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1 Security and the Pi CalculusThe spi calculus is an extension of the pi calculus [MPW92] with crypto-graphic primitives. It is designed for the description and analysis of secu-rity protocols, such as those for authentication and for electronic commerce.These protocols rely on cryptography and on communication channels withproperties like authenticity and privacy. Accordingly, cryptographic opera-tions and communication through channels are the main ingredients of thespi calculus.We use the pi calculus (without extension) for describing protocols at anabstract level. The pi calculus primitives for channels are simple but pow-erful. Channels can be created and passed, for example from authenticationservers to clients. The scoping rules of the pi calculus guarantee that the en-vironment of a protocol (the attacker) cannot access a channel that it is notexplicitly given; scoping is thus the basis of security. In sum, the pi calculusappears as a fairly convenient calculus of protocols for secure communication.However, the pi calculus does not express the cryptographic operationsthat are commonly used for implementing channels in distributed systems:it does not include any constructs for encryption and decryption, and thesedo not seem easy to represent. Since the use of cryptography is notoriouslyerror-prone, we prefer not to abstract it away. We de�ne the spi calculusin order to permit an explicit representation of the use of cryptography inprotocols.There are by now many other notations for describing security protocols.Some, which have long been used in the authentication literature, have afairly clear connection to the intended implementations of those protocols(see, e.g., [NS78, Lie93]). Their main shortcoming is that they do not providea precise and solid basis for reasoning about protocols. Other notations(e.g., [BAN89]) are more formal, but their relation to implementations maybe more tenuous or subtle. The spi calculus is a middle ground: it is directlyexecutable and it has a precise semantics.Because the semantics of the spi calculus is not only precise but intelligi-ble, the spi calculus provides a setting for analysing protocols. Speci�cally,we can express security guarantees as equivalences between spi calculus pro-cesses. For example, we can say that a protocol keeps secret a piece of dataX by stating that the protocol with X is equivalent to the protocol with X 0,for any X 0. Here, equivalence means equivalence in the eyes of an arbitraryenvironment. The environment can interact with the protocol, perhaps at-4



tempting to create confusion between di�erent messages or sessions. Thisde�nition of equivalence yields the desired properties for our security appli-cations. (Interestingly, we cannot take the standard bisimilarity relation asour notion of equivalence.) Moreover, equivalence is not too hard to prove;we demonstrate this by carrying out the analysis of a few small protocols.Although the de�nition of equivalence makes reference to the environ-ment, we do not need to give a model of the environment explicitly. Thisis one of the main advantages of our approach. Writing such a model canbe tedious and can lead to new arbitrariness and error. In particular, it isalways di�cult to express that the environment can invent random numbersbut is not lucky enough to guess the random secrets on which a protocoldepends. We resolve this con
ict by letting the environment be an arbitraryspi calculus process.Our approach has some similarities with other recent approaches forreasoning about protocols. Like work based on temporal logics or pro-cess algebras (e.g., [GM95, Low96, Sch96]), our method builds on a stan-dard concurrency formalism; this has obvious advantages but it also impliesthat our method is less intuitive than some based on ad hoc formalisms(e.g., [BAN89]). As in some modal logics (e.g., [ABLP93, LABW92]), we em-phasise reasoning about channels and their utterances. As in state-transitionmodels (e.g., [DY81, MCF87, Mil95a, Kem89, Mea92]), we are interested incharacterising the knowledge of an environment. The unique features of ourapproach are its reliance on the powerful scoping constructs of the pi calculus;the radical de�nition of the environment as an arbitrary spi calculus process;and the representation of security properties, both integrity and secrecy, asequivalences.Our model of protocols is simpler, but poorer, than some models de-veloped for informal mathematical arguments (e.g., [BR95]) because the spicalculus does not include any notion of probability or complexity. It wouldbe interesting to bridge the gap between the spi calculus and those models,perhaps by giving a probabilistic interpretation for our results.Contents of this PaperSection 2 introduces the pi calculus and our method of specifying authenticityand secrecy properties as equations. Section 3 extends the pi calculus withprimitives for shared-key cryptography. Sections 4 and 5 de�ne the formalsemantics of the spi calculus and associated proof techniques, respectively.5



Section 6 uses these techniques in proofs of some of the properties stated ear-lier. Section 7 discusses how to add primitives for public-key cryptography tothe pi calculus, and Section 8 o�ers some conclusions. The Appendices con-tain some proofs and several sketches of partial encodings of the spi calculusin the pi calculus.NoteIt has been said that Perl is a language that looks the same in clear andencrypted. The pi calculus, and a fortiori the spi calculus, are not too farbehind Perl in this respect. If you get lost in the formal passages of thepaper, the cleartext nearby may help|hopefully the informal explanationsconvey the gist of what is being accomplished.2 Protocols using Restricted ChannelsIn this section we review the de�nition of the pi calculus informally. (Wegive a more formal presentation in Section 4.) We then introduce a newapplication of the pi calculus, namely its use for the study of security.2.1 BasicsThe pi calculus is a small but extremely expressive programming language.It is an important result of the search for a calculus that could serve as afoundation for concurrent computation, in the same way in which the lambdacalculus is a foundation for sequential computation.Pi calculus programs are systems of independent, parallel processes thatsynchronise via message-passing handshakes on named channels. The chan-nels a process knows about determine the communication possibilities of theprocess. Channels may be restricted, so that only certain processes may com-municate on them. In this respect the pi calculus is similar to earlier processcalculi such as CSP [Hoa85] and CCS [Mil89].What sets the pi calculus apart from earlier calculi is that the scope of arestriction|the program text in which a channel may be used|may changeduring computation. When a process sends a restricted channel as a messageto a process outside the scope of the restriction, the scope is said to extrude,that is, it enlarges to embrace the process receiving the channel. Processes in6



the pi calculus are mobile in the sense that their communication possibilitiesmay change over time; they may learn the names of new channels via scopeextrusion. Thus, a channel is a transferable capability for communication.A central technical idea of this paper is to use the restriction operatorand scope extrusion from the pi calculus as a formal model of the possessionand communication of secrets, such as cryptographic keys. These features ofthe pi calculus are essential in our descriptions of security protocols.2.2 Outline of the Pi CalculusThere are in fact several versions of the pi calculus. Here we review thesyntax and semantics of a particular version of the pi calculus; our choicesshould be relatively uncontroversial. The di�erences with other versions aremostly orthogonal to our concerns.We assume an in�nite set of names, to be used for communication chan-nels, and an in�nite set of variables. We let m, n, p, q, and r range overnames, and let x, y, and z range over variables.The set of terms is de�ned by the grammar:L;M;N ::= termsn name(M;N) pair0 zerosuc(M) successorx variableIn the standard pi calculus, names are the only terms. For convenience wehave added constructs for pairing and numbers, (M;N), 0, and suc(M), andhave also distinguished variables from names. (This distinction simpli�es thetreatment of some equivalences.)The set of processes is de�ned by the grammar:P;Q;R ::= processesMhNi:P outputM(x):P inputP j Q composition(�n)P restriction!P replication[M is N ] P match7



0 nillet (x; y) =M in P pair splittingcase M of 0 : P suc(x) : Q integer caseIn (�n)P , the name n is bound in P . In M(x):P , the variable x is boundin P . In let (x; y) = M in P , the variables x and y are bound in P . Incase M of 0 : P suc(x) : Q, the variable x is bound in the second branch, Q.We write P [M=x] for the outcome of replacing each free occurrence of x inprocess P with the term M , and identify processes up to renaming of boundvariables and names. We adopt the abbreviation MhNi for MhNi:0.Intuitively, the constructs of the pi calculus have the following meanings:� The basic computational step and synchronisation mechanism in thepi calculus is interaction, in which a term N is communicated from anoutput process to an input process via a named channel, m.{ An output process mhNi:P is ready to output on channel m. Ifan interaction occurs, term N is communicated on m and thenprocess P runs.{ An input process m(x):P is ready to input from channel m. If aninteraction occurs in which N is communicated onm, then processP [N=x] runs.(The general forms MhNi:P and M(x):P of output and input allowfor the channel to be an arbitrary term M . The only useful cases arefor M to be a name, or a variable that gets instantiated to a name.)� A composition P j Q behaves as processes P and Q running in parallel.Each may interact with the other on channels known to both, or withthe outside world, independently of the other.� A restriction (�n)P is a process that makes a new, private name n,which may occur in P , and then behaves as P .� A replication !P behaves as an in�nite number of copies of P runningin parallel.� A match [M is N ] P behaves as P provided that terms M and N arethe same; otherwise it is stuck, that is, it does nothing.� The nil process 0 does nothing.8



Since we added pairs and integers, we have two new process forms:� A pair splitting process let (x; y) =M in P behaves as P [N=x][L=y] ifterm M is the pair (N;L), and otherwise it is stuck.� An integer case process case M of 0 : P suc(x) : Q behaves as P ifterm M is 0, as Q[N=x] if M is suc(N), and otherwise is stuck.We write P ' Q to mean that the behaviours of the processes P andQ are indistinguishable. In other words, the processes P and Q may havedi�erent internal structure, but a third process R cannot distinguish runningin parallel with P from running in parallel with Q. As far as R can tell, Pand Q have the same properties (more precisely, the same safety properties).We de�ne the relation ' in Section 4.2 as a form of testing equivalence. Fornow, it su�ces to understand ' informally.2.3 Examples using Restricted ChannelsNext we show how to express some abstract security protocols in the picalculus. In security protocols, it is common to �nd channels on which only agiven set of principals is allowed to send data or listen. The set of principalsmay expand in the course of a protocol run, for example as the result ofchannel establishment. Remarkably, it is easy to model this property ofchannels in the pi calculus, via the restriction operation; the expansion ofthe set of principals that can access a channel corresponds to scope extrusion.We do not provide a systematic translation from another language fordescribing protocols into the pi calculus, but rather show some examples ofprotocols written directly in the pi calculus, along with informal descriptionsof the kind commonly found in the security literature. We do introduce afairly systematic approach for stating properties of protocols as pi calculusequivalences.2.3.1 A �rst exampleOur �rst example is extremely basic. In this example, there are two principalsA and B that share a channel, cAB; only A and B can send data or listenon this channel. The protocol is simply that A uses cAB for sending a singlemessage M to B. 9



In informal notation, we may write this protocol as follows:Message 1 A! B : M on cABA �rst pi calculus description of this protocol is:A(M) �= cABhMiB �= cAB(x):0Inst(M) �= (�cAB)(A(M) j B)The processes A(M) and B describe the two principals, and Inst(M) de-scribes (one instance of) the whole protocol. The channel cAB is restricted;intuitively, this achieves the e�ect that only A and B have access to cAB.In these de�nitions, A(M) and Inst(M) are processes parameterised byM . More formally, we say that A and Inst are abstractions, and treat theM 's on the left of �= as bound parameters. Roughly, abstractions are func-tions that map terms to processes. (Section 5.1 contains a precise de�nitionof abstractions.) Abstractions can of course be instantiated (applied); forexample, the instantiation A(0) yields cABh0i. The standard rules of sub-stitution govern application, forbidding parameter captures; for example,expanding Inst(cAB) would require a renaming of the bound occurrence ofcAB in the de�nition of Inst .The �rst pi calculus description of the protocol may seem a little futilebecause, according to it, B does nothing with its input. A more useful andgeneral description says that B runs a process F with its input. We reviseour de�nitions as follows:A(M) �= cABhMiB �= cAB(x):F (x)Inst(M) �= (�cAB)(A(M) j B)Informally, F (x) is simply the result of applying F to x. More formally, Fis an abstraction, and F (x) is an instantiation of the abstraction. We adoptthe convention that the bound parameters of the protocol (in this case, M ,cAB, and x) cannot occur free in F .This protocol has two important properties:� Authenticity (or integrity): B always applies F to the message M thatA sends; an attacker cannot cause B to apply F to some other message.10



� Secrecy: The message M cannot be read in transit from A to B: if Fdoes not reveal M , then the whole protocol does not reveal M .The secrecy property can be stated in terms of equivalences: if F (M) 'F (M 0), for any M , M 0, then Inst(M) ' Inst(M 0). This means that if F (M)is indistinguishable from F (M 0), then the protocol with message M is indis-tinguishable from the protocol with message M 0.There are many sensible ways of formalising the authenticity property.In particular, it may be possible to use notions of re�nement or a suitableprogram logic. However, we choose to write authenticity as an equivalence,for economy. This equivalence compares the protocol with another protocol.Our intent is that the latter protocol serves as a speci�cation. In this case,the speci�cation is: A(M) �= cABhMiBspec(M) �= cAB(x):F (M)Inst spec(M) �= (�cAB)(A(M) j Bspec(M))The principal A is as usual, but the principal B is replaced with a variantBspec(M); this variant receives an input from A and then acts like B whenB receives M . We may say that Bspec(M) is a \magical" version of B thatknows the messageM sent by A, and similarly Inst spec is a \magical" versionof Inst .Although the speci�cation and the protocol are similar in structure, thespeci�cation is more evidently \correct" than the protocol. Therefore, wetake the following equivalence as our authenticity property: Inst(M) 'Inst spec(M), for any M .In summary, we have:Authenticity: Inst(M) ' Inst spec(M), for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.Each of these equivalences means that two processes being equated are in-distinguishable, even when an active attacker is their environment. Neitherof these equivalences would hold without the restriction of channel cAB. Weprove these equivalences in Section 6, which contains proofs for all our ex-amples. 11
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Figure 1: Structure of the Wide Mouthed Frog Protocol2.3.2 An example with channel establishmentA more interesting variant of our �rst example is obtained by adding a chan-nel establishment phase. In this phase, before communication of data, theprincipals A and B obtain a new channel with the help of a server S.There are many di�erent ways of establishing a channel, even at theabstract level at which we work here. The one we describe is inspired by theWide Mouthed Frog protocol [BAN89], which has the basic structure shownin Figure 1.We consider an abstract and simpli�ed version of the Wide Mouthed Frogprotocol. Our version is abstract in that we deal with channels instead ofkeys; it is simpli�ed in that channel establishment and data communicationhappen only once (so there is no need for timestamps). In the next sectionwe show how to treat keys and how to allow many instances of the protocol,with an arbitrary number of messages.Informally, our version is:Message 1 A! S : cAB on cASMessage 2 S ! B : cAB on cSBMessage 3 A! B : M on cABHere cAS is a channel that A and S share initially, cSB is a channel that Sand B share initially, and cAB is a channel that A creates for communicationwith B. After passing the channel cAB to B through S, A sends a messageM on cAB. Note that S does not use the channel, but only transmits it.12



In the pi calculus, we formulate this protocol as follows:A(M) �= (�cAB)cAShcABi:cABhMiS �= cAS(x):cSBhxiB �= cSB(x):x(y):F (y)Inst(M) �= (�cAS)(�cSB)(A(M) j S j B)Here we write F (y) to represent what B does with the message y that itreceives, as in the previous example. The restrictions on the channels cAS,cSB, and cAB re
ect the expected privacy guarantees for these channels. Themost salient new feature of this speci�cation is the use of scope extrusion: Agenerates a fresh channel cAB, and then sends it out of scope to B via S. Wecould not have written this description in formalisms such as CCS or CSP;the use of the pi calculus is important.For discussing authenticity, we introduce the following speci�cation:A(M) �= (�cAB)cAShcABi:cABhMiS �= cAS(x):cSBhxiBspec(M) �= cSB(x):x(y):F (M)Inst spec(M) �= (�cAS)(�cSB)(A(M) j S j Bspec(M))According to this speci�cation, the messageM is communicated \magically":the process F is applied to the message M that A sends independently ofwhatever happens during the rest of the protocol run.We obtain the following authenticity and secrecy properties:Authenticity: Inst(M) ' Inst spec(M), for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.Again, these properties hold because of the scoping rules of the pi calculus.2.3.3 DiscussionWe believe that the two examples just given are rather encouraging. Theyindicate that the pi calculus is a natural language for describing some securityprotocols. In particular, the restriction operator and scope extrusion allowconvenient representations for the possession and communication of channels.We do not wish to suggest that the pi calculus enables us to describe allsecurity protocols, even at an abstract level. For example, some protocols13



rely on asymmetric channels (channels of the kind implemented with public-key cryptography [DH76, RSA78]). It may be possible to represent suchasymmetric channels in the pi calculus but extending the pi calculus may besimpler and more e�ective. In all cases, however, the pi calculus notion ofscoping should be useful.3 Protocols using CryptographyJust as there are several versions of the pi calculus, there are several versionsof the spi calculus. These di�er in particular in what cryptographic constructsthey include.In this section we introduce a relatively simple spi calculus, namely thepi calculus extended with primitives for shared-key cryptography. We thenwrite several protocols that use shared-key cryptography in this calculus.As in Section 2, the presentation is rather informal. Later sections con-tain further formal de�nitions. Throughout the paper, we often refer to thecalculus presented in this section as \the" spi calculus; but we de�ne otherversions of the spi calculus in Section 7.3.1 The Spi Calculus with Shared-Key CryptographyThe syntax of the spi calculus is an extension of that of the pi calculus.In order to represent encrypted messages, we add a clause to the syntax ofterms:L;M;N ::= terms: : : as in Section 2.2fMgN shared-key encryptionIn order to represent decryption, we add a clause to the syntax of processes:P;Q ::= processes: : : as in Section 2.2case L of fxgN in P shared-key decryptionThe variable x is bound in P .Intuitively, the meaning of the new constructs is as follows:14



� The term fMgN represents the ciphertext obtained by encrypting theterm M under the key N using a shared-key cryptosystem such asDES [DES77].� The process case L of fxgN in P attempts to decrypt the term L withthe key N . If L is a ciphertext of the form fMgN , then the processbehaves as P [M=x]. Otherwise the process is stuck.Implicit in this de�nition are some standard but signi�cant assumptionsabout cryptography:� The only way to decrypt an encrypted packet is to know the corre-sponding key.� An encrypted packet does not reveal the key that was used to encryptit.� There is su�cient redundancy in messages so that the decryption algo-rithm can detect whether a ciphertext was encrypted with the expectedkey.It is not assumed that all messages contain information that allows eachprincipal to recognise its own messages (cf. [BAN89]).The semantics of the spi calculus can be formalised in much the sameway as the semantics of the pi calculus. We carry out this formalisation inSection 4. The most interesting issues in this formalisation concern the notionof equivalence. Again, we write P ' Q to mean that the behaviours of theprocesses P and Q are indistinguishable. The notion of indistinguishabilityis complicated by the presence of cryptography.As an example of these complications, consider the following process:P (M) �= (�K)chfMgKiThis process simply sends M under a new key K on a public channel c;the key K is not transmitted. Intuitively, we would like to be able to saythat P (M) and P (M 0) are indistinguishable, for any M and M 0, because anobserver cannot discover K and hence cannot tell whether M or M 0 is sentunder K. On the other hand, P (M) and P (M 0) are clearly di�erent, sincethey transmit di�erent messages on c. A �ne-grained equivalence|such asthe standard strong bisimilarity|would distinguish P (M) and P (M 0). Ourequivalence is coarse-grained enough not to make this unwanted distinction.15



3.2 Examples using Shared-Key CryptographyThe spi calculus enables more detailed descriptions of security protocols thanthe pi calculus. While the pi calculus enables the representation of channels,the spi calculus also enables the representation of the channel implemen-tations in terms of cryptography. In this section we show a few examplecryptographic protocols.As in the pi calculus, scoping is the basis of security in the spi calculus. Inparticular, restriction can be used to model the creation of fresh, unguessablecryptographic keys. Restriction can also be used to model the creation offresh nonces of the sort used in challenge-response exchanges.Security properties can still be expressed as equivalences, although thenotion of equivalence is more delicate, as we have discussed.3.2.1 A �rst cryptographic exampleOur �rst example is a cryptographic version of the example of Section 2.3.1.We consider two principals A and B that share a key KAB; in addition, weassume there is a public channel cAB that A and B can use for communica-tion, but which is in no way secure. The protocol is simply that A sends amessage M under KAB to B, on cAB.Informally, we write this protocol as follows:Message 1 A! B : fMgKAB on cABIn the spi calculus, we write:A(M) �= cABhfMgKABiB �= cAB(x):case x of fygKAB in F (y)Inst(M) �= (�KAB)(A(M) j B)According to this de�nition, A sends fMgKAB on cAB while B listens for amessage on cAB. Given such a message, B attempts to decrypt it using KAB;if this decryption succeeds, B applies F to the result. The assumption that Aand B share KAB gives rise to the restriction on KAB, which is syntacticallylegal and meaningful although KAB is not used as a channel. On the otherhand, cAB is not restricted, since it is a public channel. Other principals maysend messages on cAB, so B may attempt to decrypt a message not encryptedunder KAB; in that case, the protocol will get stuck. We are not concerned16



about this possibility, but it would be easy enough to avoid it by writing aslightly more elaborate program for B.We use the following speci�cation:A(M) �= cABhfMgKABiBspec(M) �= cAB(x):case x of fygKAB in F (M)Inst spec(M) �= (�KAB)(A(M) j Bspec(M))and we obtain the properties:Authenticity: Inst(M) ' Inst spec(M), for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.Intuitively, authenticity holds even if the key KAB is somehow compro-mised after its use. Many factors can contribute to key compromise, forexample incompetence on the part of protocol participants, and malice andbrute force on the part of attackers. We cannot model all these factors, butwe can model deliberate key publication, which is in a sense the most ex-treme of them. It su�ces to make a small change in the de�nitions of B andBspec, so that they send KAB on a public channel after receiving fMgKAB .This change preserves the authenticity equation, but clearly not the secrecyequation.There is an apparent correspondence between the protocol of this sec-tion and that of Section 2.3.1, which does not use cryptography. Informally,we may say that this is a cryptographic implementation of the protocol ofSection 2.3.1. More precisely, we conjecture that this protocol is an imple-mentation of the parallel composition of the protocol of Section 2.3.1 with(�n)(cABhni). (Our notion of implementation is a testing preorder; see Sec-tion 4.) The role of (�n)(cABhni) is to send a \decoy message" on cAB. Thisdecoy is needed because an environment can detect whether cAB is used ornot, and hence (in absence of the decoy) can distinguish the protocol of thissection from that of Section 2.3.1.We do not study implementation relations in this paper. However, wedo believe that such relations are important and that they deserve more at-tention in the �eld of security. We view this example of an implementationrelation as an intriguing novelty; it suggests the possibility of hierarchical de-velopment of cryptographic protocols from non-cryptographic speci�cations.17
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Figure 2: Sketch of the Wide Mouthed Frog3.2.2 An example with key establishmentIn cryptographic protocols, the establishment of new channels often meansthe exchange of new keys. There are many methods (most of them 
awed)for key exchange. The following example is the cryptographic version of thatof Section 2.3.2, and uses a simpli�ed form of the Wide Mouthed Frog keyexchange. The example is represented in Figure 2.In the Wide Mouthed Frog protocol, the principals A and B share keysKAS and KSB respectively with a server S. When A and B want to com-municate securely, A creates a new key KAB, sends it to the server underKAS, and the server forwards it to B under KSB. All communication beingprotected by encryption, it can happen through public channels, which wewrite cAS, cSB, and cAB. Informally, a simpli�ed version of this protocol is:Message 1 A! S : fKABgKAS on cASMessage 2 S ! B : fKABgKSB on cSBMessage 3 A! B : fMgKAB on cABIn the spi calculus, we can express this message sequence as follows:A(M) �= (�KAB)(cAShfKABgKASi:cABhfMgKABi)S �= cAS(x):case x of fygKAS in cSBhfygKSBiB �= cSB(x):case x of fygKSB incAB(z):case z of fwgy in F (w)Inst(M) �= (�KAS)(�KSB)(A(M) j S j B)18



where F (w) is a process representing the rest of the behaviour of B upon re-ceiving a message w. Notice the essential use of scope extrusion: A generatesthe key KAB and sends it out of scope to B via S.In the usual pattern, we introduce a speci�cation for discussing authen-ticity: A(M) �= (�KAB)(cAShfKABgKASi:cABhfMgKABi)S �= cAS(x):case x of fygKAS in cSBhfygKSBiBspec(M) �= cSB(x):case x of fygKSB incAB(z):case z of fwgy in F (M)Inst spec(M) �= (�KAS)(�KSB)(A(M) j S j Bspec(M))One may be concerned about the apparent complexity of this speci�ca-tion. On the other hand, despite its complexity, the speci�cation is still moreevidently \correct" than the protocol. In particular, it is still evident thatBspec(M) applies F to the dataM from A, rather than to some other messagechosen as the result of error or attack.We obtain the usual properties of authenticity and secrecy:Authenticity: Inst(M) ' Inst spec(M), for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.3.2.3 A complete authentication example (with a 
aw)In the examples discussed so far, channel establishment and data commu-nication happen only once. As we demonstrate now, it is a simple matterof programming to remove this restriction and to represent more sophisti-cated examples with many sessions between many principals. However, asthe intricacy of our examples increases, so does the opportunity for error.This should not be construed as a limitation of our approach, but ratheras the sign of an intrinsic di�culty: many of the mistakes in authenticationprotocols arise from confusion between sessions.We consider a system with a server S and n other principals. We usethe terms suc(0), suc(suc(0)), . . . , which we abbreviate to 1, 2, . . . , as thenames of these other principals. We assume that each principal has an inputchannel; these input channels are public and have the names c1, c2, . . . , cnand cS. We also assume that the server shares a pair of keys with each other19



principal, one key for each direction: principal i uses key KiS to send to Sand key KSi to receive from S, for 1 � i � n.We extend our standard example to this system of n+ 1 principals, withthe following message sequence:Message 1 A! S : A; fB;KABgKAS on cSMessage 2 S ! B : fA;KABgKSB on cBMessage 3 A! B : A; fMgKAB on cBHere A and B range over the n principals. The names A and B appear inmessages in order to avoid ambiguity; when these names appear in clear,they function as hints that help the recipient choose the appropriate key fordecryption of the rest of the message. The intent is that the protocol can beused by any pair of principals, arbitrarily often; concurrent runs are allowed.As it stands, the protocol is seriously 
awed; a correct protocol appearsbelow, in Section 3.2.4. (The 
aws and their �xes should be clear to readersknowledgeable in security.) We continue to discuss the protocol in order toexplain our method for representing it in the spi calculus.In our spi calculus representation, we use several convenient abbrevia-tions. Firstly, we rely on pair splitting on input and on decryption:c(x1; x2):P �= c(y):let (x1; x2) = y in Pcase L of fx1; x2gN in P �= case L of fygN in let (x1; x2) = y in Pwhere variable y is fresh. Secondly, we need the standard notation for thecomposition of a �nite set of processes. Given a �nite family of processesP1; : : : ; Pk, we let Qi21::k Pi be their k-way composition P1 j � � � j Pk. Finally,we omit the inner brackets from an encrypted pair of the form f(N;N 0)gN 00 ,and simply write fN;N 0gN 00 , as is common in informal descriptions.Informally, an instance of the protocol is determined by a choice of parties(who is A and who is B) and by the message sent after key establishment.More formally, an instance I is a triple (i; j;M) such that i and j are prin-cipals and M is a message. We say that i is the source address and j thedestination address of the instance. Moreover, we assume that there is anabstraction F representing the behaviour of any principal after receipt ofMessage 3 of the protocol. For an instance (i; j;M) that runs as intended,the argument to F is the triple (i; j;M).Given an instance (i; j;M), the following process corresponds to the roleof A: Send(i; j;M) �= (�K)(cSh(i; fj;KgKiS)i j cjh(i; fMgK)i)20



