hold the entire compressed file into the memory, thus 
requires a bitstream cache of 35.3 mega bytes as well as a slit cache of 1.7 mega bytes. The entire memory cache 
of RBC render is 13.8 mega bytes versus the 37.0 mega bytes of SVQ. 
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Figure 9: Three kinds of motion mode: rotation, forward, and sidestep.  

The experimental platform is a Pentium II PC running at 400 MHz with system memory large enough to 
accommodate all the caches. The rendering engine uses both point sampling and bilinear interpolation. Three 
motion passes of the viewer is simulated, i.e., rotation, forward, and sidestep modes, as shown in Figure 9. In the 
rotation mode, the viewpoint is at the center of the circle and rotates 0.006 radians per view. Altogether 1000 
views are rendered to calculate the average frame rate. In the forward mode, the viewpoint starts at the edge of 
the inner circle and moves forward along the optical axis of the camera. A total of 500 views are rendered. In the 
sidestep mode, the viewpoint moves sidestep perpendicular to the optical axis of the camera. A total of 200 
views are rendered. Sidestep is the most time-consuming mode in rendering, as it generates more new slits and 
causes more cache miss. The average number of frames rendered per second is shown in Table 2. Two rendering 
sizes 352x168 and 800x372 are used. The rendered view is shorter than the original concentric mosaic shots to 
compensate the depth variation [5] . 

Table 2.  Rendering speed of RBC and SVQ. (frame per second) 
800x372 352x168          Rendering setting 

 
Mode / Algorithm 

Point 
sampling 

Bilinear 
interpolation 

Point 
sampling 

Bilinear 
interpolation 

SVQ 17.6 14.6 76.9 47.6 
Rotation 

RBC 16.1 13.2 52.8 37.9 
SVQ 17.0 14.2 71.4 45.5 Forward 
RBC 15.6 13.1 49.6 36.7 
SVQ 15.8 13.2 53.4 37.1 Sidestep 
RBC 11.4 9.9 23.0 19.3 

 
Due to higher complexity in decoding, the rendering speed of RBC is a litter slower than SVQ, especially in the 
sidestep mode. However, the frame rate difference between RBC and SVQ is insignificant, while the 
compression ratio of RBC is 5 times as much as that of SVQ, with about one third of cache memory requirement 
of the renderer. The rendered concentric mosaic scene looks comfortable and smooth under RBC. We have 
profiled the RBC codec, and the four most time-consuming components of RBC are the motion compensation, 
inverse DCT, YUV to RGB color transform and rendering. The first 3 components may be further accelerated if 
MMX instruction sets are used.  
 
Experiments have also been performed to investigate the relationship between the cache size and the rendering 
speed of RBC. Since further reduction of the bitstream cache and the slit cache complicates the system design, 
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Figure 10: RBC rendering speed versus P cache size. (bilinear interpolation with A cache size 600 MBGs) 

we mainly investigated the effects of A and P cache size. First, we vary the size of the P frame cache. The 
rendered scene is the Kids scene with compression ratio 60:1 at resolution 352x168. The size of the A frame 
cache is fixed at 600 MBGs, which is large enough to hold all the referred A frame MBGs. In Figure 10, the 
rendering speed with P frame cache size is plotted, with the solid, dashed and dot-dashed curves corresponding 
to the rotation, forward and sidestep mode, respectively. It is observed that the rendering speed is insensitive to 
the cache size in the rotation mode. This is because when the view rotates, a large portion of the rendered slits in 
a new scene are the same as those in the last rendered view, and can be taken from the slit cache directly. To 
provide quick rendering in the forward and sidestep mode, we find that an optimal design parameter for the P 
frame cache size is 200 MBGs, as a size above it shows no advantage for the rendering speed, and a size below it 
will cause significant speed penalty.  
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Figure 11: RBC rendering speed of sidestepping versus A cache size. (P cache size is 200 MBGs) 

Figure 11 shows the relationship between A cache size and the rendering speed. The size of the P cache is fixed 
at 200 MBGs, and only the sidestep mode is tested because it is the slowest rendering mode and largely 
determines the final interactive wandering speed. It is observed that a good choice of the size of the A frame 
cache is around 450-500 MBGs.  
 
 



6. CONCLUSIONS  
 
A reference block codec (RBC) approach for the compression and just-in-time (JIT) rendering of the concentric 
mosaic scenery is presented in this paper. The algorithm not only outperforms the video coding standard 
MPEG-2 in compression efficiency, but also offers the capability to randomly access and decode the compressed 
bitstream. The rendering speed of RBC is fast enough for real time rendering of the compressed concentric 
mosaics. 
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Figure 12 Rendered view of the Kids scene at compression ratio 40:1 (upper) and 100:1 (lower). 