The sending process creates a key K and sends it to the server, along withthe names i and j of the principals of the instance. The sending process alsosends M under K, along with its name i. We have put the two messagesin parallel, somewhat arbitrarily; but putting them in sequence would havemuch the same e�ect.The following process corresponds to the role of B for principal j:Recv(j) �= cj(ycipher):case ycipher of fxA; xkeygKSj incj(zA; zcipher ):[xA is zA]case zcipher of fzplaingxkey in F (xA; j; zplain)The receiving process waits for a message ycipher from the server, extracts akey xkey from this message, then waits for a message zcipher under this key,and �nally applies F to the name xA of the presumed sender, to its ownname j, and to the contents zplain of the message. The variables xA and zAare both intended as the name of the sending process, so they are expectedto match.The server S is the same for all instances:S �= cS(xA; xcipher ):Qi21::n[xA is i] case xcipher of fxB; xkeygKiS inQj21::n[xB is j] cjhfxA; xkeygKSjiThe variable xA is intended as the name of the sending process, xB as thename of the receiving process, xkey as the new key, and xcipher as the encryptedpart of the �rst message of the protocol. In the code for the server, weprogram an n-way branch on the name xA by using a parallel compositionof processes indexed by i 2 1::n. We also program an n-way branch on thename xB, similarly. (This casual use of multiple threads is characteristic ofthe pi calculus; in practice the branch could be implemented more e�ciently,but here we are interested only in the behaviour of the server, not in itse�cient implementation.)Finally we de�ne a whole system, parameterised on a list of instances ofthe protocol: Sys(I1; : : : ; Im) �= (� ~KiS)(� ~KSj)(Send(I1) j � � � j Send(Im) j!S j!Recv(1) j � � � j !Recv(n))21



where (� ~KiS)(� ~KSj) stands for (�K1S) : : : (�KnS)(�KS1) : : : (�KSn). The ex-pression Sys(I1; : : : ; Im) represents a system withm instances of the protocol.The server is replicated; in addition, the replication of the receiving processesmeans that each principal is willing to play the role of receiver in any numberof runs of the protocol in parallel. Thus, any two runs of the protocol canbe simultaneous, even if they involve the same principals.As before, we write a speci�cation by modifying the protocol. For thisspeci�cation, we revise both the sending process and the receiving process,but not the server:Send spec(i; j;M) �= (�p)(Send(i; j; p) j p(x):F (i; j;M))Recv spec(j) �= cj(ycipher):case ycipher of fxA; xkeygKSj incj(zA; zcipher ):[xA is zA]case zcipher of fzplaingxkey in zplainh�iSysspec(I1; : : : ; Im) �= (� ~KiS)(� ~KSj)(Send spec(I1) j � � � j Send spec(Im) j!S j!Recv spec(1) j � � � j !Recv spec(n))In this speci�cation, the sending process for instance (i; j;M) is as in theimplementation, except that it sends a fresh channel name p instead of M ,and runs F (i; j;M) when it receives any message on p. The receiving processin the speci�cation is identical to that in the implementation, except thatF (yA; j; zplain) is replaced with zplainh�i, where the symbol � represents a�xed but arbitrary message. The variable zplain will be bound to the freshname p for the corresponding instance of the protocol. Thus, the receivingprocess will signal on p, triggering the execution of the appropriate processF (i; j;M).A crucial property of this speci�cation is that the only occurrences of Fare bundled into the description of the sending process. There, F is appliedto the desired parameters, (i; j;M). Hence it is obvious that an instance(i; j;M) will cause the execution of F (i0; j 0;M 0) only if i0 is i, j 0 is j, and M 0is M . Therefore, despite its complexity, the speci�cation is more obviously\correct" than the implementation.Much as in previous examples, we would like the protocol to have thefollowing authenticity property:Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im); for any instances I1, . . . , Im.22



Unfortunately, the protocol is vulnerable to a replay attack that invalidatesthe authenticity equation. Consider the system Sys(I; I 0) where I = (i; j;M)and I 0 = (i; j;M 0). An attacker can replay messages of one instance and getthem mistaken for messages of the other instance, causing M to be passedtwice to F . Thus, Sys(I; I 0) can be made to execute two copies of F (i; j;M).In contrast, no matter what an attacker does, Sysspec(I; I 0) will run each ofF (i; j;M) and F (i; j;M 0) at most once. The authenticity equation thereforedoes not hold. We disprove it more formally in Section 6.4.We leave the discussion of secrecy for the next example.3.2.4 A complete authentication example (repaired)Now we improve the protocol of the previous section by adding nonce hand-shakes as protection against replay attacks. The Wide Mouthed Frog pro-tocol uses timestamps instead of handshakes. The treatment of timestampsin the spi calculus is possible, but it requires additional elements, includingat least a rudimentary account of clock synchronisation. Protocols that usehandshakes are fundamentally more self-contained than protocols that usetimestamps; therefore, handshakes make for clearer examples.Informally, our new protocol is:Message 1 A! S : A on cSMessage 2 S ! A : NS on cAMessage 3 A! S : A; fA;A;B;KAB; NSgKAS on cSMessage 4 S ! B : � on cBMessage 5 B ! S : NB on cSMessage 6 S ! B : fS;A;B;KAB; NBgKSB on cBMessage 7 A! B : A; fMgKAB on cBMessages 1 and 2 are the request for a challenge and the challenge, respec-tively. The challenge is NS, a nonce created by S; the nonce must not havebeen used before for this purpose. Obviously the nonce is not secret, but itmust be unpredictable (for otherwise an attacker could simulate a challengeand later replay the response [AN96]). In Message 3, A says that A and Bcan communicate under KAB, sometime after receipt of NS. All the com-ponents A, B, KAB, NS appear explicitly in the message, for safety [AN96],but A could perhaps be elided. The presence of NS in Message 3 proves thefreshness of the message. In Message 4, � represents a �xed but arbitrarymessage; S uses � to signal that it is ready for a nonce challenge NB from23



B. In Message 6, S says that A says that A and B can communicate underKAB, sometime after receipt of NB. The �rst �eld of the encrypted portionsof Messages 3 and 6 (A or S) is included in order to distinguish these mes-sages; it serves as a \direction bit". Finally, Message 7 is the transmission ofdata under KAB.The messages of this protocol have many components. For the spi cal-culus representation it is therefore convenient to generalise our syntax ofpairs and pair splitting to arbitrary tuples. We use the following standardabbreviations, given inductively for any k � 2:(N1; : : : ; Nk; Nk+1) �= ((N1; : : : ; Nk); Nk+1)let (x1; : : : ; xk; xk+1) = N in P �= let (y; xk+1) = N inlet (x1; : : : ; xk) = y in Pwhere variable y is fresh.In the spi calculus, we represent the nonces of this protocol as newlycreated names. We obtain the following spi calculus expressions:Send(i; j;M) �= cShii jci(xnonce):(�K)(cSh(i; fi; i; j;K; xnoncegKiS)i j cjh(i; fMgK)i)S �= cS(xA):Qi21::n[xA is i] (�NS)(cihNSi jcS(x0A; xcipher):[x0A is i]case xcipher of fyA; zA; xB; xkey ; xnoncegKiS inQj21::n[yA is i] [zA is i] [xB is j] [xnonce is NS](cjh�i j cS(ynonce):cjhfS; i; j; xkey ; ynoncegKSji))Recv(j) �= cj(w):(�NB)(cShNBi jcj(ycipher):case ycipher of fxS; xA; xB; xkey ; ynoncegKSj inQi21::n[xS is S] [xA is i] [xB is j] [ynonce is NB]cj(zA; zcipher ):[zA is xA]case zcipher of fzplaingxkey in F (i; j; zplain))Sys(I1; : : : ; Im) �= (� ~KiS)(� ~KSj)(Send(I1) j � � � j Send(Im) j!S j!Recv(1) j � � � j !Recv(n))The names NS and NB represent the nonces. The variable subscripts arehints that indicate what the corresponding variables should represent; for24



example, xA, x0A, yA, and zA are all expected to be the name of the sendingprocess, and xnonce and ynonce are expected to be the nonces generated by Sand B, respectively.The de�nition of Sys spec is exactly analogous to that of the previous sec-tion, so we omit it.We now obtain the authenticity property:Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im); for any instances I1, . . . , Im.This property holds because of the use of nonces. In particular, the at-tack described in Section 3.2.3 can no longer distinguish Sys(I1; : : : ; Im) fromSysspec(I1; : : : ; Im).As a secrecy property, we would like to express that there is no way foran external observer to tell apart two executions of the system with identicalparticipants but di�erent messages. The secrecy property should thereforeassert that the protocol does not reveal any information about the contentsof exchanged messages if none is revealed after the key exchange.In order to express that no information is revealed after the key exchange,we introduce the following de�nition. We say that a pair of instances (i; j;M)and (i0; j 0;M 0) is indistinguishable if the two instances have the same sourceand destination addresses (i = i0 and j = j 0) and if F (i; j;M) ' F (i; j;M 0).Our de�nition of secrecy is that, if each pair (I1; J1), . . . , (Im; Jm) isindistinguishable, then Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm). This means thatan observer cannot distinguish two systems parameterised by two sets ofindistinguishable instances. This property holds for our protocol.In summary, we have:Authenticity: Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im),for any instances I1, . . . , Im.Secrecy: Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm),if each pair (I1; J1), . . . , (Im; Jm) is indistinguishable.We could ask for a further property of anonymity, namely that the sourceand the destination addresses of instances be protected from eavesdroppers.However, anonymity holds neither for our protocol nor for most current,practical protocols. It would be easy enough to specify anonymity, should itbe relevant. 25



3.2.5 DiscussionAfter these examples, it should be obvious that writing a protocol in the spicalculus is a little harder than writing it in the informal notations commonin the literature. On the other hand, the spi calculus versions are moredetailed. They make clear not only what messages are sent but how themessages are generated and how they are checked. These aspects of the spicalculus descriptions add complexity, but they enable �ner analysis. (Recall,for example, that one of the mistakes in the CCITT X.509 protocol was toomit a timestamp check [BAN89].)It should also be obvious that writing a protocol in the spi calculus isessentially analogous to writing it in any programming language with suitablecommunication and encryption libraries. The main advantage of the spicalculus is its formal precision.Finally, as noted in the introduction, the spi calculus has both similaritiesand di�erences with other formalisms for the analysis of security protocols.The examples given in this section exhibit some of those similarities anddi�erences. We cannot say that the spi calculus will be as good a tool for�nding 
aws as some of the logics of authentication. On the other hand,the spi calculus seems to rest on �rmer ground, so it yields more convincingproofs of correctness.4 Formal Semantics of the Spi CalculusIn this section we start the formal treatment of the spi calculus. In Section 4.1we introduce the reaction relation; P ! Q means there is a reaction amongstthe subprocesses of P such that the whole can take a step to process Q.Reaction is the basic notion of computation in both the pi calculus and thespi calculus. In Section 4.2 we give a precise de�nition of the equivalencerelation ', which we have used for expressing security properties.Syntactic ConventionsThe grammar of the spi calculus is as given in Sections 2.2 and 3.1. It hastwo syntactic categories, of terms, ranged over by L, M , N , and processes,ranged over by P , Q, R. The metavariables m, n, p, q, and r range over anin�nite set of names. The metavariables x, y, and z range over a disjoint,in�nite set of variables. 26



We write fn(M) and fn(P ) for the sets of names free in term M andprocess P respectively. Similarly, we write fv(M) and fv(P ) for the sets ofvariables free in M and P respectively. We say that a term or process isclosed to mean that it has no free variables. (To be able to communicateexternally, a process must have free names.) The set Proc = fP j fv(P ) = ;gis the set of closed processes.4.1 The Reaction RelationThe reaction relation is a concise account of computation in the pi calculusintroduced by Milner [Mil92], inspired by the Chemical Abstract Machineof Berry and Boudol [BB90]. One thinks of a process as consisting of achemical solution of molecules waiting to react. A reaction step arises fromthe interaction of the adjacent molecules mhNi:P and m(x):Q, as follows:(React Inter) mhNi:P j m(x):Q ! P j Q[N=x]Just as one might stir a chemical solution to allow non-adjacent moleculesto react, we de�ne a relation, structural equivalence, that allows processes tobe rearranged so that (React Inter) is applicable. We �rst de�ne the reductionrelation > on closed processes:(Red Repl) !P > P j !P(Red Match) [M is M ] P > P(Red Let) let (x; y) = (M;N) in P > P [M=x][N=y](Red Zero) case 0 of 0 : P suc(x) : Q > P(Red Suc) case suc(M) of 0 : P suc(x) : Q > Q[M=x](Red Decrypt) case fMgN of fxgN in P > P [M=x](The reduction relation is not found in previous accounts of the pi calculus;we introduce it here because it is useful also in the de�nition of commitment,given in Section 5.1.) We let structural equivalence, �, be the least relationon closed processes that satis�es the following equations and rules:(Struct Nil) P j 0 � P(Struct Comm) P j Q � Q j P(Struct Assoc) P j (Q j R) � (P j Q) j R(Struct Switch) (�m)(�n)P � (�n)(�m)P(Struct Drop) (�n)0 � 0(Struct Extrusion) (�n)(P j Q) � P j (�n)Q if n =2 fn(P )27



(Struct Red)P > QP � Q (Struct Re
)P � P (Struct Symm)P � QQ � P(Struct Trans)P � Q Q � RP � R (Struct Par)P � P 0P j Q � P 0 j Q (Struct Res)P � P 0(�m)P � (�m)P 0Now we can complete the formal description of the reaction relation. Welet the reaction relation, !, be the least relation on closed processes thatsatis�es (React Inter) and the following rules:(React Struct)P � P 0 P 0 ! Q0 Q0 � QP ! Q(React Par)P ! P 0P j Q! P 0 j Q (React Res)P ! P 0(�n)P ! (�n)P 0This de�nition of the reaction relation corresponds to the informal descriptionof process behaviour given in Sections 2.2 and 3.1.As an example, we can use the de�nition of the reaction relation to showthe behaviour of the protocol of Section 3.2.2:Inst(M) � (�KAS)(�KSB)(A(M) j S j B)! (�KAS)(�KSB)(�KAB)(cABhfMgKABi j cSBhfKABgKSBi j B)! (�KAS)(�KSB)(�KAB)(cABhfMgKABi j cAB(z):case z of fwgKAB in F (w))! (�KAS)(�KSB)(�KAB)F (M)� F (M)The last step in this calculation is justi�ed by our general convention thatnone of the bound parameters of the protocol (including, in this case, KAS,KSB, and KAB) occurs free in F . 28



4.2 Testing EquivalenceIn order to de�ne equivalence, we �rst de�ne a predicate that describes thechannels on which a process can communicate. We let a barb, �, be an inputor output channel, that is, either a namem (representing input) or a co-namem (representing output). For a closed process P , we de�ne the predicate Pexhibits barb �, written P # �, by the two axioms:(Barb In) m(x):P # m (Barb Out) mhMi:P # mand the three rules:(Barb Par)P # �P j Q # � (Barb Res)P # � � =2 fm;mg(�m)P # � (Barb Struct)P � Q Q # �P # �Intuitively, P # � holds just if P is a closed process that may input or outputimmediately on barb �. The convergence predicate P + � holds if P is aclosed process that exhibits � after some reactions:(Conv Barb)P # �P + � (Conv React)P ! Q Q + �P + �We let a test consist of any closed process R and any barb �. A closedprocess P passes the test if and only if (P j R) + �. The notion of testinggives rise to a testing preorder v and to a testing equivalence ' on the setProc of closed processes:P v Q �= for any test (R; �), if (P j R) + � then (Q j R) + �P ' Q �= P v Q and Q v PThe idea of testing equivalence comes from the work of De Nicola andHennessy [DH84]. In that work, tests are processes that contain the dis-tinguished name ! (instead of being parameterised by a barb �). This isonly a super�cial di�erence, and we can show that our relation ' is a ver-sion of De Nicola and Hennessy's may-testing equivalence. As De Nicolaand Hennessy have explained, may-testing corresponds to partial correctness(or safety), while must-testing corresponds to total correctness. Like much29



of the security literature, our work focuses on safety properties, hence ourde�nitions.One of the advantages of testing equivalence as the basis of our speci-�cations of authenticity and secrecy is its simple de�nition in terms of theconvergence predicate. A test neatly formalises the idea of a generic experi-ment or observation another process (such as an attacker) might perform on aprocess, so testing equivalence concisely captures the concept of equivalencein an arbitrary environment.According to our de�nitions, two closed processes P and Q are testingequivalent if their respective parallel compositions with a third process R\behave similarly". It follows that P and Q can be used interchangeably inany context (not just in parallel with R). More precisely, testing equivalenceis a congruence; that is, ' is an equivalence relation with the property thatif P ' Q then C[P ] ' C[Q] for any closed context C. (A closed context C isa closed process with a single hole; C[P ] and C[Q] are the outcomes of �llingthe hole with P and Q, respectively.)Proposition 1(1) Structural equivalence implies testing equivalence.(2) Testing equivalence is re
exive, transitive, and symmetric.(3) Testing equivalence is a congruence on closed processes.This proposition is essential for equational reasoning with testing equivalence.Its proof is in Appendix D, where we show that testing equivalence remainsa congruence when extended to open processes.Testing equivalence is sensitive to the choice of language. Two processesthat are testing equivalent in our calculus may not be testing equivalent afternew constructs are added to the calculus. As Boreale and De Nicola haveshown [BN95], testing equivalence becomes �ner-grained in the presence of amismatch construct ([M is not N ] P ). Our calculus does not include a mis-match construct because we have not found a need for it in writing protocols;however, such a construct is sensible and perhaps yields a better de�nitionof testing equivalence. The same is true for other \negative" constructs thatcheck whether a term is not a name, not a number, not a pair, or not en-crypted under a given key. We believe that the results of this paper remainvalid for a range of reasonable extensions of our calculus, but we leave thestudy of such extensions for future work.30



5 Semantic Notions Useful in ProofsThis section develops proof techniques for the spi calculus, based on earlierwork on the pi calculus. Section 5.1 de�nes the commitment relation, pro-viding in particular a characterisation of the reaction relation. Section 5.2reviews the notions of strong bisimulation, barbed equivalence, and barbedcongruence [MS92]. Finally, Section 5.3 introduces the underpinning rela-tion and shows its use for proofs of secrecy.In order to prove a testing equivalence directly, we need to consider ar-bitrary tests and arbitrary sequences of reactions. The use of structuralequivalence to de�ne reaction is elegant, but makes proofs a little awkward.One of the purposes of this section is to obtain a direct inductive characterisa-tion of reaction without appeal to structural equivalence, and a co-inductivemethod for proving testing equivalence.5.1 The Commitment RelationThe original semantics of the pi calculus (given in [MPW92]) is not based onthe notion of reaction, but rather on a labelled transition system. Here wede�ne a labelled-transition semantics for the spi calculus, imitating Milner'srecent lecture notes [Mil95b]. Despite di�erences in style, this semantics isessentially equivalent to the one of Section 4, so it can be used in proofsabout that semantics.We need some new syntactic forms. An abstraction is an expression ofthe form (x)P , where x is a bound variable and P is a process. A concretionis an expression of the form (�m1; : : : ; mk)hMiP , where M is a term, P is aprocess, k � 0, and the names m1, . . . , mk are bound in M and P . We oftenwrite concretions as (� ~m)hMiP , where ~m = m1; : : : ; mk, or simply (�)hMiPif k = 0. Finally, an agent is an abstraction, a process, or a concretion. Weuse the metavariables A and B to stand for arbitrary agents.We extend the restriction and composition operators to arbitrary agents,as follows. For an abstraction, (x)P , we set:(�m)(x)P �= (x)(�m)PR j (x)P �= (x)(R j P )assuming that x 62 fv(R). For a concretion, (�~n)hMiQ, we set:(�m)(�~n)hMiQ �= ( (�m;~n)hMiQ if m 2 fn(M)(�~n)hMi(�m)Q otherwise31



R j (�~n)hMiQ �= (�~n)hMi(R j Q)assuming that m 62 f~ng and that f~ng \ fn(R) = ;. We de�ne the dualcomposition A j R symmetrically. If F is the abstraction (x)P and C is theconcretion (�~n)hMiQ, and f~ng\ fn(P ) = ;, we de�ne the interactions F@Cand C@F to be the closed processes given by:F@C �= (�~n)(P [M=x] j Q)C@F �= (�~n)(Q j P [M=x])When F is the abstraction (x)P , we may write F (M) for its instantiation toM , that is, for P [M=x]. With this notation, we have F@C = (�~n)(F (M) j Q)and C@F = (�~n)(Q j F (M)).An action is a namem, a co-namem, or the distinguished silent action � .That is, an action is either a barb or � . The commitment relation is writtenP ��! A, where P is a closed process, � is an action, and A is a closed agent.We de�ne this relation inductively, by the following rules:(Comm In)m(x):P m�! (x)P (Comm Out)mhMi:P m�! (�)hMiP(Comm Inter 1)P m�! F Q m�! CP j Q ��! F@C (Comm Inter 2)P m�! C Q m�! FP j Q ��! C@F(Comm Par 1)P ��! AP j Q ��! A j Q (Comm Par 2)Q ��! AP j Q ��! P j A(Comm Res)P ��! A � =2 fm;mg(�m)P ��! (�m)A (Comm Red)P > Q Q ��! AP ��! AIntuitively, (Comm In) says that an abstraction is the residue of an inputcommitment; (Comm Out) says that a concretion is the residue of an outputcommitment; and (Comm Inter 1) and (Comm Inter 2) say that the com-bination of an abstraction and a concretion gives an interaction. Thus, the32



commitment relation has a straightforward structural de�nition; that is itsmain appeal.Whenever P ��! A, the action � is � , a name, or a co-name just if theagent A is a process, an abstraction, or a concretion, respectively. Therefore,the commitment relation indexed by � , ��!, is a binary relation on closedprocesses. We write ��!� for the re
exive and transitive closure of ��!.Moreover, we write P ��!� Q when there exists a process R such thatP ��! R and R � Q.The following propositions connect the commitment relation with someof the formal notions of Section 4: exhibiting a barb, reaction, and testing.Proposition 2 P # � if and only if there exists an agent A such that P ��!A.Proposition 3 P ! Q if and only if P ��!� Q.Proposition 4 P passes a test (R; �) if and only if there exist an agent Aand a process Q such that P j R ��!� Q and Q ��! A.The proofs of these propositions are in Appendix B.5.2 Some Auxiliary EquivalencesIn this section we describe several equivalences on processes that approximatetesting equivalence. In particular, in Section 5.2.3, we de�ne barbed congru-ence, which is a stronger relation than testing equivalence but is sometimeseasier to prove directly.5.2.1 Strong bisimilarityWe �rst recall the de�nition of strong bisimulation [Mil95b]. IfR is a relationon closed processes, we de�ne the relation R on closed agents:P R Q i� P R Q(x)P R (x)Q i� P [M=x] R Q[M=y] for all closed M(�~n)hMiP R (� ~m)hMiQ i� ~m is a permutation of ~n and P R QA strong simulation is a binary relation S � Proc�Proc such that if P S Qand P ��! A then there exists B with Q ��! B and A S B. A relation S isa strong bisimulation if and only if both S and its converse S�1 are strongsimulations. 33



Strong bisimilarity, written �s, is the greatest strong bisimulation, name-ly the union of all strong bisimulations. Strong bisimilarity is a rather �ne-grained equivalence for the spi calculus. For instance, it discriminates be-tween the processes (�K)chfMgKi and (�K)chfM 0gKi, which we would wishto equate as we explained in Section 3.1. Still, strong bisimilarity is oftenuseful in justifying particular steps of our proofs.5.2.2 Barbed equivalenceIntuitively, one way of weakening strong bisimilarity is to ignore what mes-sages are sent on what channels, and to record only what channels are used.This informal idea leads to the concepts de�ned here and in Section 5.2.3.A barbed simulation is a binary relation S � Proc�Proc such that P S Qimplies:(1) for each barb �, if P # � then Q # �, and(2) if P ! P 0 then there exists Q0 such that Q! Q0 and P 0 �S� Q0where P 0 �S� Q0 means that there exist P 00 and Q00 such that P 0 � P 00,P 00 S Q00, and Q00 � Q0. A barbed bisimulation is a relation S such that bothS and S�1 are barbed simulations.Barbed equivalence, written ��, is the greatest barbed bisimulation. Weprove the following basic facts about barbed equivalence in Appendix D:Proposition 5(1) Barbed equivalence is re
exive, transitive, and symmetric.(2) Structural equivalence implies barbed equivalence.(3) Strong bisimilarity implies barbed equivalence.(4) Barbed equivalence is preserved by restriction.It follows from these facts, in particular, that if P �� Q and P ! P 0 thenthere exists Q0 such that Q! Q0 and P 0 �� Q0.In order to establish a barbed equivalence, it is often convenient to useMilner's standard technique of \bisimulation up to" [Mil89, MPW92]. Abarbed simulation up to �� is a binary relation S � Proc � Proc such thatP S Q implies: 34



(1) for each barb �, if P # � then Q # �, and(2) if P ! P 0 then there exists Q0 such that Q! Q0 and P 0 ��S �� Q0where P 0 ��S �� Q0 means that there exist P 00 and Q00 such that P 0 �� P 00,P 00 S Q00, and Q00 �� Q0. A barbed bisimulation up to �� is a relation S suchthat both S and S�1 are barbed simulations up to ��.More generally, a barbed simulation up to �� and restriction is a binaryrelation S � Proc � Proc such that P S Q implies:(1) for each barb �, if P # � then Q # �, and(2) if P ! P 0 then there exists Q0 such that Q ! Q0, and there exist P 00,Q00, and names ~n such that P 0 �� (�~n)P 00, Q0 �� (�~n)Q00, and P 00 S Q00.A barbed bisimulation up to �� and restriction is a relation S such that bothS and S�1 are barbed simulations up to �� and restriction.Proposition 6 If S is a barbed bisimulation up to �� and restriction, thenS � ��. A fortiori, if S is a barbed bisimulation up to ��, then S � ��.The proof of this proposition is in Appendix D.For us, barbed equivalence is still only a stepping stone. One reason forthis is that there are processes that are barbed equivalent but not stronglybisimilar or testing equivalent, such as mhni:mhni:0 and mhni:0. Moreover,barbed equivalence is far from being a congruence: it is not even closedunder composition, as can be seen by comparing (mhni:mhni:0) j (m(x):0)and (mhni:0) j (m(x):0).5.2.3 Barbed congruenceBarbed congruence, written �, is the relation on Proc obtained by strength-ening barbed equivalence as follows:P � Q �= 8R 2 Proc(P j R �� P j R)Unlike barbed equivalence, barbed congruence implies testing equiva-lence. Therefore, whenever one wishes to prove a testing equivalence (e.g., asecrecy equation), it su�ces to prove a barbed congruence. We establish thefollowing properties of barbed congruence in Appendix D:35



Proposition 7(1) Barbed congruence is re
exive, transitive, and symmetric.(2) Barbed congruence is a congruence on closed processes.(3) Structural equivalence implies barbed congruence.(4) Strong bisimilarity implies barbed congruence.(5) Barbed congruence implies testing equivalence.The converses of the implications in parts (3), (4), and (5) do not hold, aswe show next.That barbed congruence does not imply structural equivalence should befairly evident. We prove it by �rst establishing a general property of barbedcongruence. Let us say that a closed process P is stuck if and only if thereis no � and A such that P ��! A. In other words, P is stuck if and only ifit has no reactions and no barbs.Proposition 8 If P is stuck then P � 0.Proof Assuming that P is stuck, we need to show that P j R �� 0 j R forany closed process R. This holds because any barb or reaction of P j R mustbe due to R alone. 2This proposition implies, for example:case M of fxgK in P � ( P [N=x] if M = fNgK for some N0 otherwisesince case M of fxgK in P is stuck unless M is a ciphertext encryptedwith K. Since none of the rules of structural equivalence allows us to derivecase M of fxgK in P � 0, barbed congruence does not imply structuralequivalence.Secondly, barbed congruence does not imply strong bisimilarity. For in-stance, the processes (�K)chfMgKi and (�K)chfM 0gKi are not stronglybisimilar, but they are barbed congruent (as we prove in Section 5.3). Thusthe spi calculus is di�erent from both CCS and the pi calculus, in whichbarbed congruence coincides with strong bisimilarity [MS92]. On the other36



hand, the spi calculus is like the higher-order pi calculus where strong bisim-ilarity is �ner-grained than barbed congruence [San92].Thirdly, testing equivalence does not imply barbed congruence. Setting�:P �= (�m)(mh�i j m(x):P ) for m =2 fn(P ), x =2 fv(P ), we obtain thetesting equivalence P ' �:P . (We prove this equivalence in Appendix D.)On the other hand, P � �:P does not hold in general. Moreover, barbedcongruence is more sensitive to the branching structure of processes thantesting equivalence.5.3 The Underpinning RelationIn order to reason about attackers and their knowledge, we introduce theunderpinning relation. We say that x1:f�gp1; : : : ; xn:f�gpn underpins theagent A roughly if A is an agent that may contain occurrences of any of thevariables x1, . . . , xn, but no occurrences of any of the names p1, . . . , pn. Wewrite this: x1:f�gp1; : : : ; xn:f�gpn ` AOur intention is that A represents an attacker and that the variables x1, . . . ,xn represent ciphertexts that the attacker may have intercepted encryptedunder the keys p1, . . . , pn, which the attacker does not have. (Here we takeall keys to be names as this su�ces for our present purposes; but the generalcase, where a key is an arbitrary term, could also be interesting.)Next we give a formal de�nition of the underpinning relation. An envi-ronment is a �nite list of entries of the form x:f�gn, where x is a variableand n is a name; all the variables must be distinct (but the names need notbe). We let dom(E) be the set of variables mentioned in the entries in E,and keys(E) the set of names mentioned in the entries in E. When E is anenvironment, M a term, and A an agent, we de�ne:E `M i� fv(M) � dom(E) and fn(M) \ keys(E) = ;E ` A i� fv(A) � dom(E) and fn(A) \ keys(E) = ;The relation ` is the underpinning relation.When x:f�gn occurs in an environment, we intend that x stands for aciphertext of the form fMgn. An E-closure is a substitution that �xes all thevariables in E to appropriate ciphertexts; more precisely, an E-closure is asubstitution � of closed ciphertexts for variables such that E ` � is derivable37



from the following rules:(Closure ;); ` ; (Closure Under)E ` � x =2 dom(E) fv(M) = ;E; x:f�gn ` �; fMgn=xwhere ; represents the empty environment, the empty substitution, and theempty set, and �; fMgn=x is the extension of � that maps x to fMgn.To prove secrecy properties, we would like to show that a process under-pinned by an environment acts uniformly no matter which ciphertexts aresubstituted for the variables in the environment. At �rst sight one mightthink that if E ` P , E ` �, and E ` �0, then P� � P�0 on the reasoningthat, since P cannot unwrap the ciphertexts in � or �0, it will behave thesame whether closed by one or the other. This would hold were it not for thepresence of matching in the language. For example, E = x:f�gm; y:f�gm,P = [x is y] ph0i, � = [f0gm=x; f0gm=y], and �0 = [f0gm=x; f1gm=y] meetthe conditions above, but P� may output 0 whereas P�0 is stuck. Thus, Pcan act contingently on the ciphertexts even though it cannot decrypt them.However, if we insist that � and �0 be injective (that is, x = y wheneverx� = y�, and similarly for �0) then we obtain P� � P�0.These informal arguments lead to the following results.Lemma 9 Suppose that E ` P and E ` �, and that � is injective.(1) If P� > Q0 then there is a process Q with E ` Q, fv(Q) � fv(P ),fn(Q) � fn(P ), and Q0 = Q� such that, whenever E ` �0 and �0 isinjective, P�0 > Q�0.(2) If P� ��! A0 then there is an agent A with E ` A, fv(A) � fv(P ),fn(A) � fn(P ), and A0 = A� such that, whenever E ` �0 and �0 isinjective, P�0 ��! A�0.The proof of this lemma is in Appendix E.Proposition 10 Suppose that E ` � and E ` �0, and that both � and �0 areinjective. Then S = f(P�; P�0) j E ` Pg is a barbed bisimulation.Proof Consider any commitment P� ��! A0. By Lemma 9, there is anagent A with E ` A, A0 = A�, and P�0 ��! A�0. Therefore, any barb ofP� is also exhibited by P�0, and any reaction of P� may be matched up toS by P�0. Therefore, S is a barbed simulation. Indeed by symmetry it is abarbed bisimulation. 238



This last proposition provides an easy way to prove some equivalences,as we now demonstrate with a small proof of a familiar secrecy property. Weprove that, for any M and M 0:(�K)chfMgKi � (�K)chfM 0gKiBy (Struct Extrusion) and Proposition 5, it su�ces to prove that:chfMgKi j R �� chfM 0gKi j Rfor any R such that K =2 fn(R). But this follows from Proposition 10 withE = x:f�gK, P = chxi j R, � = [fMgK=x], and �0 = [fM 0gK=x].6 Proofs for the ExamplesHaving de�ned the semantics of the spi calculus and developed some prooftechniques, we revisit the examples of the �rst half of the paper. We provesome of the authenticity and secrecy properties claimed in those examples.Our proofs are not quite as easy as those of special-purpose formalisms(e.g., [BAN89]), but they have a somewhat clearer status. With a few furthertechniques and tools, proofs such as ours could well become routine.6.1 Proofs for the Example of Section 2.3.1The example of Section 2.3.1 is our simplest one; it relies on restricted chan-nels. Its main de�nitions are:Inst(M) �= (�cAB)(cABhMi:0 j cAB(x):F (x))Inst spec(M) �= (�cAB)(cABhMi:0 j cAB(x):F (M))We can prove the authenticity property Inst(M) ' Inst spec(M) by exhibitinga simple barbed bisimulation.Proposition 11 For any closed term M , Inst(M) ' Inst spec(M).Proof The only commitments of Inst(M) and Inst spec(M) are:Inst(M) ��! (�cAB)(0 j F (M))Inst spec(M) ��! (�cAB)(0 j F (M))39



It follows that Inst(M) �s Inst spec(M), that Inst(M) � Inst spec(M) (byProposition 7(4)), and �nally that Inst(M) ' Inst spec(M) (by Proposi-tion 7(5)). 2Turning to secrecy, we �rst prove a restricted version of the secrecy prop-erty claimed in Section 2.3.1:Lemma 12 Inst(M) ' Inst(M 0) if F (x) is ch�i, for any closed terms Mand M 0.Proof For any N , the only commitment of Inst(N) is:Inst(N) ��! (�cAB)(0 j ch�i)so clearly Inst(M) �s Inst(M 0). As in the previous proof, Inst(M) 'Inst(M 0) follows. 2Now a little calculation yields the full secrecy property:Proposition 13 Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any closedterms M and M 0.Proof Let us write Inst(M; (x)ch�i) for Inst(M) in the special case whereF (x) is ch�i (as in Lemma 12); note that in this case Inst(M) and Inst spec(M)are literally identical.Assuming that c is a fresh name and y a fresh variable, we write �:F (N)for (�c)(ch�i j c(y):F (N)). For any closed N , we have:(�c)(cAB(x):ch�i j c(y):F (N)) �s cAB(x):�:F (N)because the only commitments of these processes are:(�c)(cAB(x):ch�i j c(y):F (N)) cAB�! (x)�:F (N)cAB(x):�:F (N) cAB�! (x)�:F (N)Hence we obtain the equation:Inst spec(N) ' (�c)(Inst(N; (x)ch�i) j c(y):F (N)) (1)40



as follows:Inst spec(N) = (�cAB)(cABhNi:0 j cAB(x):F (N)))' (�cAB)(cABhNi:0 j cAB(x):(�:F (N)))' (�cAB)(cABhNi:0 j (�c)(cAB(x):ch�i j c(y):F (N)))� (�c)((�cAB)((cABhNi:0 j cAB(x):ch�i) j c(y):F (N))= (�c)(Inst(N; (x)ch�i) j c(y):F (N))making use of the \� law" F (N) ' �:F (N) (Proposition 35), and of the factsthat testing equivalence is a congruence (Proposition 1) and that strongbisimilarity implies testing equivalence (Proposition 7).Finally, equation (1), Lemma 12, the authenticity property of Proposi-tion 11, and the assumption F (M) ' F (M 0) justify the following calculation:Inst(M) ' Inst spec(M)' (�c)(Inst(M; (x)ch�i) j c(y):F (M))' (�c)(Inst(M 0; (x)ch�i) j c(y):F (M 0))' Inst spec(M 0)' Inst(M 0) 26.2 Proofs for the Example of Section 3.2.1In the example of Section 3.2.1, the main de�nitions are:A(M) �= cABhfMgKABiB �= cAB(x):case x of fygKAB in F (y)Inst(M) �= (�KAB)(A(M) j B)Bspec(M) �= cAB(x):case x of fygKAB in F (M)Inst spec(M) �= (�KAB)(A(M) j Bspec(M))For the example of Section 2.3.1, which does not use cryptography, theproof of authenticity is simply a proof of strong bisimilarity. We cannotproceed analogously for the example of Section 3.2.1, because in fact Inst(M)and Inst spec(M) are not strongly bisimilar; instead, we prove that Inst(M)and Inst spec(M) are barbed congruent.41



Proposition 14 For any closed term M , Inst(M) ' Inst spec(M).Proof We prove that Inst(M) � Inst spec(M); the claim then follows sincebarbed congruence implies testing equivalence according to Proposition 7.Suppose that R is some arbitrary closed process andM is some arbitraryclosed term. Without loss of generality, we assume that KAB =2 fn(R). Belowwe show that:(cABhfMgKABi j B j R) �� (cABhfMgKABi j Bspec(M) j R) (2)By Proposition 5(4), it follows that:(�KAB)(cABhfMgKABi j B j R) �� (�KAB)(cABhfMgKABi j Bspec(M) j R)Since KAB =2 fn(R), we have:Inst(M) j R � (�KAB)(cABhfMgKABi j B j R)and similarly:Inst spec(M) j R � (�KAB)(cABhfMgKABi j Bspec(M) j R)Since barbed equivalence respects structural equivalence (by Proposition 5),we obtain: Inst(M) j R �� Inst spec(M) j RBy the de�nition of barbed congruence, we conclude:Inst(M) � Inst spec(M)It remains to give a proof of equation (2). For this proof, we let � =[fMgKAB=x] and introduce the following relation S:PSQ i� P = B j R1� and Q = Bspec(M) j R1�for some R1 such that x:f�gKAB ` R1Intuitively, the process R1� represents both A and an attacker that does nothave KAB. We prove that S [ �� is a barbed bisimulation. This amountsto showing if PSQ then P and Q can each match the other's barbs andreactions.If PSQ then there exists R1 such that P = B j R1� and Q = Bspec(M) jR1�, and x:f�gKAB ` R1. Hence the barbs of P are:42



(1) P # cAB (from B),(2) P # � if R1� # �.Clearly Q exhibits these barbs too. The reactions of P are:(1) if R1� cAB�! (�~n)hNiR0 and P 0 � (�~n)(case N of fygKAB in F (y) j R0)then P ! P 0,(2) if R1� ��! R0 and P 0 � B j R0 then P ! P 0.(One can calculate these reactions via the commitment relation and Propo-sition 3. Without loss of generality, we assume that the names ~n are fresh.)In each case, Q can match these reactions of P :(1) One of the reactions of Q is:Q! Q0 �= (�~n)(case N of fygKAB in F (M) j R0)Now it su�ces to show that P 0 �� Q0. By Lemma 9(2), there existsR01 such that x:f�gKAB ` R01 and R01� = (�~n)hNiR0. Therefore, R01must have the form (�~n)hN0iR0 with N = N0�, R0 = R0�, and bothx:f�gKAB ` N0 and x:f�gKAB ` R0. Since x:f�gKAB ` N0, either N0�is fMgKAB (if N0 is x) or N0� is not a ciphertext encrypted with KAB.In the former case, we have:P 0 � (�~n)(case fMgKAB of fygKAB in F (y) j R0)� (�~n)(F (M) j R0)� (�~n)(case fMgKAB of fygKAB in F (M) j R0)� Q0In the latter case, decryption gets stuck, and by appeal to Proposi-tions 5 and 8 we get:P 0 � (�~n)(case N of fygKAB in F (y) j R0)�� (�~n)(0 j R0)�� (�~n)(case N of fygKAB in F (M) j R0)� Q0In both cases, we obtain P 0 �� Q0 by Proposition 5.43



(2) One of the reactions of Q is:Q! Q0 �= Bspec(M) j R0Now it su�ces to show that P 0 ��S �� Q0. By Lemma 9(2), there existsR01 such that x:f�gKAB ` R01 and R01� = R0. Therefore, (B j R0)SQ0,and hence P 0 �S� Q0.Almost identical reasoning shows that P can match the barbs and reactionsof Q. We conclude that S [ �� is a barbed bisimulation, so S � ��.In order to derive equation (2), we let R1 = cABhxi j R. We obtain:cABhfMgKABi j B j R � B j R1�S Bspec(M) j R1�� cABhfMgKABi j Bspec(M) j REquation (2) follows since S � �� and by Proposition 5. 2For proving secrecy, we adopt the same general strategy as in Section 6.1.We �rst prove a restricted version of the secrecy property:Lemma 15 Inst(M) ' Inst(M 0) if F (x) is ch�i, for any closed terms Mand M 0.Proof Almost exactly as in the proof of Proposition 14, it su�ces to provethe equation:(cABhfMgKABi j B j R) �� (cABhfM 0gKABi j B j R) (3)for any closed process R such that KAB =2 fn(R), and any closed terms Mand M 0.For the proof of this equation, we let � = [fMgKAB=x], �0 = [fM 0gKAB=x],and introduce the following relation S:PSQ i� P = B j R1� and Q = B j R1�0for some R1 such that x:f�gKAB ` R1The relation f(R1�;R1�0) j x:f�gKAB ` R1g is a barbed bisimulation, ac-cording to Proposition 10. We prove that S [ �� is a barbed bisimulation.This amounts to showing if PSQ then P and Q can each match the other'sbarbs and reactions.If PSQ then there exists R1 such that P = B j R1� and Q = B j R1�,and x:f�gKAB ` R1. Hence the barbs of P are:44



(1) P # cAB (from B),(2) P # � if R1� # �.Clearly Q exhibits these barbs too, since R1� and R1�0 are in a barbedbisimulation. The reactions of P are:(1) if R1� cAB�! (�~n)hNiR0 and P 0 � (�~n)(case N of fygKAB in ch�i j R0)then P ! P 0,(2) if R1� ��! R0 and P 0 � B j R0 then P ! P 0.(As in the proof of Proposition 14, we assume that the names ~n are fresh.)In each case, Q can match these reactions of P :(1) By Lemma 9(2), there exists R01 such that x:f�gKAB ` R01, R01� =(�~n)hNiR0, and R1�0 cAB�! (�~n)hN0�0iR0�0. Therefore, R01 must havethe form (�~n)hN0iR0 with N = N0�, R0 = R0�, and both x:f�gKAB `N0 and x:f�gKAB ` R0. Since R1�0 cAB�! (�~n)hN0�0iR0�0, we have:Q! Q0 �= (�~n)(case N0�0 of fygKAB in ch�i j R0�0)Now it su�ces to show that P 0 �� Q0. Since x:f�gKAB ` N0, eitherN0� and N0�0 are fMgKAB and fM 0gKAB respectively (if N0 is x) orN0� and N0�0 are not ciphertexts encrypted with KAB.In the former case, we have:P 0 � (�~n)(case fMgKAB of fygKAB in ch�i j R0)� (�~n)(ch�i j R0)= (�~n)(ch�i j R0�)�� (�~n)(ch�i j R0�0)� (�~n)(case fM 0gKAB of fygKAB in ch�i j R0�0)� Q0The step (�~n)(ch�i j R0) �� (�~n)(ch�i j R0�0) is justi�ed by Proposi-tion 10, since x:f�gKAB ` (�~n)(ch�i j R0).
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In the latter case, decryption gets stuck, and by appeal to Proposi-tions 5 and 8 we get:P 0 � (�~n)(case N of fygKAB in ch�i j R0)�� (�~n)(0 j R0)= (�~n)(0 j R0�)�� (�~n)(0 j R0�0)�� (�~n)(case N0�0 of fygKAB in ch�i j R0�0)� Q0The step (�~n)(0 j R0) �� (�~n)(0 j R0�0) is justi�ed by Proposition 10,since x:f�gKAB ` (�~n)(0 j R0).In both cases, we obtain P 0 �� Q0 by Proposition 5.(2) By Lemma 9(2), there exists R01 such that x:f�gKAB ` R01, R01� = R0,and R1�0 ��! R01�0, so: Q! Q0 �= B j R01�0Clearly, (B j R0)SQ0, and hence P 0 �S� Q0.The proof that P can match the barbs and reactions of Q is symmetric. Weconclude that S [ �� is a barbed bisimulation, so S � ��.In order to derive equation (3) we let R1 = cABhxi j R. We obtain:cABhfMgKABi j B j R � B j R1�S B j R1�0� cABhfM 0gKABi j B j REquation (3) follows since S � �� and by Proposition 5. 2The full secrecy property follows.Proposition 16 Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any closedterms M and M 0.Proof The proof is exactly analogous to that of Proposition 13, and relieson Proposition 14, Lemma 15, and the equation:Inst spec(N) ' (�c)(Inst(N; (x)ch�i) j c(y):F (N)) 246



6.3 Proofs for the Example of Section 3.2.2The de�nitions of the example of Section 3.2.2 can be rephrased as follows:A(M) �= (�KAB)(cAShfKABgKASi:cABhfMgKABi)S �= cAS(x):case x of fygKAS in cSBhfygKSBiB �= cSB(x):case x of fygKSB in B0(y)B0(y) �= cAB(z):case z of fwgy in F (w)Bspec(M) �= cSB(x):case x of fygKSB in B0spec(M; y)B0spec(M; y) �= cAB(z):case z of fwgy in F (M)Inst(M) �= (�KAS)(�KSB)(A(M) j S j B)Inst spec(M) �= (�KAS)(�KSB)(A(M) j S j Bspec(M))The proof of authenticity uses the same techniques as that of Section 6.2,but is more complex.Proposition 17 For any closed term M , Inst(M) ' Inst spec(M).Proof Since barbed congruence implies testing equivalence according toProposition 7, it su�ces to show that the two processes are barbed congruent,that is, that: Inst(M) j R �� Inst spec(M) j R (4)for any closed process R. Without loss of generality, we assume that thenames KAS, KSB, and KAB do not occur free in R.Below we construct a relation S � �� that pairsS j B j cAShfKABgKASi:cABhfMgKABi j R (5)and S j Bspec(M) j cAShfKABgKASi:cABhfMgKABi j R (6)Therefore, these processes are barbed equivalent. Since barbed equivalenceis closed under restriction (by Proposition 5(4)), it follows that(�KAS)(�KSB)(�KAB)(S j B j cAShfKABgKASi:cABhfMgKABi j R)and(�KAS)(�KSB)(�KAB)(S j Bspec(M) j cAShfKABgKASi:cABhfMgKABi j R)47



are barbed equivalent. Equation (4) now follows from the facts that these twoprocesses are structurally equivalent to Inst(M) j R and to Inst spec(M) j Rrespectively (since the names KAS, KSB, and KAB do not occur free in R),and that barbed equivalence respects structural equivalence (by Proposi-tion 5).It remains to de�ne the relation S that pairs the processes (5) and (6).For this purpose, we let environment E and substitution � be as follows:E �= x1:f�gKAS ; x2:f�gKSB ; x3:f�gKAB� �= [fKABgKAS=x1; fKABgKSB=x2; fMgKAB=x3]and we set: S �= S1 [ S2 [ S3where: S1 �= f(S j B j R1�; S j Bspec(M) j R1�)j E ` R1 and fv(R1) � fx1; x3ggS2 �= f(B j R2�;Bspec(M) j R2�)j E ` R2gS3 �= f(B0(KAB) j R3�;B0spec(M;KAB) j R3�)j E ` R3gThe relation S1 pairs the processes (5) and (6), since we can take R1 tobe cAShx1i:cABhx3i j R. Therefore, the relation S pairs the processes (5)and (6), as desired.Intuitively, each relation Si concerns a state (or class of states) reachableby the participants in the protocol. Each Ri� represents an observer inpossession of some or all of the three messages sent by the participants.In some cases, some of the participants are viewed as part of the observerprocess.� S1 concerns the initial state and states reachable when the observerreceives the messages fKABgKAS or fMgKAB from A.� S2 concerns the states reachable after S receives a message on cAS.There is no need to include the residue of S explicitly. In particular,the residue cSBhfKABgKSBi may be considered part of the observerprocess R2� in S2. 48



� S3 concerns the states reachable afterB receives the message fKABgKSBon cSB. (In the de�nition of S, there is no need to consider the statesreachable after B receives a message on cAB, as at that point the re-sulting processes are evidently barbed equivalent.)The condition E ` Ri implies that none of the keys KAS, KSB, orKAB occursin Ri. It also implies that fv(Ri) � fx1; x2; x3g. Depending on whethervariable x1, x2, or x3 occurs free in Ri, the observer process Ri� possessesciphertext fKABgKAS , fKABgKSB , or fMgKAB respectively.To complete the proof, it su�ces to establish that S � ��. For this pur-pose, we invoke Proposition 6, and show that S [� is a barbed bisimulationup to ��, where � is the identity relation on closed processes. In light ofProposition 5(1), we show, for each i 2 1::3, that P Si Q implies: (1) thatany barb exhibited by P is also exhibited by Q, and vice versa, and (2) thatfor any reaction P ! P 0 there is Q0 with Q ! Q0 and either P 0 ��S �� Q0or P 0 �� Q0, and vice versa. Condition (1) is obviously true, since P Si Qimplies that P and Q have almost identical structure. To show condition (2),we consider each Si in turn.� Suppose P S1 Q, that is,P = S j B j R1�Q = S j Bspec(M) j R1�with E ` R1 and fv(R1) � fx1; x3g. There are four ways in which areaction P ! P 0 may be derived: (1) S receives the message fKABgKASfrom R1�; (2) S receives some other message from R1�; (3) B receivessome message from R1�; (4) R1� reacts on its own.In case (1), P 0 is: cSBhfKABgKSBi j B j Cwhere C is a residue of R1� such that R1� cAS�! (�)hfKABgKASiC. ByLemma 9(2), C is of the form R01� with E ` R01. Thus, P 0 is:cSBhfKABgKSBi j B j R01�For Q0, we take: cSBhfKABgKSBi j Bspec(M) j R01�49



We obtain Q! Q0 and P 0 ��S2 �� Q0 by letting R2 be cSBhx2i j R01.In case (2), we invoke Lemma 9(2) again, showing that the messagereceived by S cannot be a ciphertext encrypted under KAS. Thatlemma implies that if R1� cAS�! (�~n)hNiC (where we may assume thatthe names ~n are fresh) then there is a process R01 and a term N1 withE ` R01, E ` N1, C = R01�, and N = N1�. So N cannot be of the formfN 0gKAS unless N 0 is KAB. Therefore, S gets stuck, and P 0 is barbedequivalent to: B j (�~n)(R01�)by Propositions 8 and 5. For Q0, we take:Bspec(M) j (�~n)(R01�)We obtain Q ! Q0 and P 0 ��S2 �� Q0 by letting R2 be (�~n)R01 andnoting that E ` R01 implies E ` (�~n)R01.In case (3), we invoke Lemma 9(2) again, showing this time that themessage received by B cannot be a ciphertext encrypted under KSB.In this case, that lemma says that if R1� cSB�! (�~n)hNiC (where wemay assume that the names ~n are fresh) then there is a process R01 anda term N1 with E ` R01, E ` N1, C = R01�, and N = N1�; in addition,fv(N1) � fv(R1), and hence x2 62 fv(N1). So N cannot be of the formfN 0gKSB . Therefore, B gets stuck, and P 0 is barbed equivalent to:S j (�~n)(R01�)by Propositions 8 and 5. For Q0, we take:S j (�~n)(R01�)We obtain Q! Q0 and P 0 �� Q0.In case (4), P 0 has the form S j B j C where, by Lemma 9(2), C = R01�for some R01 such that E ` R01 and fv(R01) � fv(R1). Thus, P 0 is:S j B j R01�For Q0, we take: S j Bspec(M) j R01�We obtain Q! Q0 and P 0 ��S1 �� Q0.50



� Suppose P S2 Q, that is,P = B j R2�Q = Bspec(M) j R2�with E ` R2. There are three ways in which a reaction P ! P 0 maybe derived: (1) B receives the message fKABgKSB from R2�; (2) Breceives some other message from R2�; (3) R2� reacts on its own.In case (1), P 0 is: B0(KAB) j Cwhere C is a residue of R2� such that R2� cSB�! (�)hfKABgKSBiC. ByLemma 9(2), C is of the form R02� with E ` R02. Thus, P 0 is:B0(KAB) j R02�For Q0, we take: B0spec(M;KAB) j R02�We obtain Q! Q0 and P 0 ��S3 �� Q0 by letting R3 be R02.In case (2), we invoke Lemma 9(2) again, showing that the messagereceived by B cannot be a ciphertext encrypted under KSB. Thatlemma implies that if R2� cSB�! (�~n)hNiC (where we may assume thatthe names ~n are fresh) then there is a process R02 and a term N2 withE ` R02, E ` N2, C = R02�, and N = N2�. So N cannot be of theform fN 0gKSB unless N 0 is KAB. Therefore, B gets stuck, and P 0 isbarbed equivalent to (�~n)(R02�) by Propositions 8 and 5. For Q0, wetake (�~n)(R02�). We obtain Q! Q0 and P 0 �� Q0.In case (3), P 0 has the form B j C where, by Lemma 9(2), C = R02�for some R02 such that E ` R02. Thus, P 0 is:B j R02�For Q0, we take: Bspec(M) j R02�We obtain Q! Q0 and P 0 ��S2 �� Q0.51



� Suppose P S3 Q, that is,P = B0(KAB) j R3�Q = B0spec(M;KAB) j R3�with E ` R3. There are three ways in which a reaction P ! P 0 may bederived: (1) B receives the message fMgKAB from R3�; (2) B receivessome other message from R3�; (3) R3� reacts on its own.In case (1), P 0 � F (M) j C, where C is a process such that R3� cAB�!(�)hfMgKABiC. We take Q0 to be F (M) j C, obtaining Q ! Q0 andP 0 �� Q0.In case (2), we invoke Lemma 9(2) again, showing that the messagereceived by B cannot be a ciphertext encrypted under KAB. Thatlemma implies that if R3� cAB�! (�~n)hNiC (where we may assume thatthe names ~n are fresh) then there is an agent R03 and a term N3 withE ` R03, E ` N3, C = R03�, and N = N3�. So N cannot be of theform fN 0gKAB unless N 0 is M . Therefore, B gets stuck, and P 0 isbarbed equivalent to (�~n)(R03�) by Propositions 8 and 5. For Q0, wetake (�~n)(R03�). We obtain Q! Q0 and P 0 �� Q0.In case (3), P 0 has the form B0(KAB) j C where, by Lemma 9(2),C = R03� for some R03 such that E ` R03. Thus, P 0 is:B0(KAB) j R03�For Q0, we take: B0spec(M;KAB) j R03�We obtain Q! Q0 and P 0 ��S3 �� Q0.We can show by similar reasoning that if Q ! Q0 then there is P 0 withP ! P 0 and either P 0 ��S �� Q0 or P 0 �� Q0. 2As before, we prove a simpli�ed secrecy property as a step towards thefull secrecy property.Lemma 18 Inst(M) ' Inst(M 0) if F (x) is ch�i, for any closed terms Mand M 0. 52



Proof Exactly as in the proof of Proposition 17, it su�ces to exhibit arelation S � �� that pairsS j B j cAShfKABgKASi:cABhfMgKABi j R (7)and S j B j cAShfKABgKASi:cABhfM 0gKABi j R (8)where R is any closed process such that the names KAS, KSB, and KAB donot occur free in R.We can obtain such a relation via the following de�nitions:E �= x1:f�gKAS ; x2:f�gKSB ; x3:f�gKAB� �= [fKABgKAS=x1; fKABgKSB=x2; fMgKAB=x3]�0 �= [fKABgKAS=x1; fKABgKSB=x2; fM 0gKAB=x3]S1 �= f(S j B j R1�; S j B j R1�0)j E ` R1 and fv(R1) � fx1; x3ggS2 �= f(B j R2�;B j R2�0)j E ` R2gS3 �= f(B0(KAB) j R3�;B0(KAB) j R3�0)j E ` R3gS �= S1 [ S2 [ S3The relation S1 pairs the processes (7) and (8), since we can take R1 to becAShx1i:cABhx3i j R, as before. Therefore, the relation S pairs the processes(7) and (8).Moreover, via the same case analysis as in Proposition 17, and a broadlysimilar argument, we obtain that S � ��. We show, for each i 2 1::3, thatP Si Q implies: (1) that any barb exhibited by P is also exhibited by Q, andvice versa, and (2) that for any reaction P ! P 0 there is Q0 with Q! Q0 andeither P 0 ��S �� Q0 or P 0 �� Q0, and vice versa. Condition (1) is true, sinceP Si Q implies that P and Q have almost identical structure; the di�erencesin substitutions do not a�ect the barbs of P and Q. To show condition (2),we consider each Si in turn.� Suppose P S1 Q, that is, P = S j B j R1�Q = S j B j R1�053



with E ` R1 and fv(R1) � fx1; x3g. There are four ways in which areaction P ! P 0 may be derived: (1) S receives the message fKABgKASfrom R1�; (2) S receives some other message from R1�; (3) B receivessome message from R1�; (4) R1� reacts on its own.In case (1), P 0 is: cSBhfKABgKSBi j B j Cwhere C is a residue of R1� such that R1� cAS�! (�)hfKABgKASiC. ByLemma 9(2), (�)hfKABgKASiC can be written in the form (�)hN1�iR01�with E ` R01 and E ` N1. Thus, P 0 is:cSBhfKABgKSBi j B j R01�For Q0, we take: cSBhfKABgKSBi j B j R01�0By Lemma 9(2), R1�0 cAS�! (�)hN1�0iR1�0. Since N1� is fKABgKAS , wehave that N1�0 is also fKABgKAS . Hence, R1�0 cAS�! (�)hfKABgKASiR1�0, so Q ! Q0. Finally, we obtain P 0 ��S2 �� Q0 by letting R2 becSBhx2i j R01.In case (2), we invoke Lemma 9(2) again, showing that the messagereceived by S cannot be a ciphertext encrypted under KAS. Thatlemma implies that if R1� cAS�! (�~n)hNiC (where we may assume thatthe names ~n are fresh) then there is a process R01 and a term N1 withE ` R01, E ` N1, C = R01�, and N = N1�. So N cannot be of the formfN 0gKAS unless N 0 is KAB. Therefore, S gets stuck, and P 0 is barbedequivalent to: B j (�~n)(R01�)by Propositions 8 and 5. For Q0, we take:B j (�~n)(R01�0)By Lemma 9(2), R1�0 cAS�! (�~n)hN1�0iR01�0; in addition, N1�0 cannotbe of the form fN 0gKAS either. Hence we obtain Q ! Q0. Finally, weobtain P 0 ��S2 �� Q0 by letting R2 be (�~n)R01 and noting that E ` R01implies E ` (�~n)R01.In case (3), we invoke Lemma 9(2) again, showing this time that themessage received by B cannot be a ciphertext encrypted under KSB.54



In this case, that lemma says that if R1� cSB�! (�~n)hNiC (where wemay assume that the names ~n are fresh) then there is a process R01 anda term N1 with E ` R01, E ` N1, C = R01�, and N = N1�; in addition,fv(N1) � fv(R1), and hence x2 62 fv(N1). So N cannot be of the formfN 0gKSB . Therefore, B gets stuck, and P 0 is barbed equivalent to:S j (�~n)(R01�)by Propositions 8 and 5. For Q0, we take:S j (�~n)(R01�0)By Lemma 9(2), R1�0 cSB�! (�~n)hN1�0iR01�0; in addition, N1�0 cannotbe of the form fN 0gKSB either. Hence we obtain Q ! Q0. Finally, weobtain P 0 �� Q0 from Proposition 10, since � and �0 are injective, P 0is (S j (�~n)R01)�, Q0 is (S j (�~n)R01)�0, and barbed equivalence is thegreatest barbed bisimulation.In case (4), P 0 has the form S j B j C where R1� ��! C and, byLemma 9(2), C = R01� for some R01 such that E ` R01 and fv(R01) �fv(R1). Thus, P 0 is: S j B j R01�For Q0, we take: S j B j R01�0By Lemma 9(2), R1�0 ��! R01�0, so Q! Q0. Finally, we have P 0 ��S1 ��Q0.� Suppose P S2 Q, that is, P = B j R2�Q = B j R2�0with E ` R2. There are three ways in which a reaction P ! P 0 maybe derived: (1) B receives the message fKABgKSB from R2�; (2) Breceives some other message from R2�; (3) R2� reacts on its own.In case (1), P 0 is: B0(KAB) j C55



where C is a residue of R2� such that R2� cSB�! (�)hfKABgKSBiC. ByLemma 9(2), (�)hfKABgKSBiC can be written in the form (�)hN2�iR02�with E ` R02 and E ` N2. Thus, P 0 is:B0(KAB) j R02�For Q0, we take: B0(KAB) j R02�0By Lemma 9(2), R2�0 cSB�! (�)hN2�0iR2�0. Since N2� is fKABgKSB , wehave that N2�0 is also fKABgKSB . Hence, R2�0 cSB�! (�)hfKABgKSBiR2�0, so Q! Q0. Finally, we obtain P 0 ��S3 �� Q0 by letting R3 be R02.In case (2), we invoke Lemma 9(2) again, showing that the messagereceived by B cannot be a ciphertext encrypted under KSB. Thatlemma implies that if R2� cSB�! (�~n)hNiC (where we may assume thatthe names ~n are fresh) then there is a process R02 and a term N2 withE ` R02, E ` N2, C = R02�, and N = N2�. So N cannot be of the formfN 0gKSB unless N 0 is KAB. Therefore, B gets stuck, and P 0 is barbedequivalent to (�~n)(R02�) by Propositions 8 and 5. For Q0, we take(�~n)(R02�0). By Lemma 9(2), R2�0 cSB�! (�~n)hN2�0iR02�0; in addition,N2�0 cannot be of the form fN 0gKSB either. Hence we obtain Q! Q0.Finally, we obtain P 0 �� Q0 from Proposition 10, since � and �0 areinjective, P 0 is ((�~n)R02)�, Q0 is ((�~n)R02)�0, and barbed equivalence isthe greatest barbed bisimulation.In case (3), P 0 has the form B j C where R2� ��! C and, by Lemma9(2), C = R02� for some R02 such that E ` R02. Thus, P 0 is:B j R02�For Q0, we take: B j R02�0By Lemma 9(2), R2�0 ��! R02�0, so Q! Q0. Finally, we have P 0 ��S2 ��Q0.� Suppose P S3 Q, that is,P = B0(KAB) j R3�Q = B0(KAB) j R3�056



with E ` R3. There are three ways in which a reaction P ! P 0 may bederived: (1) B receives the message fMgKAB from R3�; (2) B receivessome other message from R3�; (3) R3� reacts on its own.In case (1), P 0 � ch�i j C, where C is a process such that R3� cAB�!(�)hfMgKABiC. According to Lemma 9(2), (�)hfMgKABiC can bewritten in the form (�)hN3�iR03� with E ` R03 and E ` N3. In addi-tion, R3�0 cAB�! (�)hfM 0gKABiR03�0, since N3 must be x3. Hence, we takeQ0 to be ch�i j R03�0, obtaining Q ! Q0. Finally, we obtain P 0 �� Q0from Proposition 10, since � and �0 are injective, P 0 is (ch�i j R03)�, Q0is (ch�i j R03)�0, and barbed equivalence is the greatest barbed bisimu-lation.In case (2), we invoke Lemma 9(2) again, showing that the messagereceived by B cannot be a ciphertext encrypted under KAB. Thatlemma implies that if R3� cAB�! (�~n)hNiC (where we may assume thatthe names ~n are fresh) then there is an agent R03 and a term N3 withE ` R03, E ` N3, C = R03�, and N = N3�. So N cannot be of the formfN 0gKAB unless N 0 is M . Therefore, B gets stuck, and P 0 is barbedequivalent to (�~n)(R03�) by Propositions 8 and 5. For Q0, we take(�~n)(R03�0). By Lemma 9(2), R3�0 cAB�! (�~n)hN3�0iR03�0; in addition,N3�0 cannot be of the form fN 0gKAB either. Hence we obtain Q! Q0.Finally, we obtain P 0 �� Q0 from Proposition 10, since � and �0 areinjective, P 0 is ((�~n)R03)�, Q0 is ((�~n)R03)�0, and barbed equivalence isthe greatest barbed bisimulation.In case (3), P 0 has the form B0(KAB) j C where R3� ��! C and, byLemma 9(2), C = R03� for some R03 such that E ` R03. Thus, P 0 is:B0(KAB) j R03�For Q0, we take: B0(KAB) j R03�0By Lemma 9(2), R3�0 ��! R03�0, so Q! Q0. Finally, we have P 0 ��S3 ��Q0.By symmetry, we have also a proof that if Q ! Q0 then there is P 0 withP ! P 0 and either P 0 ��S �� Q0 or P 0 �� Q0. 2The full secrecy property follows.57



Proposition 19 Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any closedterms M and M 0.Proof The argument is similar to that in Proposition 13. Given the au-thenticity property (Proposition 17) and the specialised secrecy property(Lemma 18), it is enough to prove:Inst spec(N) ' (�c)(Inst(N; (x)ch�i) j c(y):F (N))for all N . 26.4 Formalisation of the Attack of Section 3.2.3Here we prove that the authenticity equation discussed in Section 3.2.3 doesnot hold. We do this by formalising the replay attack sketched there.The de�nitions of Sys and Sysspec are given in Section 3.2.3. We prove:Proposition 20 If I is (i; j;M), I 0 is (i; j;M 0), and M and M 0 are di�erentclosed terms, then there exists F such that Sys(I; I 0) 6' Sys spec(I; I 0).Proof We de�ne F (x; y; z) as chzi where c is a new name. According tothe de�nition of testing equivalence, it su�ces to construct a test (R; �) suchthat Sys(I; I 0) passes (R; �) but Sys spec(I; I 0) does not pass (R; �).For �, we take dwhere d is a name that does not occur free in Sysspec(I; I 0).For R, we take:cS(u):cShui:cShui:cj(x):cjhxi:cjhxi:c(y):c(z):[y is z] dh�iThis process duplicates a message u sent on cS and a message x sent on cj,receives two messages y and z through c, and �nally sends a message on d ify and z are equal. Intuitively, this process can be understood as an attackerthat replays an encrypted key u and some encrypted data x from i, andsignals on d if the replay attack may have worked, that is, if two identicalmessages y and z appear on c.The parallel composition of R with Sys(I; I 0) may eventually exhibit d,because y and z may both equal M or M 0, as a result of the message dupli-cations on cS and cj. Therefore, Sys(I; I 0) passes (R; �).In contrast, the parallel composition of R with Sysspec(I; I 0) never exhibitsd, because each of M and M 0 will be transmitted at most once on c, so yand z cannot match. Therefore, Sysspec(I; I 0) does not pass (R; �). 258



6.5 Proofs for the Example of Section 3.2.4As in Section 3.2.4, we consider a system with a server S and n other princi-pals, which we call 1, 2, . . . . We let Prn = 1::n, and we use the metavariablesi and j to range over Prn. Each principal has an input channel; these inputchannels have the names c1, c2, . . . , cn and cS. The server shares a pair ofkeys with each other principal: principal i uses key KiS to send to S and keyKSi to receive from S, for each i 2 Prn. The system is parameterised bya list of instances, I1, . . . , Im, indexed by the set Ins = 1::m, and a singleabstraction F such that F (i; j;M) is a process for any instance (i; j;M). Weuse the metavariable k to range over Ins.For an instance I = (i; j;M), the informal description of the protocol is:Message 1 i! S : i on cSMessage 2 S ! i : NS on ciMessage 3 i! S : i; fi; i; j;KAB; NSgKiS on cSMessage 4 S ! j : � on cjMessage 5 j ! S : NB on cSMessage 6 S ! j : fS; i; j;KAB; NBgKSj on cjMessage 7 i! j : i; fMgKAB on cjWe rephrase the formal description of the protocol through the followingde�nitions:A1 (i; j;M) �= cShii j A2 (i; j;M)A2 (i; j;M) �= ci(x):(�KAB)(cSh(i; fi; i; j;K; xgKiS)i j cjh(i; fMgK)i)S1 �= cS(x):Qi2Prn [x is i] (�NS)(cihNSi j S2 (i; NS))S2 (i; N) �= cS(x):let (y1; y2) = x in[y1 is i] case y2 of fz1; z2; z3; z4; z5gKiS inQj2Prn [z1 is i] [z2 is i] [z3 is j] [z5 is N ] S3 (i; j; z4)S3 (i; j;K) �= cjh�i j S4 (i; j;K)S4 (i; j;K) �= cS(x):cjhfS; i; j;K; xgKSjiB1 (j; F ) �= cj(x):(�NB)(cShNBi j B2 (j; F;NB))B2 (j; F;N) �= cj(x):case x of fy1; y2; y3; y4; y5gKSj inQi2Prn [y1 is S] [y2 is i] [y3 is j] [y5 is N ] B3 (i; j; F; y4)B3 (i; j; F;K) �= cj(x):let (y1; y2) = x in[y1 is i] case y2 of fzgK in F (i; j; z)59



Sys(I1; : : : ; Im) �= (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 (Ik) j !S1 j Qj2Prn !B1 (j; F ))We rephrase the speci�cation as well:A1 spec((i; j;M); F ) �= (�p)(A1 (i; j; p) j p(x):F (i; j;M))Fspec(i; j; p) �= ph�iSysspec(I1; : : : ; Im) �= (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 spec(Ik; F ) j !S1 j Qj2Prn !B1 (j; Fspec))In this section, we prove the stated authenticity and secrecy properties,namely: Sys(I1; : : : ; Im) ' Sys spec(I1; : : : ; Im),for any instances I1, . . . , Im.Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm),if each pair (I1; J1), . . . , (Im; Jm) is indistinguishable.Proposition 21 For any instances I1; : : : ; Im,Sys(I1; : : : ; Im) ' Sys spec(I1; : : : ; Im)Proof Let I1; : : : ; Im be a list of instances, with Ins = 1::m. We beginby reducing the problem to one involving �nite compositions rather thanreplications, and give a bisimulation proof after this reduction.First, we group the replications in Sys(I1; : : : ; Im) and Sys spec(I1; : : : ; Im)using Proposition 30:Sys(I1; : : : ; Im) ' (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 (Ik) j!(S1 j Qj2Prn B1 (j; F ))) (9)Sysspec(I1; : : : ; Im) ' (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 spec(Ik; F ) j!(S1 j Qj2Prn B1 (j; Fspec))) (10)Further, we apply Proposition 29 to the right-hand sides of (9) and (10);Proposition 29 implies that, to prove Sys(I1; : : : ; Im) ' Sys spec(I1; : : : ; Im),it su�ces to prove:fSys(I1; : : : ; Im; r) ' fSysspec(I1; : : : ; Im; r) (11)60



for all r � 0, wherefSys(I1; : : : ; Im; r) �= (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 (Ik) jQs21::r(S1 j Qj2Prn B1 (j; F )))fSysspec(I1; : : : ; Im; r) �= (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 spec(Ik; F ) jQs21::r(S1 j Qj2Prn B1 (j; Fspec)))Thus, we have eliminated replications.Next we reformulate (11) by pulling restrictions to the top level, andinserting certain additional � steps. For this purpose, we use the followingauxiliary de�nitions:A1 0((i; j;M); K) �= cShii j A2 0((i; j;M); K)A2 0((i; j;M); K) �= ci(x):(cSh(i; fi; i; j;K; xgKiS)i j cjh(i; fMgK)i)S1 0(N) �= cS(x):Qi2Prn [x is i] (cihNi j S2 (i; N))B1 0(j; F;N) �= cj(x):(cShNi j B2 (j; F;N))Lemmas 36 and 37 yield:A1 (I) ' (�KAB)A1 0(I;KAB) (12)A2 (I) ' (�KAB)A2 0(I;KAB) (13)S1 ' (�NS)S1 0(NS) (14)B1 (j; F ) ' (�NB)B1 0(j; F;NB) (15)Moreover, equation (12) yields:A1 spec(i; j;M) ' (�KAB)(�p)(A1 0((i; j; p); KAB) j p(x):F (i; j;M))(16)We also introduce the sets of names:fpk j k 2 InsgfKABk j k 2 InsgfNSs j s 2 1::rgfNBjt j j 2 Prn & t 2 1::rg61



All the names listed are assumed distinct and fresh. Given that �:F is shortfor the abstraction (x)�:F (x), we obtain:fSys(I1; : : : ; Im; r) ' (�KiS i2Prn)(�KSj j2Prn)(�KABk k2Ins)(�NSs s21::r)(�NBjt j2Prn&s21::r)(Qk2Ins A1 0(Ik; KABk) j Qs21::r S1 0(NSs) jQj2Prn Qs21::r B1 0(j; �:F;NBjt)) (17)
fSysspec(I1; : : : ; Im; r) ' (�KiS i2Prn)(�KSj j2Prn)(�pk k2Ins)(�KABk k2Ins)(�NSs s21::r)(�NBjt j2Prn&s21::r)((Qk2Ins A1 0((i; j; pk); KABk)where Ik = (i; j;M)) j(Qk2Ins pk(x):F (i; j;M)where Ik = (i; j;M)) jQs21::r S1 0(NSs) jQj2Prn Qs21::r B1 0(j; Fspec ; NBjt))

(18)
The proof of (17) and (18) is in three steps. First, we expose all the re-strictions in the processes fSys(I1; : : : ; Im; r) and fSysspec(I1; : : : ; Im; r) byrewriting with equations (12), (13), (14), (15), and (16). Second, we use therules of structural equivalence to group all the restrictions at the top level ofthe processes. Third, we use the � law (�:P ' P , Proposition 35) to inserta � step before each call to F in fSys(I1; : : : ; Im; r). (The � step is usefulbecause it corresponds to the interaction on one of the pk's that precedeseach call to F in fSysspec(I1; : : : ; Im; r).)Thus, we have reduced the property claimed in this proposition to equa-tion (11), and in turn have reduced this equation to the equivalence of theright-hand sides of equations (17) and (18), for an arbitrary number r � 0.To prove this equivalence, we invoke Proposition 7, and show that when com-posed with any closed process R the two right-hand sides of (17) and (18)are barbed bisimilar. Without loss of generality we may assume that noneof the names bound in the outermost restrictions occurs free in R. Up tostructural equivalence, and therefore barbed equivalence, we may extrudethe scope of those restrictions to include R. Since barbed equivalence is pre-served by restriction (Proposition 5(4)), it su�ces to prove that the followingtwo processes are barbed equivalent:Qk2Ins A1 0(Ik; KABk) jQs21::r S1 0(NSs) j Qj2Prn Qs21::r B1 0(j; �:F;NBjt) j R (19)62



and (�pk k2Ins)((Qk2Ins A1 0((i; j; pk); KABk) where Ik = (i; j;M)) j(Qk2Ins pk(x):F (i; j;M) where Ik = (i; j;M)) jQs21::r S1 0(NSs) j Qj2Prn Qs21::r B1 0(j; Fspec ; NBjt) j R) (20)
for any closed R such that no KiS, KSj, KABk, NSs, NBjt, or pk occurs freein R. (We have removed most of the outermost restrictions only for thesake of notational simplicity. On the other hand, it is necessary to retainthe restriction on the pk's: otherwise the simpli�ed process (20) would haveinput barbs pk that could not be matched by process (19).)The remainder of our proof consists in constructing a relation S such that�S� relates processes (19) and (20), and establishing that S is a barbedbisimulation up to �� and restriction, hence that processes (19) and (20) arebarbed equivalent. We lead up to the de�nition of S with several preliminaryde�nitions:� We let a world be a tuple W = (snd ; srv ; rcv ; X; E; �; �spec ; R) whereE is an environment and � and �spec are substitutions, R is a process,X � Ins, and snd , srv , and rcv are �nite maps such that:snd(k) 2 fa2 ; sent(L; L0) j any closed terms L and L0gsrv(s) 2 fs1 ; s2 (i); stuck ; s4 (k); sent(k; L; L0)j i 2 Prn; k 2 Ins; any closed terms L and L0grcv(j; t) 2 fb1 ; b2 ; stuck ; b3 (k); run(k); done j k 2 Insgfor each k 2 Ins, s 2 1::r, and (j; t) 2 Prn�1::r. The symbols a2 , sent ,s1 , s2 , stuck , s4 , b1 , b2 , stuck , b3 , run, and done are string tags; s2 (i)is short for the pair (s2 ; i), sent(k; L; L0) for the pair (sent ; (k; L; L0)),and similarly for the other tags.Intuitively, k 2 X just if instance k may yet complete the protocol.The maps snd , srv , and rcv represent the states of the senders, servers,and receivers, respectively, that participate in the protocol.� Given a world W = (snd ; srv ; rcv ; X; E; �; �spec ; R), and given k 2 Ins,s 2 1::r, and (j; t) 2 Prn � 1::r, we de�ne processes AW (k), AWspec(k),SW (s), BW (j; t), and BWspec(j; t):AW (k) �= ( A2 0(Ik; KABk) if snd(k) = a20 otherwise63



AWspec(k) �= ( A2 0((i; j; pk); KABk) if snd(k) = a2 , Ik = (i; j;M)0 otherwiseSW (s) �= 8>>><>>>: S1 0(NSs) if srv(s) = s1S2 (i; NSs) if srv(s) = s2 (i)S4 (i; j;KABk) if srv(s) = s4 (k), Ik = (i; j;M)0 otherwise
BW (j; t) �= 8>>>>>>>>>>><>>>>>>>>>>>:

B1 0(j; �:F;NBjt) if rcv(j; t) = b1B2 (j; �:F;NBjt) if rcv(j; t) = b2B3 (i; j; �:F;KABk) if rcv(j; t) = b3 (k),Ik = (i; j;M)�:F (i; j;M) if rcv(j; t) = run(k),Ik = (i; j;M)0 otherwise
BWspec(j; t) �= 8>>>>>>>>>>><>>>>>>>>>>>:

B1 0(j; Fspec ; NBjt) if rcv(j; t) = b1B2 (j; Fspec ; NBjt) if rcv(j; t) = b2B3 (i; j; Fspec ; KABk) if rcv(j; t) = b3 (k),Ik = (i; j;M)pkh�i if rcv(j; t) = run(k),Ik = (i; j;M)0 otherwiseIntuitively, AW (k) is the process that sender k has left to run when itsstate is snd(k). Similarly, in the context of the speci�cation, AWspec(k) isthe process that sender k has left to run when its state is snd(k); thisprocess does not include pk(x):F (i; j;M), which is treated separately.The other de�nitions deal analogously with replicas of the server andof the receivers.Given a world W = (snd ; srv ; rcv ; X; E; �; �spec ; R), we also let PW be:Qk2Ins AW (k) j Qs21::r SW (s) j Q(j;t)2Prn�1::rBW (j; t) j R�and QW be:(�pk k2Ins)(Qk2Ins AWspec(k) j Qs21::r SW (s) j Q(j;t)2Prn�1::rBWspec(j; t) j(Qk2X pk(x):F (i; j;M) where Ik = (i; j;M)) j R�spec)Intuitively, PW is the process that the whole system has left to runwhen its state is as described in W , and QW is the correspondingprocess for the speci�cation. 64



� Given a world W with maps snd , srv , and rcv , we de�ne the instancesets of W to be the subsets XW2 , XW3 , XW5 , XW6 , XW7 , XW8 of Ins, suchthat for any k 2 Ins with Ik = (i; j;M):k 2 XW2 i� snd(k) = a2k 2 XW3 i� 9s 2 1::r; i0 2 Prn(snd(k) = sent(NSs; NSs) &srv(s) 2 fs1 ; s2 (i0)g)k 2 XW5 i� 9s 2 1::r(srv(s) = s4 (k))k 2 XW6 i� 9s 2 1::r; t 2 1::r(srv(s) = sent(k;NBjt; NBjt) & rcv(j; t) 2 fb1 ; b2g)k 2 XW7 i� 9t 2 1::r(rcv(j; t) = b3 (k))k 2 XW8 i� 9t 2 1::r(rcv(j; t) = run(k))Intuitively, if k 2 XWs and s 2 f2; 3; 5; 6; 7g, then the message in theprotocol numbered s is the next to be received in instance k. Instanceset XW8 represents instances that, having completed the protocol, area � step away from running F .� A world W = (snd ; srv ; rcv ; X; E; �; �spec; R) is possible if and only ifthe following conditions hold:(1) Sets XW2 , XW3 , XW5 , XW6 , XW7 , XW8 are pairwise disjoint.(2) The union XW2 [XW3 [XW5 [XW6 [XW7 [XW8 is a subset of X.(3) For any k 2 Ins, s 2 1::r, and terms L and L0, if either srv(s) =s4 (k) or srv(s) = sent(k; L; L0) then snd(k) = sent(NSs; NSs).(4) For any k 2 Ins, j 2 Prn, and t 2 1::r, if either rcv(j; t) = b3 (k)or rcv(j; t) = run(k) then there exists s 2 1::r such that srv(s) =sent(k;NBjt; NBjt).(5) For any k 2 Ins, terms L and L0, and name p, snd(k) = sent(L; L0)implies either L = L0 = p or neither L = p nor L0 = p.(6) For any k 2 Ins, s 2 1::r, terms L and L0, and name p, srv(s) =sent(k; L; L0) implies either L = L0 = p or neither L = p norL0 = p.(7) Environment E is:xk:f�gKiS k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);yk:f�gKABk k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);zs:f�gKSj s21::r with Ik=(i;j;M);srv(s)=sent(k;L;L0)65



(8) Substitution � is:[fi; i; j;KABk; LgKiS=xk k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);fMgKABk=yk k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);fS; i; j;KABk; LgKSj=zs s21::r with Ik=(i;j;M);srv(s)=sent(k;L;L0)]and substitution �spec is:[fi; i; j;KABk; L0gKiS=xk k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);fpkgKABk=yk k2Ins with snd(k)=sent(L;L0);fS; i; j;KABk; L0gKSj=zs s21::r with Ik=(i;j;M);srv(s)=sent(k;L;L0)](9) Process R contains no free occurrence of any of the names pk, KiS,KSj, KABk and satis�es E ` R.� Finally, we de�ne the relation S as follows:S �= f(PW ; QW ) j any possible world WgGiven a possible world (snd ; srv ; rcv ; X; E; �; �spec ; R), conditions (7) and(8) imply that E, �, and �spec are determined by the other components ofthe world, and that E ` � and E ` �spec hold. Moreover, � is injective, aswe show next. Let us suppose that w and w0 are two variables that � mapsto the same term. Since � maps all variables to ciphertexts under keys inone of three disjoint families, we can distinguish three possible cases:� w is xk and w0 is xk0 for some k; k0 2 Ins. Since �(xk) has the formfi; i; j;KABk; LgKiS , �(xk) textually contains KABk. Similarly, �(xk0)textually contains KABk0 in the same position. Therefore k = k0, sow = w0.� w is yk and w0 is yk0 for some k; k0 2 Ins. Since �(yk) has the formfMgKABk , �(yk) textually contains KABk. Similarly, �(yk0) textuallycontains KABk0 in the same position. Therefore k = k0, so w = w0.� w is zs and w0 is zs0 for some s; s0 2 1::r. For some k 2 Ins, wehave �(zs) = fS; i; j;KABk; LgKSj where srv(s) = sent(k; L; L0) andIk = (i; j;M). Since �(zs0) = �(zs), there exists L00 such that srv(s0) =sent(k; L; L00). By condition (3), we obtain snd(k) = sent(NSs; NSs)and snd(k) = sent(NSs0; NSs0). Therefore s = s0, so w = w0.66



Thus, if � maps two variables w and w0 to the same term then w = w0, so �is injective. By the same argument, �spec is injective too.Now we consider the world W = (snd ; srv ; rcv ; Ins; ;; ;; ;; R0) whereR0 �= R j Qk2Ins(cShii where Ik = (i; j;M))such that snd(k) = a2 for all k 2 Ins, srv(s) = s1 for all s 2 1::r, andrcv(j; t) = b1 for all (j; t) 2 Prn � 1::r. The conditions for W to be possi-ble are satis�ed. In particular, X and XW2 both equal Ins, while all otherinstance sets are empty. Furthermore, processes PW and QW are related byS, and are structurally equivalent to processes (19) and (20) respectively.Therefore, if we can show that S � �� it will follow that processes (19)and (20) are barbed equivalent.To prove that S � ��, we rely on Proposition 6: we show that S is a barbedbisimulation up to �� and restriction. Thus, we prove, for any possible worldW = (snd ; srv ; rcv ; X; E; �; �spec ; R), that: (1) any barb exhibited by PW isalso exhibited by QW , and vice versa, and (2) for any reaction PW ! P 0there is Q0 with QW ! Q0 and there is a possible world W 0 and names ~nsuch that P 0 �� (�~n)PW 0, Q0 �� (�~n)QW 0, and vice versa. We treat onlyconditions (1) and (2); the symmetric conditions can be established by asymmetric treatment.Condition (1) holds because PW and QW have almost identical structure;the only names to appear in one process but not the other are the pk'soccurring in QW ; but the outermost restriction on the pk's prevents theirbeing exhibited as barbs.To show condition (2), we �rst recall that PW is:Qk2Ins AW (k) j Qs21::r SW (s) j Q(j;t)2Prn�1::rBW (j; t) j R�and QW is:(�pk k2Ins)(Qk2Ins AWspec(k) j Qs21::r SW (s) j Q(j;t)2Prn�1::rBWspec(j; t) j(Qk2X pk(x):F (i; j;M) where Ik = (i; j;M)) j R�spec)As usual, we appeal to Proposition 3 in order to analyse the reactions of PWin terms of its possible commitments. Processes AW (k), SW (s), BW (j; t)have only input or � commitments, whereas the arbitrary process R� mayhave input, output, or � commitments. Therefore, a reaction of PW can ariseonly in one of the following ways: 67



(A) from the interaction of an output commitment R� ��! (�~n)hL1iR1 andan input commitment of one of the following seven kinds of process:(1) AW (k) = A2 0(Ik; KABk)where k 2 Ins and snd(k) = a2 ,(2) SW (s) = S1 0(NSs)where s 2 1::r and srv(s) = s1 ,(3) SW (s) = S2 (i; NSs)where s 2 1::r and srv(s) = s2 (i),(4) SW (s) = S4 (i; j;KABk)where s 2 1::r, srv(s) = s4 (k), and Ik = (i; j;M),(5) BW (j; t) = B1 0(j; �:F;NBjt)where (j; t) 2 Prn � 1::r and rcv(j; t) = b1 ,(6) BW (j; t) = B2 (j; �:F;NBjt)where (j; t) 2 Prn � 1::r and rcv(j; t) = b2 ,(7) BW (j; t) = B3 (i; j; �:F;KABk)where (j; t) 2 Prn � 1::r, rcv(j; t) = b3 (k), and Ik = (i; j;M),(B) from a � commitment BW (j; t) = �:F (i; j;M) ��! F (i; j;M)where rcv(j; t) = run(k) and Ik = (i; j;M),(C) from a � commitment R� ��! R1.In case (A), we may assume that the bound names ~n are fresh. SinceW is possible, it follows that E ` � and E ` �spec , and that both � and� are injective substitutions. Therefore, given the commitment R� ��!(�~n)hL1iR1, Lemma 9(2) guarantees that there is an agent A such thatE ` A, fv(A) � fv(R), fn(A) � fn(R), and (�~n)hL1iR1 = A�, and moreoverthat R�spec ��! A�spec . From (�~n)hL1iR1 = A� it follows there are L2 andR2 such that A = (�~n)hL2iR2, L1 = L2�, and R1 = R2�.We now examine the input commitments of the seven kinds of processabove (ordered according to the enumeration of messages in the informaldescription of the protocol) and exhibit in each case a possible world W 0such that P 0 �� (�~n)PW 0 and there is Q0 with QW ! Q0 and Q0 �� (�~n)QW 0 ,where ~n are the names generated in the commitment of R.
68



(1) The reaction PW ! P 0, whereP 0 � (�~n)(Qk2Ins AW (k) j Qs021::r�fsg SW (s0) jQi2Prn [L2� is i] (cihNSsi j S2 (i; NSs)) jQ(j;t)2Prn�1::rBW (j; t) j R2�)arises when � is cS, and there is an input commitmentS1 0(NSs) cS�! (x)Qi2Prn [x is i] (cihNSsi j S2 (i; NSs))for some s 2 1::r such that srv(s) = s1 .We argue by cases on whether there is i 2 Prn such that L2� = i.When there is i 2 Prn such that L2� = i, we can simplify P 0 as follows:P 0 � (�~n)(Qk2Ins AW (k) j Qs021::r�fsg SW (s0) j S2 (i; NSs)Q(j;t)2Prn�1::rBW (j; t) j cihNSsi j R2�)We set: W 0 = (snd ; srv 0; rcv ; X; E; �; �spec ; cihNSsi j R2)where srv 0 is identical to srv except that srv 0(s) = s2 (i). With thisde�nition, P 0 � (�~n)PW 0. Given the form of �, L2� = i implies thatL2 = i, and therefore also that L2�spec = i. Therefore, QW ! (�~n)QW 0 ,so we let Q0 = (�~n)QW 0.It remains to prove that the world W 0 is possible. Conditions (1)and (2), which are about the instance sets of W 0, must hold sincethe instance sets of W 0 equal those of W , which itself is possible. Con-ditions (3) and (6) concern servers in states s4 and sent(k; L; L0); theyhold for W and continue to hold for W 0 as no servers have enteredthose states. Conditions (4) and (5) continue to hold in W 0 as nosenders or receivers have changed state. Conditions (7) and (8) con-cerning E, �, and �spec hold, since W is possible, no senders haveentered or left a sent(L; L0) state, and no servers have entered or left asent(k; L; L0) state. Finally, condition (9) is that cihNSsi j R2 containsno free occurrence of any of the names pk, KiS, KSj, KABk and thatE ` cihNSsi j R2. It holds since the same condition holds for R, andwe know that fn((�~n)hL2iR2) � fn(R), that the names ~n are fresh, andthat E ` (�~n)hL2iR2. Therefore, W 0 is a possible world.69



Otherwise, when there is no i 2 Prn such that L2� = i, we can simplifyP 0 as follows:P 0 �� (�~n)(Qk2Ins AW (k) j Qs021::r�fsg SW (s0) jQ(j;t)2Prn�1::rBW (j; t) j R2�)We set: W 0 = (snd ; srv 0; rcv ; X; E; �; �spec ; R2)where srv 0 is identical to srv except that srv 0(s) = stuck . With thisde�nition, P 0 �� (�~n)PW 0. Given the form of � and �spec , L2� 6= iimplies that L2�spec 6= i for every i 2 Prn. LettingQ0 �= (�~n)(�pk k2Ins)(Qk2Ins AWspec(k) j Qs021::r�fsg SW (s0) jQi2Prn [L2�spec is i] (cihNSsi j S2 (i; NSs)) jQ(j;t)2Prn�1::rBWspec(j; t) j(Qk2X pk(x):F (i; j;M) where Ik = (i; j;M)) jR2�spec)we obtain QW ! Q0 �� (�~n)QW 0.In this case, it remains to show that the world W 0 is possible. Condi-tions (1) and (2) concern the instance sets of W 0. We have:XW 03 = fk 2 XW3 j snd(k) 6= sent(NSs; NSs)gfrom which it follows that XW 03 � XW3 . All the other instance sets ofW 0 equal those of W . Since conditions (1) and (2) hold for W , theyhold also for W 0. The rest of the proof that the world W 0 is possible isas in the case where there is i 2 Prn such that L2� = i.(2) The reaction PW ! P 0, whereP 0 � (�~n)(Qk02Ins�fkgAW (k0) jcSh(i; fi; i; j;KABk; L2�gKiS)i j cjh(i; fMgKABk)i jQs21::r SW (s) j Q(j;t)2Prn�1::rBW (j; t) j R2�)arises when � is ci, and there is an input commitmentA2 0(Ik; KABk) ci�! (x)(cSh(i; fi; i; j;KABk; xgKiS)i j cjh(i; fMgKABk)i)70



for some k 2 Ins such that snd(k) = a2 and Ik = (i; j;M). We set:W 0 = (snd 0; srv ; rcv ; X; E 0; �0; �0spec ; R2 j cShxki j cjh(i; yk)i)where snd 0 is identical to snd except that snd 0(k) = sent(L2�; L2�spec),and E 0 �= E; xk:f�gKiS ; yk:f�gKABk�0 �= �; fi; i; j;KABk; L2�gKiS=xk; fMgKABk=yk�0spec �= �spec ; fi; i; j;KABk; L2�specgKiS=xk; fMgKABk=ykWith this de�nition, P 0 � (�~n)PW 0; moreover, QW ! (�~n)QW 0.It remains to show that the world W 0 is possible. First, we considerthe instance sets of W 0. They are equal to those of W , except for:XW 02 = XW2 � fkg while k 2 XW2XW 03 = 8>>><>>>: XW3 [ fkg if 9s 2 1::r; i0 2 Prn(L2� = L2�spec = NSs &srv(s) 2 fs1 ; s2 (i0)g)XW3 otherwiseTherefore, since conditions (1) and (2) hold for W , they hold also forW 0. Condition (5) holds for W 0 because there are no names in therange of � or �spec , so for any name n either L2� = L2�spec = n orneither L2� = n nor L2�spec = n. Conditions (3), (4), (6), (7), (8),and (9) hold for W , and it follows easily that they continue to hold forW 0.(3) The reaction PW ! P 0, whereP 0 � (�~n)(Qk2Ins AW (k) j Qs021::r�fsg SW (s0) jQ(j;t)2Prn�1::rBW (j; t) j R2� jlet (y1; y2) = L2� in[y1 is i] case y2 of fz1; z2; z3; z4; z5gKiS inQj2Prn [z1 is i] [z2 is i] [z3 is j] [z5 is NSs](cjh�i j S4 (i; j; z4)))arises when � is cS, and there is an input commitmentS2 (i; NSs) cS�! (x)let (y1; y2) = x in[y1 is i] case y2 of fz1; z2; z3; z4; z5gKiS inQj2Prn [z1 is i] [z2 is i] [z3 is j] [z5 is NSs](cjh�i j S4 (i; j; z4))71



for some s 2 1::r with srv(s) = s2 (i).We argue by cases on whether L2� is a pair with �rst component iand second component a ciphertext under KiS containing NSs as last�eld. By condition (8), L2� has i as �rst component if and only ifL2 has i as �rst component. Similarly, since fn(L2) � fn(R) [ f~ng,the second component of L2� is a ciphertext under KiS containing NSsif and only if the second component of L2 is a variable xk for somek 2 Ins such that snd(k) = sent(NSs; L0) for some L0. In this case, thesecond component of L2� is fi; i; j;KABk; NSsgKiS where Ik = (i; j;M).Thus, L2� determines k uniquely because of the presence of KABk. Bycondition (5), L0 = NSs and snd(k) = sent(NSs; NSs), so if L2 has theform (i; xk), then L2� and L2�spec both equal (i; fi; i; j;KABk; NSsgKiS).Conversely, the form of L2�spec determines the form of L2�.Assuming that L2� is a pair of the form described, we can simplify P 0as follows: P 0 � (�~n)(Qk2Ins AW (k) j Qs021::r�fsg SW (s0) jQ(j;t)2Prn�1::rBW (j; t) jS4 (i; j;KABk) j R2� j cjh�i)where i, j, and k are de�ned as explained above. We set:W 0 = (snd ; srv 0; rcv ; X; E; �; �spec ; R2 j cjh�i)where srv 0 is identical to srv except that srv 0(s) = s4 (k). With thisde�nition, P 0 � (�~n)PW 0 and QW ! (�~n)QW 0.It remains to show that the world W 0 is possible. All the instance setsof W 0 equal those of W , except for:XW 03 = XW3 � fk0 2 XW3 j snd(k0) = sent(NSs; NSs)gwhile k 2 XW3XW 05 = XW5 [ fkgIn particular, k =2 XW 03 . Therefore, conditions (1) and (2) hold for W 0.Conditions (3), (4), (5), (6), (7), (8), and (9) hold forW , and it followseasily that they continue to hold for W 0. For condition (3), we use thefact that snd(k) = sent(NSs; NSs).72



On the other hand, if L2� is not of the form described, we can simplifyP 0 as follows:P 0 �� (�~n)(Qk2Ins AW (k) j Qs021::r�fsg SW (s0) jQ(j;t)2Prn�1::rBW (j; t) j R2�)We set: W 0 = (snd ; srv 0; rcv ; X; E; �; �spec ; R2)where srv 0 is identical to srv except that srv 0(s) = stuck . With thisde�nition, P 0 �� (�~n)PW 0. LettingQ0 �= (�~n)(�pk k2Ins)(Qk2Ins AWspec(k) j Qs021::r�fsg SW (s0) jlet (y1; y2) = L2�spec in : : : jQ(j;t)2Prn�1::rBWspec(j; t) j(Qk2X pk(x):F (i; j;M) where Ik = (i; j;M)) jR2�spec)where the omitted code gets stuck, we obtain QW ! Q0 �� (�~n)QW 0.In this case, it is easy to check that the world W 0 is possible. All theinstance sets of W 0 equal those of W , except for:XW 03 = fk 2 XW3 j snd(k) 6= sent(NSs; NSs)gso XW 03 � XW3 .(4) The reaction PW ! P 0, whereP 0 � (�~n)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) jcShNBjti j B2 (j; �:F;NBjt) j R2�)arises when � is cj, and there is an input commitmentB1 0(j; �:F;NBjt) cj�! (x)(cShNBjti j B2 (j; �:F;NBjt))for some (j; t) 2 Prn � 1::r such that rcv(j; t) = b1 . We set:W 0 = (snd ; srv ; rcv 0; X; E; �; �spec ; R2 j cShNBjti)where rcv 0 is identical to rcv except that rcv 0(j; t) = b2 . With thisde�nition, P 0 � (�~n)PW 0 and QW ! (�~n)QW 0 . Given that W is apossible world, so is W 0; in particular, the instance sets of W 0 equalthose of W . 73



(5) The reaction PW ! P 0, whereP 0 � (�~n)(Qk2Ins AW (k) j Qs021::r�fsg SW (s0) jQ(j;t)2Prn�1::rBW (j; t) jcjhfS; i; j;KABk; L2�gKSji j R2�)arises when � is cS, and there is an input commitmentS4 (i; j;KABk) cS�! (x)cjhfS; i; j;KABk; xgKSjifor some s 2 1::r such that srv(s) = s4 (k) and Ik = (i; j;M).We set: W 0 = (snd ; srv 0; rcv ; X; E 0; �0; �0spec ; R2 j cjhzsi)where srv 0 is identical to srv except that srv 0(s) = sent(k; L2�; L2�spec),and E 0 �= E; zs:f�gKSj�0 �= �; fS; i; j;KABk; L2�gKSj=zs�0spec �= �spec ; fS; i; j;KABk; L2�specgKSj=zsWith this de�nition, P 0 � (�~n)PW 0 and QW ! (�~n)QW 0.It remains to show that the world W 0 is possible. First, we note thatif srv(s0) = s4 (k) then s = s0, because srv(s) = s4 (k) and by condi-tion (3). Therefore, all the instance sets ofW 0 equal those ofW , exceptfor: XW 05 = XW5 � fkgXW 06 = ( XW6 [ fkg sometimes|when is unimportantXW6 otherwiseSo conditions (1) and (2) hold for W 0. Since W satis�es conditions(4) and (5), so does W 0, trivially. Condition (3) for W implies thatsnd(k) = sent(NSs; NSs); it follows that condition (3) holds for W 0.Condition (6) holds forW 0 because there can be no names in the rangesof � and �spec , so, for any name n, either L2� = L2�spec = n or neitherL2� = n nor L2�spec = n. Conditions (7), (8), and (9) for W 0 are easyconsequences of the corresponding conditions for W .74



(6) The reaction PW ! P 0, whereP 0 � (�~n)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) j R2� jcase L2� of fy1; y2; y3; y4; y5gKSj inQi2Prn [y1 is S] [y2 is i] [y3 is j] [y5 is NBjt]B3 (i; j; �:F; y4))arises when � is cj, and there is an input commitmentB2 (j; �:F;NBjt) cj�! (x)case x of fy1; y2; y3; y4; y5gKSj inQi2Prn [y1 is S] [y2 is i] [y3 is j] [y5 is NBjt]B3 (i; j; �:F; y4)for some (j; t) 2 Prn � 1::r with rcv(j; t) = b2 .We argue by cases on whether L2� is a ciphertext under KSj containingNBjt as last �eld. By condition (8), since fn(L2) � fn(R)[f~ng, L2� isa ciphertext under KSj containing NBjt if and only if L2 is a variablezs for some s 2 1::r such that srv(s) = sent(k;NBjt; L0) for some k andL0. In this case, L2� is fS; i; j;KABk; NBjtgKSj where Ik = (i; j;M).Thus, L2� determines k uniquely because of the presence of KABk. Bycondition (6), L0 = NBjt and srv(s) = sent(k;NBjt; NBjt), so if L2 is zsthen L2� and L2�spec both equal fS; i; j;KABk; NBjtgKSj . Conversely,the form of L2�spec determines the form of L2�.Assuming that L2� is of the form described, we can simplify P 0 asfollows:P 0 � (�~n)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) j B3 (i; j; �:F;KABk) jR2�)We set: W 0 = (snd ; srv ; rcv 0; X; E; �; �spec ; R2)where rcv 0 is identical to rcv except that rcv 0(j; t) = b3 (k). With thisde�nition, P 0 � (�~n)PW 0 and QW ! (�~n)QW 0.It remains to check that the world W 0 is possible. All the instance setsof W 0 equal those of W , except for:XW 06 = XW6 � fk0 where Ik0 = (i0; j;M 0) j9s0 2 1::r(srv(s0) = sent(k0; NBjt; NBjt))g75



while k 2 XW6XW 07 = XW7 [ fkgIn particular, k =2 XW 06 . Therefore, conditions (1) and (2) hold for W 0.Conditions (3), (5), (6), (7), (8), and (9) hold for W , and it followseasily that they continue to hold for W 0. Condition (4) holds for W 0because srv(s) = sent(k;NBjt; NBjt).On the other hand, if L2� is not of the form described, we can simplifyP 0 as follows:P 0 �� (�~n)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) j R2�)We set: W 0 = (snd ; srv ; rcv 0; X; E; �; �spec ; R2)where rcv 0 is identical to rcv except that rcv 0(j; t) = stuck . With thisde�nition, P 0 �� (�~n)PW 0. LettingQ0 �= (�~n)(�pk k2Ins)(Qk2Ins AWspec(k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBWspec(j 0; t0) jcase L2� of fy1; y2; y3; y4; y5gKSj in : : : j(Qk2X pk(x):F (i; j;M) where Ik = (i; j;M)) jR2�spec)where the omitted code gets stuck, we obtain QW ! Q0 �� (�~n)QW 0.In this case, it is easy to check that the world W 0 is possible. All theinstance sets of W 0 equal those of W , except for:XW 06 = XW6 � fk where Ik = (i; j;M) j9s 2 1::r(srv(s) = sent(k;NBjt; NBjt))gso XW 06 � XW6 .(7) The reaction PW ! P 0, whereP 0 � (�~n)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) j R2� jlet (y1; y2) = L2� in[y1 is i] case y2 of fzgKABk in �:F (i; j; z))76



arises when � is cj, and there is an input commitmentB3 (i; j; �:F;KABk) cj�! (x)let (y1; y2) = x in[y1 is i] case y2 of fzgKABk in �:F (i; j; z)for some k 2 Ins and (j; t) 2 Prn � 1::r such that rcv(j; t) = b3 (k)and Ik = (i; j;M) for some M .We argue by cases on whether L2� is a pair with �rst component i andsecond component a ciphertext under KABk. By condition (8), L2�has i as �rst component if and only if L2 has i as �rst component.Similarly, since fn(L2) � fn(R) [ f~ng, the second component of L2�is a ciphertext under KABk if and only if the second component ofL2 is yk and snd(k) = sent(L; L0) for some L and L0. In this case,the second component of L2� is fMgKABk . Thus, if L2 has the form(i; yk), then L2� equals (i; fMgKABk), while L2�spec equals (i; fpkgKABk).Conversely, the form of L2�spec determines the form of L2�.Assuming that L2� is a pair of the form described, we can simplify P 0as follows:P 0 � (�~n)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) j R2� j �:F (i; j;M))We set: W 0 = (snd ; srv ; rcv 0; X; E; �; �spec ; R2)where rcv 0 is identical to rcv except that rcv 0(j; t) = run(k). With thisde�nition, P 0 � (�~n)PW 0 and QW ! (�~n)QW 0.In order to check that the world W 0 is possible, we �rst consider theinstance sets of W 0. First, we argue that k =2 XW 07 . It su�ces to showthat if rcv(j; t0) = b3 (k) then in fact t = t0. Condition (4) for Wsays that there exists s 2 1::r such that srv(s) = sent(k;NBjt; NBjt),and that if rcv(j; t0) = b3 (k) then there exists s0 2 1::r such thatsrv(s0) = sent(k;NBjt0 ; NBjt0). Condition (3) forW says that snd(k) =sent(NSs; NSs) and snd(k) = sent(NSs0; NSs0). Therefore, s = s0 andthen t = t0. We conclude that k =2 XW 07 . We obtain that the instancesets of W 0 equal those of W except for:XW 07 = XW7 � fkg while k 2 XW7XW 08 = XW8 [ fkg77



So conditions (1) and (2) hold for W 0. Conditions (3), (4), (5), (6),(7), (8), and (9) hold for W , and it follows easily that they continue tohold for W 0.On the other hand, if L2� is not of the form described, we can simplifyP 0 as follows:P 0 �� (�~n)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) j R2�)We set: W 0 = (snd ; srv ; rcv 0; X; E; �; �spec ; R2)where rcv 0 is identical to rcv except that rcv 0(j; t) = stuck . With thisde�nition, P 0 �� (�~n)PW 0. LettingQ0 �= (�~n)(�pk k2Ins)(Qk2Ins AWspec(k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBWspec(j 0; t0) jlet (y1; y2) = L2� in : : : j(Qk2X pk(x):F (i; j;M) where Ik = (i; j;M)) jR2�spec)where the omitted code gets stuck, we obtain QW ! Q0 �� (�~n)QW 0.The proof that W 0 is possible is almost identical to that just given forthe other case; the only change is that XW 08 = XW8 .This completes case (A).In case (B), the reaction PW ! P 0, whereP 0 � Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBW (j 0; t0) j F (i; j;M) j R�arises from the � commitmentBW (j; t) ��! F (i; j;M)for some (j; t) 2 Prn�1::r such that rcv(j; t) = run(k) and Ik = (i; j;M) forsome k 2 Ins. Note that k 2 X, since rcv(j; t) = run(k) implies k 2 XW8 �X. We set: W 0 = (snd ; srv ; rcv 0; X 0; E; �; �spec ; F (i; j;M) j R)78



where rcv 0 is identical to rcv except that rcv 0(j; t) = done and where X 0 =X � fkg. With this de�nition, P 0 � PW 0. Moreover, we have:QW = (�pk k2Ins)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j;t)2Prn�1::rBWspec(j; t) j(Qk2X pk(x):F (i; j;M) where Ik = (i; j;M)) j R�spec)� (�pk k2Ins)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBWspec(j 0; t0) j(Qk2X0 pk(x):F (i; j;M) where Ik = (i; j;M)) jpkh�i j pk(x):F (i; j;M) j R�spec)! (�pk k2Ins)(Qk2Ins AW (k) j Qs21::r SW (s) jQ(j0;t0)2Prn�1::r�f(j;t)gBWspec(j 0; t0) j(Qk2X0 pk(x):F (i; j;M) where Ik = (i; j;M)) jF (i; j;M) j R�spec)� QW 0In order to check that the world W 0 is possible, we �rst argue that k =2 XW 08 .It su�ces to show that if rcv(j; t0) = run(k) then in fact t = t0. Condition (4)for W says that there exists s 2 1::r such that srv(s) = sent(k;NBjt; NBjt),and that if rcv(j; t0) = run(k) then there exists s0 2 1::r such that srv(s0) =sent(k;NBjt0 ; NBjt0). Condition (3) for W says that snd(k) = sent(NSs; NSs)and snd(k) = sent(NSs0; NSs0). Therefore, s = s0 and then t = t0. Weconclude that k =2 XW 08 . We obtain that the instance sets of W 0 equal thoseof W except for: XW 08 = XW8 � fkgSo conditions (1) and (2) hold for W 0. Conditions (3), (4), (5), (6), (7), (8),and (9) hold for W , and it follows easily that they continue to hold for W 0.For condition (9), we rely on the fact that F (i; j;M) is a closed process andthat it cannot contain free occurrences of any of the names pk, KiS, KSj,KABk. (The abstraction F cannot contain free occurrences of those namesbecause of our general convention that bound parameters of the protocol donot occur free in F . The term M cannot because it is part of the argumentsto Sys and Sys spec.)Finally, in case (C), the reaction PW ! P 0, whereP 0 � Qk2Ins AW (k) j Qs21::r SW (s) j Q(j;t)2Prn�1::rBW (j; t) j R179



arises from the � commitment R� ��! R1. Lemma 9(2) implies that there isa process R2 such that E ` R2, fv(R2) � fv(R), fn(R2) � fn(R), R1 = R2�,and R�spec ��! R2�spec . We set:W 0 = (snd ; srv ; rcv ; X; E; �; �spec ; R2)With this de�nition, P 0 � PW 0 and Q ! QW 0; moreover, W 0 is a possibleworld.This concludes the proof of the authenticity property, Proposition 21. 2Proposition 21 is rather strong, so we obtain the secrecy property as acorollary:Proposition 22 If each pair (I1; J1), . . . , (Im; Jm) is indistinguishable, thenSys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm)Proof When I = (i; j;M) and J = (i; j;M 0), the pair (I; J) is indis-tinguishable only if F (i; j;M) ' F (i; j;M 0). Using the fact that testingequivalence is a congruence (Proposition 1), we obtain:A1 spec(I; F ) = (�p)(A1 (i; j; p) j p(x):F (i; j;M))' (�p)(A1 (i; j; p) j p(x):F (i; j;M 0))= A1 spec(J; F )If each pair (I1; J1), . . . , (Im; Jm) is indistinguishable, then Propositions 1and 21 permit the following calculation:Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im)= (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 spec(Ik; F ) j !S1 j Qj2Prn !B1 (j; Fspec))' (�KiS i2Prn)(�KSj j2Prn)(Qk2Ins A1 spec(Jk; F ) j !S1 j Qj2Prn !B1 (j; Fspec))= Sysspec(J1; : : : ; Jm)' Sys(J1; : : : ; Jm)This completes the proof of the secrecy property. 280



7 Further Cryptographic PrimitivesAlthough so far we have discussed only shared-key cryptography, other kindsof cryptography are also easy to treat within the spi calculus. In this sectionwe show how to handle cryptographic hashing, public-key encryption, anddigital signatures. We add syntax for these operations to the spi calculus andgive their semantics. We thus provide evidence that our ideas are applicableto a wide range of security protocols, beyond those that rely on shared-keyencryption. We believe that we may be able to deal similarly with Di�e-Hellman techniques and with secret sharing. However, protocols for oblivioustransfer and for zero-knowledge proofs, for example, are probably beyond thescope of our approach.7.1 HashingA cryptographic hash function has the properties that it is very expensive torecover an input from its image or to �nd two inputs with the same image.Functions such as SHA and RIPE-MD are generally believed to have theseproperties [Sch94].When we represent hash functions in the spi calculus, we pretend thatoperations that are very expensive are altogether impossible. We simply adda construct to the syntax of terms of the spi calculus:L;M;N ::= terms: : : as in Section 3.1H(M) hashingThe syntax of processes is unchanged. Intuitively, H(M) represents the hashof M . The absence of a construct for recovering M from H(M) correspondsto the assumption that H cannot be inverted. The lack of any equationsH(M) = H(M 0) corresponds to the assumption that H is free of collisions.7.2 Public-Key Encryption and Digital SignaturesTraditional public-key encryption systems are based on key pairs. Normally,one of the keys in each pair is private to one principal, while the other keyis public. Any principal can encrypt a message using the public key; only aprincipal that has the private key can then decrypt the message.81



We assume that neither key can be recovered from the other. We couldjust as easily deal with the case where the public key can be derived fromthe private one. Much as in Section 3.1, we also assume that the only way todecrypt an encrypted packet is to know the corresponding private key; thatan encrypted packet does not reveal the public key that was used to encryptit; and that there is su�cient redundancy in messages so that the decryptionalgorithm can detect whether a ciphertext was encrypted with the expectedpublic key.We arrive at the following syntax for the spi calculus with public-keyencryption. (This syntax is concise, rather than memorable.)L;M;N ::= terms: : : as in Section 3.1M+ public partM� private partf[M ]gN public-key encryptionP;Q ::= processes: : : as in Section 3.1case L of f[x]gN in P decryptionIf M represents a key pair, then M+ represents its public half and M�represents its private half. Given a public key N , the term f[M ]gN representsthe result of the public-key encryption ofM with N . In case L of f[x]gN in P ,the variable x is bound in P . This construct is useful when N is a private keyK�; then it binds x to the M such that f[M ]gK+ is L, if such an M exists.It is also common to use key pairs for digital signatures. Private keys areused for signing, while public keys are used for checking signatures. We canrepresent digital signatures through the following extended syntax:L;M;N ::= terms: : : as above[fMg]N private-key signatureP;Q ::= processes: : : as abovecase N of [fxg]M in P signature check82



Given a private key N , the term [fMg]N represents the result of the signa-ture of M with N . Again, the variable x is bound in P in the constructcase N of [fxg]M in P . This construct is dual to case L of f[x]gN in P . Thenew construct is useful when N is a public key K+; then it binds x to theM such that [fMg]K� is L, if such an M exists. (Thus, we are assuming thatM can be recovered from the result of signing it; but there is no di�culty indropping this assumption.)Formally, the semantics of the new constructs is captured with two newrules for the reduction relation:(Red Public Decrypt) case f[M ]gN+ of f[x]gN� in P > P [M=x](Red Signature Check) case [fMg]N� of [fxg]N+ in P > P [M=x]We believe that our basic theoretical results for the spi calculus still apply.As a small example, we can write the following public-key analogue forthe protocol of Section 3.2.1:A(M) �= cABhf[M; [fH(M)g]K�A ]gK+B iB �= cAB(x):case x of f[y]gK�B inlet (y1; y2) = y incase y2 of [fzg]K+A in[H(y1) is z] F (y1)Inst(M) �= (�KA)(�KB)(A(M) j B)In this protocol, A sends M on the channel cAB, signed with A's private keyand encrypted under B's public key; the signature is applied to a hash of Mrather than to M itself. On receipt of a message on cAB, B decrypts usingits private key, checks A's signature using A's public key, checks the hash,and applies F to the body of the message (toM). The key pairs KA and KBare restricted; but there would be no harm in sending their public parts K+Aand K+B on a public channel.Undoubtedly, other formalisations of public-key cryptography are possi-ble, perhaps even desirable. In particular, we have represented cryptographicoperations at an abstract level, and do not attempt to model closely the prop-erties of any one algorithm. We are concerned with public-key encryptionand digital signatures in general rather than with their RSA implementa-tions, say. The RSA system satis�es equations that our formalisation doesnot capture. For example, in the RSA system, [ff[M ]gK+g]K� equals M . Weleave the treatment of those equations for future work.83



8 ConclusionsWe have applied both the standard pi calculus and the new spi calculus inthe description and analysis of security protocols. As examples, we choseprotocols of the sort commonly found in the authentication literature. Weshowed how to represent the protocols, how to express their security proper-ties, and how to prove some of these properties. Our model of protocols takesinto account the possibility of attacks, but does not require writing explicitspeci�cations for an attacker. In particular, we express secrecy properties assimple equations that mean indistinguishability from the point of view of anarbitrary attacker. To our knowledge, this sharp treatment of attacks hasnot been previously possible.Although our examples are small, we have found them instructive. Someof the techniques that we developed may be amenable to automation; theexperience in other process algebras is encouraging. Moreover, there seemsto be no fundamental di�culty in writing other kinds of examples, suchas protocols for electronic commerce. Unfortunately, the speci�cations forthose protocols do not yet seem to be fully understood, even in informalterms [Mao96].In both the pi calculus and the spi calculus, restriction and scope extru-sion play a central role. The pi calculus provides an abstract treatment ofchannels, while the spi calculus expresses the cryptographic operations thatusually underlie channels in systems for distributed security. Thus, the picalculus and the spi calculus are appropriate at di�erent levels.Those two levels are however related. In particular, as we have discussedbrie
y, we can specify a security protocol abstractly and then implement itusing cryptography. Similarly, we may give an API (application program-ming interface) for secure channels and implement it on top of an API forcryptography. In more formal terms, it should be possible to de�ne crypto-graphic implementations for the pi calculus, translating restricted channelsinto public channels with encryption. Implementation relations such as theseare useful in practice; they seem worth studying further.AcknowledgementsPeter Sewell and PhilWadler suggested improvements to a draft of this paper.
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AppendicesA Encoding Encryption in the Pi CalculusBefore inventing the spi calculus, we considered but rejected several schemesfor encoding encryption within the pi calculus.An obvious �rst idea is to represent keys as channels, and encryptedcommunication as communication on restricted channels. This scheme worksreasonably well in some examples, but it is not clear how to turn it into ageneral encoding. For example, it is not straightforward to represent dataencrypted under several keys.Milner has shown how to represent a piece of data as a process locatedat a channel m, that is, a process listening on channel m. A second schemefor encoding encryption extends Milner's idea. Let F be a pi calculus ab-straction (a process with an abstracted name) that represents some data.We can represent F encrypted with K, to be located at m, by the followingabstraction: fFgK �= (m)m(J; n):[J is K] F (n)Given a channelm, the right-hand side is a process that inputs the pair (J; n)o� channel m. If J is the key K, then it runs F with the abstracted variableinstantiated to n; otherwise it does nothing. In other words, it o�ers accessto F to anyone who can provide the secret key K. We can then representan abstraction that attempts to decrypt such an encrypted datum, locatedat m, and locates the result at its parameter n, as follows:Decrypt(m;K) �= (n)mh(K; n)iWhen we locate these abstractions at namesm and n, we obtain the reactions:fFgK(m) j Decrypt(m;K)(n)!� F (n)This representation certainly prevents anybody from accessing F unless theyknow K. But it allows attacks:(1) An agent who possesses a secret key must transmit it to the processrepresenting the encrypted data. In the simple scheme described herethere is nothing to stop an attacker from impersonating encrypted dataand thereby obtaining the corresponding secret key.85



(2) After decryption there is no guarantee that the message returned wasreally encrypted with the secret key. An attacker could masquerade asa piece of encrypted data and provide an incorrect message to anyonewho asks.A third scheme is based on a mild extension of the pi calculus in whichchannels may be multi-names, that is, tuples of names. We modify the encod-ing above so that the encrypted process fFgK(m) inputs n o� the multi-namechannel (m;K). Decryption amounts to sending n on this multi-name. Syn-chronisation on the pair (m;K) guarantees simultaneously that both partiesknow both the location m of the data and the secret key K. The two attacksabove are therefore no longer possible. This scheme is attractive, because itenables us to remain close to the standard pi calculus. Unfortunately, thisscheme does not account for protocols in which keys are made by hashingdata, for instance.A fourth scheme relies on a process, the \Global Cryptographic Device"(GCD for short), trusted by all participants; GCD mediates all encryptionand decryption via a global list of encrypted messages. In this scheme therewould be a private channel between each participant and GCD used by theparticipant to invoke encryption or decryption. To decrypt a message, theparticipant would send the necessary secret key to GCD, rather than tothe purported encrypted message. We are reluctant to pursue this schemebecause of its complexity.Having syntax both for processes and data, as in the spi calculus, givesus advantages over these schemes. First, we avoid having to encode dataas processes. In addition, we can axiomatise encryption and decryption,for both shared-key and public-key cryptography, directly in our operationalsemantics. This higher-level approach appears to be more convenient towork with than any approach based on encodings, while retaining many ofthe fundamental ideas of the pi calculus.B Proofs about CommitmentIn this section we prove Propositions 2, 3, and 4, from Section 5.1, whichconnect the relations of reaction, commitment, and exhibition of a barb.We begin with a lemma that relates the free names of a process to thefree names of any agent to which it commits.86



Lemma 23(1) If P ��! Q then fn(Q) � fn(P ).(2) If P m�! (x)Q then fmg [ fn(Q) � fn(P ).(3) If P m�! (�~n)hMiQ then fmg [ fn((�~n)hMiQ) � fn(P ) and f~ng �fn(M).Proof By induction on the derivation of the commitment. 2The purpose of the next lemma is to show that P ��! Q implies P ! Q,half of Proposition 3.Lemma 24(1) If P m�! (x)Q then there are Q1, Q2, and names ~p such that m =2 f~pg,P � (�~p)(Q1 j m(x):Q2), and Q[M=x] � ((�~p)(Q1 j Q2))[M=x] for anyclosed M .(2) If P m�! (�~n)hMiQ then there are Q1, Q2, and names ~p such thatm =2 f~pg, fn(M) \ f~pg = ;, P � (�~n; ~p)(Q1 j mhMi:Q2), and Q �(�~p)(Q1 j Q2).(3) If P ��! Q then P ! Q.Proof In each case, by induction on the derivation of the commitmentof P . 2The key fact we need for the other direction of Proposition 3 is thatstructural equivalence is a strong bisimulation.Lemma 25 P � Q implies that:(1) whenever P ��! A there is B with Q ��! B and A � B;(2) whenever Q ��! B there is A with P ��! A and A � B.Hence structural equivalence is a strong bisimulation.Proof By induction on the derivation of P � Q.First, we consider the possibility that P � Q is an instance of one of thesix basic equations of structural equivalence. We show two representativecases. 87



(Struct Switch) Here P = (�m)(�n)R and Q = (�n)(�m)R. The casewhere m and n are the same is trivial. In the case where m and nare distinct, we examine the commitments of R, which determine thecommitments of both P and Q.� R p�! (x)R0. If p 2 fm;ng then neither P nor Q has a commit-ment. Otherwise, the only commitments of P and Q are:P p�! (x)(�m)(�n)R0 and Q p�! (x)(�n)(�m)R0We have ((�m)(�n)R0)[M=x] � ((�n)(�m)R0)[M=x] for any closedM , so we are done.� R ��! R0. The only commitments of P and Q are:P ��! (�m)(�n)R0 and Q ��! (�n)(�m)R0and we have (�m)(�n)R0 � (�n)(�m)R0.� R p�! (�~n)hMiR0. We may assume that the set of bound namesf~ng is disjoint from fm;ng. If p 2 fm;ng then neither P nor Qhas a commitment. Otherwise, the only commitment of P is oneof the following:(1) P p�! (�~n)hMi(�m)(�n)R0 if m =2 fv(M) and n =2 fv(M);(2) P p�! (�m;~n)hMi(�n)R0 if m 2 fv(M) and n =2 fv(M);(3) P p�! (�n; ~n)hMi(�m)R0 if m =2 fv(M) and n 2 fv(M);(4) P p�! (�m; n; ~n)hMiR0 if m 2 fv(M) and n 2 fv(M).In each case the only commitment of Q matches the commitmentof P . In case (4), Q p�! (�n;m;~n)hMiR0 and we have:(�m; n; ~n)hMiR0 � (�n;m;~n)hMiR0since the de�nition of � allows the restricted names to be per-muted. (If this permutation were not allowed, (Struct Switch)would prevent structural equivalence from being a strong bisimu-lation.)In each of these cases, the lemma's parts (1) and (2) follow.(Struct Drop) Here P = (�m)0 and Q = 0. Therefore, neither P nor Qhas any commitments, so they trivially satisfy parts (1) and (2).88



The cases for (Struct Nil) and (Struct Comm) are simple. The cases for(Struct Extrusion) and (Struct Assoc) involve larger case analyses|but areno harder|than the cases shown.Second, we consider the possibility that P � Q is obtained through oneof the inference rules of structural equivalence.(Struct Red) Here P > Q. By inspecting the de�nition of the reductionrelation, we can see that the only commitment rule that applies to Pis (Comm Red). Moreover, if P > Q0 then Q0 is Q. Therefore for any� and A, we have that P ��! A i� Q ��! A. Since � is re
exive,parts (1) and (2) follow.(Struct Re
) Here P = Q, so parts (1) and (2) follow at once.(Struct Symm) Here P � Q is obtained from Q � P . Part (2) of theinduction hypothesis supplies part (1) of what is to be proved; part (1)of the induction hypothesis supplies the other part.(Struct Trans) Here P � Q is obtained from P � P 0 and P 0 � Q, for someintermediate process P 0. For part (1), suppose that P ��! A. SinceP � P 0, the induction hypothesis implies that there is an agent A0 suchthat P 0 ��! A0 and A � A0. Since P 0 � Q, the induction hypothesisimplies that there is an agent B such that Q ��! B and A0 � B. Since� is transitive, so is �. Therefore we have A � B, completing theproof of part (1). Part (2) follows by symmetry.(Struct Par) Here P � Q is obtained from P1 � Q1 with P = P1 j R andQ = Q1 j R. For part (1), suppose that P ��! A. There are four casesto consider.(Comm Inter 1) Here � = � , P1 m�! (x)P2, R m�! (�~n)hMiR0, andA = (�~n)(P2[M=x] j R0). By induction hypothesis, there exists Q2such that Q1 m�! (x)Q2 and (x)P2 � (x)Q2. Therefore, since Mis closed, P2[M=x] � Q2[M=x]. We let B = (�~n)(Q2[M=x] j R0).By (Comm Inter 1), we have Q ��! B. Moreover A � B, since(�~n)(P2[M=x] j R0) � (�~n)(Q2[M=x] j R0)and A and B are processes.89



(Comm Inter 2) Here � = � , P1 m�! (�~n)hMiP2, R m�! (x)R0, andA = (�~n)(P2 j R0[M=x]). By induction hypothesis, there existQ2 and ~m such that Q1 m�! (� ~m)hMiQ2, P2 � Q2, and ~m is apermutation of ~n. We let B = (� ~m)(Q2 j R0[M=x]). By (CommInter 2), we have Q ��! B and A � B, since(�~n)(P2 j R0[M=x]) � (�~n)(Q2 j R0[M=x])and then, by (Struct Switch) and (Struct Res),(�~n)(P2 j R0[M=x]) � (� ~m)(Q2 j R0[M=x])(Comm Par 1) Here P1 ��! A1 and A = A1 j R. By inductionhypothesis, there exists B1 such that Q1 ��! B1 and A1 � B1.We let B = B1 j R. By (Comm Par 1), we have Q ��! B.Whether A1 and B1 are processes, abstractions, or concretions,A1 � B1 implies A1 j R � B1 j R.(Comm Par 2) Here R ��! A1 and A = P j A1. By (Comm Par 2),we have Q ��! Q j A1. Whether A1 is a process, an abstraction,or a concretion, P � Q implies P j A1 � Q j A1.This completes the proof of part (1); part (2) follows by symmetry.(Struct Res) Here P � Q is obtained from P1 � Q1, where P = (�m)P1and Q = (�m)Q2. Again by symmetry we need to consider onlypart (1). Suppose that P ��! A. The rule (Comm Res) is the only onethat can yield a commitment from a restriction. So there must be A1such that P1 ��! A1 with � =2 fm;mg and A = (�m)A1. By inductionhypothesis, there is B1 with Q1 ��! B1 and A1 � B1. By (Struct Res),we have Q ��! (�m)B1. Whether A1 and B1 are processes, abstrac-tions, or concretions, A1 � B1 implies (�m)A1 � (�m)B1. Thereforepart (1) follows. 2We can now prove the three propositions claimed in Section 5.1.Proof of Proposition 2 P # � i� 9A(P ��! A).Proof This is not entirely trivial, as the # relation is de�ned using struc-tural equivalence, but the transition relation ��! is not. We can easily show90



that P ��! A implies P # � by induction on the derivation of P ��! A,using (Barb Struct) where necessary. On the other hand, we can show thatP # � implies 9A(P ��! A) by induction on the derivation of P # �. Thecase of (Barb Struct) needs the fact that if 9A(P ��! A) and P � Q then9A(Q ��! A) also, which follows from Lemma 25. 2Proof of Proposition 3 P ! Q i� P ��!� Q.Proof For the backwards direction suppose P ��! R and R � Q. ByLemma 24(3), P ! R, and then P ! Q by (React Struct).We can show that P ! Q implies that there exists R such that P ��! Rand R � Q by induction on the derivation of P ! Q. The only interestingcase is (React Struct). Suppose that P ! Q follows from P � P 0, P 0 ! Q0,and Q0 � Q. By induction hypothesis, P 0 ��! Q00 with Q00 � Q0. ByLemma 25, structural equivalence is a strong bisimulation, so P ��! R forsome R such that R � Q00. This with the previous equations gives R � Q asrequired. 2Proof of Proposition 4 P passes a test (R; �) i� there exist an agent Aand a process Q such that P j R ��!� Q and Q ��! A.Proof By de�nition, P passes a test (R; �) i� P j R + �, which holds i�there is Q with P j R!� Q and Q # �, which by (Barb Struct), Lemma 25,and Propositions 2 and 3 is equivalent to there being Q and A with P jR ��!� Q and Q ��! A. 2C Proofs about ReplicationThis section is devoted to lemmas concerning the interaction between repli-cation and commitment, reaction, and convergence.Lemma 26(1) If !P m�! (x)Q, then there is R with P m�! (x)R and Q[M=x] �R[M=x] j !P for any closed M .(2) If !P m�! (�~n)hMiQ, then there is R with P m�! (�~n)hMiR and Q �R j !P . 91



(3) If !P ��! Q, then there is R with P j P ��! R and Q � R j !P .Proof(1) By induction on the derivation of !P m�! (x)Q. Such a commitmentmust be derived from P j !P m�! (x)Q via (Comm Red) and (RedRepl). The latter commitment must be derived from (Comm Par 1) or(Comm Par 2). In the �rst case, we have P m�! (x)R and Q = R j !P ,so we are done. In the second case, we have !P m�! (x)R0 and Q =P j R0. By induction hypothesis, there is R such that P m�! (x)R andR0[M=x] � R[M=x] j !P for any closed M . Hence, for any closed M ,Q[M=x] � P j R[M=x] j !P � R[M=x] j !P , so we are done.(2) By induction on the derivation of !P m�! (�~n)hMiQ. Such a com-mitment must be derived from P j !P m�! (�~n)hMiQ via (CommRed) and (Red Repl). The latter commitment must be derived from(Comm Par 1) or (Comm Par 2). In the �rst case, we immediatelyhave P m�! (�~n)hMiR and Q = R j !P . In the second case, wehave !P m�! (�~n)hMiR0 and Q = P j R0. By induction hypothe-sis, there is R such that P m�! (�~n)hMiR and R0 � R j !P . HenceQ � P j R j !P � R j !P .(3) By induction on the derivation of !P ��! Q. Such a commitment mustbe derived from P j !P ��! Q via (Comm Red) and (Red Repl). Thereare four rules that could yield the latter commitment.(Comm Par 1) Here P ��! R0 and Q = R0 j !P . Let R = R0 j P .We may derive P j P ��! R by (Comm Par 1) and indeed Q �R0 j P j !P � R j !P .(Comm Par 2) Here !P ��! R0 and Q = P j R0. By inductionhypothesis, there is R such that P j P ��! R and R0 � R j !P .Since Q � P j R j !P � R j !P , we are done.(Comm Inter 1) Here P m�! (x)P1 and !P m�! (�~n)hMiP2 withQ = (�~n)(P1[M=x] j P2). By part (2), there is R such that P m�!(�~n)hMiR and P2 � R j !P . By (Comm Inter 1), P j P ��!(�~n)(P1[M=x] j R) and we can calculate the following:Q = (�~n)(P1[M=x] j P2)92



� (�~n)(P1[M=x] j R j !P )� (�~n)(P1[M=x] j R) j !PThe last step uses (Struct Extrusion), and the fact that we mayassume that the bound names f~ng do not occur free in P .(Comm Inter 2) Here P m�! (�~n)hMiP1 and !P m�! (x)P2 withQ =(�~n)(P1 j P2[M=x]). By part (1), there is R such that P m�! (x)Rwith P2[M=x] � R[M=x] j !P . By (Comm Inter 2), P j P ��!(�~n)(P1 j R[M=x]) and we can calculate:Q = (�~n)(P1 j P2[M=x])� (�~n)(P1 j (R[M=x] j !P ))� (�~n)(P1 j R[M=x]) j !PThe last step uses (Struct Extrusion) and the fact that we mayassume that the bound variable x and the bound names f~ng arenot free in P .This completes the proof of part (3). 2Intuitively, part (3) states that any reaction of !P can be obtained fromtwo copies of P running in parallel. As Pierce and Sangiorgi [PS93] haveremarked, we can strengthen part (3) to require only one copy of P , but thisstronger property would fail for an extended language with a choice construct.The claim with two copies would remain true for such an extended language.Lemma 27 Suppose !P j R ��! Q. Then there is Q0 such that Q � !P j Q0and P j P j R ��! Q0.Proof By case analysis of the rules that could yield !P j R ��! Q.(Comm Par 1) Here !P ��! P 0 and Q = P 0 j R. By Lemma 26 there isP 00 with P j P ��! P 00 and P 0 � P 00 j !P . Let Q0 = P 00 j R. By (CommPar 1), P j P j R ��! Q0, and Q � P 00 j !P j R � !P j Q0.(Comm Par 2) Here R ��! R0 and Q = !P j R0. Let Q0 = P j P j R0. By(Comm Par 2) twice, P j P j R ��! Q0. Moreover, Q � !P j P j P jR0 � !P j Q0. 93



(Comm Inter 1) Here !P m�! (x)P1 and R m�! (�~n)hMiR0 with Q =(�~n)(P1[M=x] j R0). By Lemma 26 there is P2 with P m�! (x)P2 andP1[M=x] � P2[M=x] j !P . Let Q0 = (�~n)(P j P2[M=x] j R0). By(Comm Par 2) and (Comm Inter 1), P j P j R ��! Q0. Moreover,Q � (�~n)((P2[M=x] j !P ) j R0) � !P j Q0, since we may assume thatthe bound names f~ng and the bound variable x do not occur free in P .(Comm Inter 2) Here !P m�! (�~n)hMiP1 and R m�! (x)R0 with Q =(�~n)(P1 j R0[M=x]). By Lemma 26 there is P2 with P m�! (�~n)hMiP2and P1 � P2 j !P . Let Q0 = (�~n)(P j P2 j R0[M=x]). By (Comm Par 2)and (Comm Inter 2), P j P j R ��! Q0. Moreover, Q � (�~n)(P2 j !P jR0[M=x]) � !P j Q0. 2For n � 0, we let P !n Q mean that P = P0 ! P1 ! P2 ! � � � ! Pn =Q for some processes P0, P1, . . . , Pn.Lemma 28(1) Whenever !P j R !n Q there is Q0 with (Qi21::2n P ) j R !n Q0 andQ � !P j Q0.(2) Whenever !P j R + � there is n such that (Qi21::n P ) j R + �.Proof(1) By induction on n. In case n = 0, !P j R = Q, so we let Q0 = R.Otherwise, we assume that the claim holds for n, and prove it for n+1.We suppose, then, the following:!P j R!n Qn ! QBy induction hypothesis, there is Q0n with(Qi21::2n P ) j R!n Q0nand Qn � !P j Q0n. By Proposition 3, !P j Q0n ! Q implies that!P j Q0n ��! Q� for some Q� � Q. By Lemma 27, it follows that thereis Q0 such that P j P j Q0n ��! Q0 and Q� � !P j Q0, so Q � !P j Q0.By Proposition 3, it follows that P j P j Q0n ! Q0. By (React Par), weobtain:(Qi21::2(n+1) P ) j R � P j P j (Qi21::2n P ) j R!n P j P j Q0n ! Q0and thus (Qi21::2(n+1) P ) j R!n+1 Q0 and Q � !P j Q0.94



(2) If !P j R + � then there must be n and Q such that !P !n Q andQ # �. By the previous part, there is Q0 with (Qi21::2n P ) j R !n Q0and Q � !P j Q0. We have !P j Q0 # �; hence P j Q0 # �, by Lemma 26and Proposition 2. By (React Par), we obtain:(Qi21::2n+1 P ) j R � P j (Qi21::2n P ) j R!n P j Q0 # �and hence (Qi21::2n+1 P ) j R + �. 2Proposition 29 If (�~p)(P1 j Qi21::n P2) ' (�~p)(Q1 j Qi21::nQ2) for all n �0, then (�~p)(P1 j !P2) ' (�~p)(Q1 j !Q2).Proof Assume that (�~p)(P1 j Qi21::n P2) ' (�~p)(Q1 j Qi21::nQ2) for alln � 0. Consider an arbitrary test (R; �), and suppose that (�~p)(P1 j !P2)passes this test, that is, (�~p)(P1 j !P2) j R + �. We may assume withoutloss of generality that the bound names ~p do not occur in R or �. ByLemmas 31(1, 5) and 28(2) there exists n such that (�~p)(P1 j Qi21::n P2) jR + �. By hypothesis, we have (�~p)(Q1 j Qi21::nQ2) j R + � also. Since!Q1 � !Q1 j Qi21::nQ1, Lemma 31(1{2, 5) yields (�~p)(Q1 j !Q2) j R + �,that is, (�~p)(Q1 j !Q2) passes (R; �). Thus, (�~p)(Q1 j !Q2) passes the sametests as (�~p)(P1 j !P2). Symmetrically, (�~p)(P1 j !P2) passes the same testsas (�~p)(Q1 j !Q2). We conclude that (�~p)(P1 j !P2) ' (�~p)(Q1 j !Q2). 2Proposition 30 !(P j Q) ' !P j !Q.Proof First, we prove !(P j Q) v !P j !Q. Suppose that !(P j Q) j R + �for some arbitrary test (R; �). By Lemma 28(2) there exists n such thatQi21::n(P j Q) j R + �. By Lemma 31(1), (Qi21::n P ) j (Qi21::nQ) j R + �.By Lemma 31(2), !P j !Q j (Qi21::n P ) j (Qi21::nQ) j R + �. By Lemma 31(1),!P j !Q j R + �. Thus, !P j !Q passes the same tests as !(P j Q).Second, we prove !P j !Q v !(P j Q). Suppose that !P j !Q j R + �for some arbitrary test (R; �). Applying Lemma 28(2) twice, we obtainthat there exist m and n such that (Qi21::m P ) j (Qi21::nQ) j R + �. ByLemma 31(2),!(P j Q) j (Qi21::mQ) j (Qi21::n P ) j (Qi21::m P ) j (Qi21::nQ) j R + �Since !(P j Q) � !(P j Q) j (Qi21::mQ) j (Qi21::n P ) j (Qi21::m P ) j (Qi21::nQ),Lemma 31(1) yields !(P j Q) j R + �. Thus, !(P j Q) passes the same testsas !P j !Q. 295



D Proofs about EquivalencesD.1 Testing EquivalenceThe following are auxiliary facts needed for the proofs in this section.Lemma 31(1) P + � and P � Q imply Q + �.(2) P + � implies P j Q + �.(3) If (�m)P ��! R there is Q with P ��! Q and R = (�m)Q.(4) If (�m)P # � then P # � and � =2 fm;mg.(5) (�m)P + � i� P + � and � =2 fm;mg.Proof(1) By analysis of the last rule of the derivation of P + �. In case (ConvBarb), we have P # �. By (Barb Struct), Q # � too. By (Conv Barb),Q + �. In case (Conv React), we have P ! P 0 and P 0 + �. By (ReactStruct), we have Q! P 0, and then by (Conv React) Q + �.(2) By induction on the derivation of P + �, using rules (Barb Par) and(React Par).(3) (Comm Res) is the only rule that might yield (�m)P ��! R. Hencethere is Q with P ��! Q and R = (�m)Q.(4) By Proposition 2, there is A such that (�m)P ��! A. This commitmentcan only have been derived from (Comm Res), and so it must be thatA = (�m)B with P ��! B and � =2 fm;mg. By Proposition 2 again,we obtain P # �.(5) Suppose that P + � with � =2 fm;mg. Therefore, there is Q withP !� Q and Q # �. By Proposition 3, there is Q0 with P ��!� Q0and Q0 � Q. By repeated use of (Comm Res), (�m)P ��!� (�m)Q0, so(�m)P !� (�m)Q by Proposition 3 since (�m)Q0 � (�m)Q. Moreover,(�m)Q # � by (Barb Res). Therefore, (�m)P + �.96



If (�m)P + �, then there must be Q0 with (�m)P!�Q0 and Q0 # �. ByProposition 3, there is Q00 such that (�m)P ��!� Q00 and Q00 � Q0. Byrepeated use of part (3), there isQ such that P ��!�Q andQ00 = (�m)Q.By (Barb Struct), Q0 # � implies Q00 # �, and part (4) yields Q # �with � =2 fm;mg. Finally, P ��!� Q implies P !� Q by Proposition 3;combining this with Q # �, we obtain P + �. 2Lemma 32 � � '.Proof Lemma 31(1) says that if P + � and P � Q then Q + �. The resultthen follows from the de�nition of ' in terms of +. 2If R is a relation on closed processes, we let its open extension R� be therelation on arbitrary processes such that PR�Q if and only if P� R Q� forany substitution � of closed terms for variables such that both P� and Q�are closed.A congruence on closed processes is an equivalence relation S on closedprocesses such that P S Q implies C[P ] S C[Q] for every closed context C.Similarly, a congruence on open processes is an equivalence relation S onopen processes such that P S Q implies C[P ] S C[Q] for every context C.The notion of precongruence is analogous, except that a precongruence mustbe a preorder instead of an equivalence relation.We give an alternative characterisation of congruence and precongruencethat avoids the use of contexts. When R is a relation on open processes, welet its compatible re�nement cR be the relation on open processes given bythe rules in Figure 3.Lemma 33 Suppose that R is a preorder. ThenR is a precongruence (closedunder arbitrary contexts) i� cR � R.See [Gor95] for the proof of a similar proposition.Lemma 34 The open extension of testing equivalence, '�, is a congruence.Proof Since v� is clearly a preorder, it su�ces to show that cv� � v�.Given two open processes P 0 and Q0, we assume that P 0 cv� Q0 and provethat P 0 v� Q0. For this proof, we show that, for every test (R; �) and everysubstitution � for the free variables of P 0 and Q0, if P 0� passes (R; �) thenQ0� passes (R; �). According to Proposition 4, it su�ces to assume that97
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there exist a process P 00 and an agent A such that P 0� j R ��!� P 00 andP 00 ��! A, and to prove that there exist a process Q00 and an agent B suchthat Q0� j R ��!�Q00 and Q00 ��!B. The argument is by case analysis of therules that de�ne cv�.(Comp Out) Suppose that P 0 = MhNi:P and Q0 = MhNi:Q, with P v�Q. We have that there exist an agent A and a process P 00 such thatM�hN�i:P� j R ��!� P 00 and P 00 ��! A. By examining the de�nitionof the commitment relation, we distinguish three cases:� If M� is � then Q0� j R ��! ((�)hN�iQ�) j R, so we let Q00 besimply Q0� j R and B be ((�)hN�iQ�) j R.� If R ��!� R0 and R0 ��! A0 for some R0 and A0, then we let Q00 beQ0� j R0 and B be Q0� j A0.� Otherwise, for some R0, we have that R ��!� R0, R0 has the com-mitment R0 M��! (x)R00 for some abstraction (x)R00, and P� jR00[N�=x] ��!� P 00. By Proposition 4, this implies that P� passesthe test R00[N�=x]. Therefore, since P v� Q, we obtain thatQ� passes the test R00[N�=x]. By Proposition 4, there exist Q00and B such that Q� j R00[N�=x] ��!� Q00 and Q00 ��! B. Finally,R ��!� R0, R0 M��! (x)R00, and Q� j R00[N�=x] ��!� Q00 imply thatQ0� j R ��!� Q00.(Comp In) Suppose that P 0 = M(x):P and Q0 = M(x):Q, with P v� Q.Without loss of generality, we assume that �(x) is not de�ned. We havethat there exist an agent A and a process P 00 such that M�(x):P� jR ��!�P 00 and P 00 ��!A. By examining the de�nition of the commitmentrelation, we distinguish three cases:� If M� is � then Q0� j R ��! ((x)Q�) j R, so we let Q00 be simplyQ0� j R and B be ((x)Q�) j R.� If R ��!� R0 and R0 ��! A0 for some R0 and A0, then we let Q00 beQ0� j R0 and B be Q0� j A0.� Otherwise, for some R0, we have that R ��!� R0, R0 has thecommitment R0 M��! (�m1) � � � (�mk)hNiR00 for some concretion99



(�m1) � � � (�mk)hNiR00, and (�m1) � � � (�mk)(P�[N=x] j R00) ��!�P 00. By Lemma 31(3), P 00 has the form (�m1) � � � (�mk)P 000 forsome P 000 such that P�[N=x] j R00 ��!� P 000; and by Proposi-tion 2 and Lemma 31(4), P 000 # � with � 62 fm1; m1; : : : ; mk; mkg.By Proposition 4, this implies that P�[N=x] passes the test R00.Therefore, since P v� Q, we obtain that Q�[N=x] passes the testR00. By Proposition 4, there exist Q000 and B0 such that Q�[N=x] jR00 ��!� Q000 and Q000 ��! B0. We let Q00 be (�m1) � � � (�mk)Q000,obtaining (�m1) � � � (�mk)(Q�[N=x] j R00) ��!� Q00 and Q00 ��!B0.Finally, R ��!� R0, R0 M��! (�m1) � � � (�mk)hNiR00, and (�m1) � � �(�mk)(Q�[N=x] j R00) ��!� Q00 imply that Q0� j R ��!� Q00.(Comp Par) Suppose that P 0 = P1 j P2 and Q0 = Q1 j Q2, with P1 v� Q1and P2 v� Q2. If P 0� passes (R; �), then P1� passes (P2� j R; �). SinceP1 v� Q1, we obtain that Q1� passes (P2� j R; �). Equivalently, wehave that P2� passes (Q1� j R; �). Since P2 v� Q2, we obtain thatQ2� passes (Q1� j R; �). Therefore, Q0� passes (R; �).(Comp Res) Suppose that P 0 = (�n)P and Q0 = (�n)Q, with P v� Q. Wemay assume that the bound name n does not occur free in R, so thatP 0� j R � (�n)(P� j R). Since P 0� passes (R; �), ((�n)P�) j R + �.By Lemma 31(1), it follows that (�n)(P� j R) + �. By Lemma 31(5),it follows that P� j R + � and that � =2 fn; ng. From P v� Q weobtain Q� j R + �. By Lemma 31(5), it follows that (�n)(Q� j R) + �.By Lemma 31(1), we conclude that Q0� j R + �. Therefore, Q0� passes(R; �).(Comp Repl) Suppose that P 0 = !P and Q0 = !Q, with P v� Q. We have!P� j R + �. By Lemma 28, there is n such that (Qi21::n P�) j R + �.Much as in the case of (Comp Par), it follows that (Qi21::nQ�) j R +�. By Lemma 31(2), we obtain !Q� j (Qi21::nQ�) j R + �. Since!Q� j (Qi21::nQ�) j R � !Q� j R, we conclude that !Q� j R + � byLemma 31(1), so Q0� passes (R; �).(Comp Match) Suppose that P 0 = [M is N ] P and Q0 = [M is N ] Q,with P v� Q. If M� and N� are equal, then P 0� � P� and Q0� �Q�, and the result follows from Lemma 32 and the assumption thatP v� Q. Otherwise, both P 0� and Q0� are stuck, and hence they are100



barbed congruent to 0 by Proposition 8; by Proposition 7, it followsthat P 0� ' Q0�.(Comp Nil) Suppose that P 0 = 0 and Q0 = 0. Since ' is re
exive, P 0� 'Q0�, and hence P 0 v� Q0.(Comp Decrypt) Finally, suppose that P 0 = case N of fxgM in P andQ0 = case N of fxgM in Q, with P v� Q. Without loss of generality,we assume that �(x) is not de�ned. If N� is fN 0gM� for some N 0,then P 0� � P�[N 0=x] and Q0� � Q�[N 0=x], and the result followsfrom Lemma 32 and the assumption that P v� Q. Otherwise, bothP 0� and Q0� are stuck, and hence they are barbed congruent to 0 byProposition 8; by Proposition 7, it follows that P 0� ' Q0�.The other cases|(Comp Split) and (Comp IntCase)|are similar. 2We obtain:Proof of Proposition 1(1) Structural equivalence implies testing equivalence.(2) Testing equivalence is re
exive, transitive, and symmetric.(3) Testing equivalence is a congruence on closed processes.Proof That structural equivalence implies testing equivalence is said inLemma 32. Whenever S is a relation on closed processes and S� is a congru-ence on open processes, S is a congruence on closed processes. 2The remainder of this section concerns some testing equivalences that weuse in reasoning about protocols.Proposition 35 For any closed process P , P ' �:P .Proof First we show that P v �:P . By Proposition 4, if P passes a test(R; �) there is Q such that P j R ��!� Q and Q # �. By induction on thelength of the computation P j R ��!� Q, we can show that there is Q0 suchthat there is a computation �:P j R ��!� Q0 with Q0 # �. Hence �:P passesthe test (R; �). Roughly speaking, the second computation is a copy of the�rst, except that if ever P contributes to the �rst (by itself or by reactingwith R) then we can include �:P ��! P in the second computation, and thenproceed as in the �rst computation.By a similar argument �:P v P , and hence P ' �:P . 2101



Lemma 36 For any P with fv(P ) � fxg and any distinct names m and n,m(x):(�n)P ' (�n)m(x):P .Proof Since both m(x):(�n)P and (�n)m(x):P have each just one com-mitment, to the same abstraction:m(x):(�n)P m�! (x)(�n)P(�n)m(x):P m�! (�n)(x)P = (x)(�n)Pthey are strongly bisimilar, hence testing equivalent by Proposition 7. 2Lemma 37 Let n be a name, M a (possibly open) term, fNi j i 2 Ig a set ofdistinct closed terms, and fPi j i 2 Ig a set of (possibly open) processes, whereI is a �nite set of indices. Then Qi2I [M isNi](�n)Pi '� (�n)Qi2I [M isNi]Pi.Proof According to the de�nition of '�, it su�ces to consider all substitu-tion instances of the claimed equivalence. So we show that, taking all termsand processes to be closed, Qi2I [M is Ni] (�n)Pi ' (�n)Qi2I [M is Ni] Pi.For each i 2 I, ifNi 6=M then [M isNi]Pi ' 0 and [M isNi](�n)Pi ' 0 byPropositions 8 and 7. For Ni =M , on the other hand, [M is Ni]Pi ' Pi and[M isNi] (�n)Pi ' (�n)Pi by Proposition 1. Thus, both (�n)Qi2I [M isNi]Piand Qi2I [M is Ni] (�n)Pi are testing equivalent to 0 if M 62 fNi j i 2 Ig andto (�n)Pj if Nj =M . 2D.2 Barbed EquivalenceProof of Proposition 5(1) Barbed equivalence is re
exive, transitive, and symmetric.(2) Strong bisimilarity implies barbed equivalence.(3) Structural equivalence implies barbed equivalence.(4) Barbed equivalence is preserved by restriction.Proof(1) As usual, we can show that the identity relation is a barbed bisimula-tion, that the composition of two barbed bisimulations yields a barbedbisimulation, and that the converse of a barbed bisimulation is a barbedbisimulation. 102



(2) It is enough to show that strong bisimilarity is a barbed bisimulation.Given Propositions 2 and 3 this is easy.(3) By Lemma 25, structural equivalence is a strong bisimulation. Bypart (2), it is contained in barbed equivalence.(4) It su�ces to show that f((�n)P; (�n)Q) j P �� Qg is a barbed bisimu-lation. The proof is straightforward. 2Proof of Proposition 6 If S is a barbed bisimulation up to �� and re-striction, then S � ��. A fortiori, if S is a barbed bisimulation up to ��, thenS � ��.Proof We prove the proposition using a generalisation of the standardtechnique [MPW92]; an alternative would be to use the modular frameworkrecently developed by Sangiorgi [San94].We construct a relation S� larger than S and show that S� is a barbedbisimulation. The relation S� is de�ned by:S0 = SSk+1 = f((�m)P; (�m)Q) j P ��Sk �� Q;m is any namegS� = [k<!( ��Sk ��)First we observe that S� enjoys the following properties:(Star S)P S QP S� Q (Star Res)P S� Q(�m)P S� (�m)Q (Star ��)P ��S� �� QP S� QProperty (Star S) follows easily from the de�nition of S� (and the re
exivityof ��). Property (Star Res) holds because P S� Q implies P ��Sk �� Q forsome k and, for every k, P ��Sk �� Q implies (�m)P ��Sk+1 �� (�m)Q which inturn implies (�m)P S� (�m)Q. Property (Star ��) holds because P ��S� �� Qimplies that, for some k, P �� P0 ��Sk �� Q0 �� Q and (by the transitivity of��) P ��Sk �� Q, and hence P S� Q.In order to establish that S� is a barbed bisimulation, we prove by induc-tion on k that P ��Sk �� Q implies:(1) for each barb �, if P # � then Q # �, and103



(2) if P ! P 0 then there exists Q0 such that Q! Q0 and P 0 S� Q0.In the base case, k = 0, we have P �� P0 S Q0 �� Q.(1) Suppose that P # �. Since P �� P0, P0 # �. Since P0 S Q0, Q0 # �,by de�nition of a barbed bisimulation up to �� and restriction. Finally,since Q0 �� Q, Q # � too.(2) Suppose that P ! P 0. Since P �� P0, there is P 00 such that P0 ! P 00and P 0 �� P 00. Since P0 S Q0, by de�nition of a barbed bisimulationup to �� and restriction, there is Q00 such that Q0 ! Q00, and thereare P 00, Q00, and names ~n such that P 00 �� (�~n)P 00, Q00 �� (�~n)Q00, andP 00 S Q00. By (Star S), P 00 S� Q00. By (Star Res), (�~n)P 00 S� (�~n)Q00.By (Star ��), P 00 S� Q00. Since Q0 �� Q, there is Q0 such that Q ! Q0and Q00 �� Q0. Finally, given P 0 �� P 00, P 00 S� Q00, and Q00 �� Q0, weobtain P 0 S� Q0 by (Star ��).In the inductive case, we have P ��Sk+1 �� Q, so there exist m, P0, and Q0such that P �� (�m)P0, P0 ��Sk �� Q0, and (�m)Q0 �� Q.(1) Suppose that P # �. Since P �� (�m)P0, (�m)P0 # �. Therefore P0 # �and � =2 fm;mg. By induction hypothesis, P0 ��Sk �� Q0 implies thatQ0 # �. Since � =2 fm;mg, (�m)Q0 # �. Finally, since (�m)Q0 �� Q,Q # � too.(2) Suppose that P ! P 0. Since P �� (�m)P0, there is P 01 such that(�m)P0 ! P 01 and P 0 �� P 01. By Lemma 31(3) and Proposition 3,there is P 00 such that P 01 � (�m)P 00 and P0 ! P 00. By induction hy-pothesis, there is Q00 such that Q0 ! Q00 and P 00 S� Q00. By (ReactRes), (�m)Q0 ! (�m)Q00. Since (�m)Q0 �� Q, there is Q0 such thatQ ! Q0 and (�m)Q00 �� Q0. By (Star Res), (�m)P 00 S� (�m)Q00. Fi-nally, given P 0 �� (�m)P 00, (�m)P 00 S� (�m)Q00, and (�m)Q00 �� Q0, weobtain P 0 S� Q0 by (Star ��).This completes the proof by induction. The de�nition of S� yields that S� isa barbed bisimulation, so S� � ��. Using (Star S), we conclude that S � ��.2
104



D.3 Barbed CongruenceThe main task of this section is to show c�� � ��, from which it follows that�� is a congruence. The following is an adaptation of the proof by Pierceand Sangiorgi [PS93].We begin with two lemmas concerning replication and commitment.Lemma 38 c�� � ��.Proof For any P 0 and Q0, we need to show that P 0 c�� Q0 implies thatP 0� j R �� Q0� j R (21)for any closed R and substitution �, with fv(P 0) [ fv(Q0) � dom(�). We doso by an analysis of the (Comp �) rule used to derive P 0 c�� Q0.(Comp Out) Here P 0 = MhNi:P and Q0 = MhNi:Q, with P �� Q. SoP 0� = M�hN�i:P� and Q0� = M�hN�i:Q�. Let S be the followingrelation: S = f(P 0� j R;Q0� j R) j any RgEquation (21) will follow if we can show that S [ �� is a barbed bisim-ulation. Clearly both P 0� j R and Q0� j R have the same barbs. Byusing the rules of commitment, we can see that if P 0� j R has a �commitment, either R has one by itself or there is an interaction be-tween M�hN�i:P� and R. In either case Q0� j R can match this �commitment, via S and �� respectively.(Comp In) Here P 0 = M(x):P and Q0 = M(x):Q, with P �� Q. SoP 0� = M�(x):P� and Q0� = M�(x):Q�; since x is bound we mayassume that x =2 dom(�). As in the previous case, if we set S =f(P 0� j R;Q0� j R) j any Rg, it is enough to show that S [ �� is abarbed bisimulation, and this follows by a similar argument.(Comp Par) Here P 0 = P1 j P2 and Q0 = Q1 j Q2. Using assumptions thatP1 �� Q1 and P2 �� Q2, and the properties of barbed equivalence inProposition 5, we can calculate equation (21) as follows.(P1� j P2�) j R � P1� j (P2� j R)�� Q1� j (P2� j R)� P2� j (Q1� j R)�� Q2� j (Q1� j R)� (Q1� j Q2�) j R105



(Comp Res) Here P 0 = (�n)P and Q0 = (�n)Q. Using the assumptionthat P �� Q, together with Proposition 5, here is a calculation ofequation (21). ((�n)(P�)) j R � (�n)(P� j R)�� (�n)(Q� j R)� ((�n)(Q�)) j R(Comp Repl) Here P 0 = !P and Q0 = !Q with P �� Q. We prove thatS = f(!P� j R; !Q� j R) j any Rgis a barbed bisimulation up to ��. Hence equation (21) will follow byProposition 6. Clearly both sides have the same barbs. Consider anyreaction !P� j R ! R0. By Lemma 27, there is a process R00 withreaction P� j P� j R ! R00, such that R0 � !P� j R00. By assumptionP �� Q, we can calculate the following.!Q� j R � Q� j (!Q� j R)�� P� j (!Q� j R)� Q� j (!Q� j P� j R)�� P� j (!Q� j P� j R)� !Q� j P� j P� j R! !Q� j R00By the de�nition of ��, there must be a reaction !Q� j R ! Q00 withQ00 �� !Q� j R00. Moreover we have R0 � !P� j R00 S !Q� j R00 �� Q00, sowe have satis�ed the condition for S to be a bisimulation up to ��.(Comp Match) Here P 0 = [M is N ] P and Q0 = [M is N ] Q with P ��Q. Let S = f([M� is N�] P� j R; [M� is N�] Q� j R) j any Rg.Then equation (21) follows easily by showing that S [ �� is barbedbisimulation.(Comp Decrypt) Here P 0 = case N of fxgM in P and Q0 = case N offxgM in Q with P �� Q. Since x is bound, we may assume x =2dom(�), and therefore that P 0� = case N of fxgM in P� and Q0� =case N of fxgM in Q�. Let S = f(P 0� j R;Q0� j R) j any Rg. Again,it is easy to see that S [ �� is a barbed bisimulation, and hence thatequation (21) holds. 106



The other cases|(Comp Nil), (Comp Split), and (Comp IntCase)|are sim-ilar. 2Now we can prove the basic facts about barbed congruence claimed inSection 5.2.3.Proof of Proposition 7(1) Barbed congruence is re
exive, transitive, and symmetric.(2) Barbed congruence is a congruence on closed processes.(3) Structural equivalence implies barbed congruence.(4) Strong bisimilarity implies barbed congruence.(5) Barbed congruence implies testing equivalence.Proof(1) Since �� is an equivalence relation, so is �.(2) Lemma 38 yields that the open extension of barbed congruence, ��, isa congruence on open processes. It follows that barbed congruence isa congruence on closed processes.(3) This follows from part (4), since we know from Lemma 25 that struc-tural equivalence implies strong bisimilarity.(4) It su�ces to check that the following relation is a barbed bisimulation:S = f(P j R;Q j R) j P and Q strongly bisimilargWe omit the routine proof, which involves using the commitment rela-tion to analyse the possible barbs and reactions of P j R and Q j R,and showing that they match up to S.(5) Suppose that P � Q, and consider any test (R; �). By de�nition ofbarbed congruence, (P j R) �� (Q j R). Hence, (P j R) + � implies(Q j R) + � too. Therefore, P ' Q. 2107



E Proofs about UnderpinningFirst, we need the following fact about underpinning and injective substitu-tions.Lemma 39 Suppose E ` M , E ` N , and E ` �. If � is injective, thenM� = N� implies M = N .Proof By induction on the structure of M .� Suppose M is the variable x. Since E ` x, x 2 dom(�). Since E ` �,x� must be a ciphertext, say fM 0gK, with K 2 keys(E). Since E ` N ,K =2 fn(N). Since N� = fM 0gK, it must be that N is a variable y,with y 2 dom(�) and y� = x�. Since � is injective, x = y, that is,M = N .� Suppose M is the name n. The set of names is de�ned to be distinctfrom the set of variables, so M� = n. Similarly, since N� = n, itfollows that N = n and therefore that M = N .� Suppose M is the ciphertext fM1gM2 . Therefore M� = fM1�gM2� =N�. Either N is some variable x 2 dom(�) or N = fN1gN2. If thelatter, we have E `Mi, E ` Ni, Mi� = Ni� for i = 1; 2. By inductionhypothesis, Mi = Ni for i = 1; 2, and therefore M = N as required.Otherwise, if N = x, suppose that x� is the ciphertext fN 0gK. SinceM� = N�, M2� = K and moreover M2 = K. Since E ` �, K 2keys(E). Since E ` M , K =2 fn(M) but M = fM1gK. This is acontradiction.� Suppose M is the pair (M1;M2). From (M1�;M2�) = N� it must bethat N = (N1; N2), since the range of � includes only ciphertexts. Asin the previous case, we have E `Mi, E ` Ni, Mi� = Ni� for i = 1; 2.By induction hypothesis, Mi = Ni for i = 1; 2, and therefore M = Nas required.The other cases, when M = 0 and M = suc(M 0), are similar. 2Proof of Lemma 9 Suppose that E ` P and E ` �, and that � isinjective. 108



(1) If P� > Q0 then there is a process Q with E ` Q, fv(Q) � fv(P ),fn(Q) � fn(P ), and Q0 = Q� such that, whenever E ` �0 and �0 isinjective, P�0 > Q�0.(2) If P� ��! A0 then there is an agent A with E ` A, fv(A) � fv(P ),fn(A) � fn(P ), and A0 = A� such that, whenever E ` �0 and �0 isinjective, P�0 ��! A�0.Proof(1) By analysis of the rules that may yield P� > Q0.(Red Decrypt) Here P = case M of fxgN in R withM� = fM 01gN�and Q0 = R�[M 01=x], given that we may assume that bound vari-able x is not in the domain or range of �. Since M� = fM 01gN�,either M is a variable y 2 dom(�) or a ciphertext fM1gM2.In the former case, y� = fM 01gN� so N� must be a member ofkeys(E), and therefore is a name, say K. Since the range of �consists of ciphertexts, N itself must be the name K. But thenwe have K 2 keys(E) while also K 2 fn(P ), which contradictsour assumption that E ` P .Therefore M = fM1gM2. It follows that M1� = M 01 and M2� =N�. By Lemma 39, M2 = N . Let Q = R[M1=x]. From E ` P itfollows that E ` Q too. Further, fv(Q) � fv(M1)[(fv(R)�fxg) �fv(P ) and fn(Q) � fn(M1) [ fn(R) � fn(P ). For any injective �0with E ` �0, we have:P�0 = case fM1�0gN�0 of fxgN�0 in R�0> R�0[M1�0=x]= (R[M1=x])�0So we have P�0 > Q�0 as required.(Red Match) Here P = [N1 is N2]Q with N1� = N2� and Q0 = Q�.By Lemma 39, N1 = N2. From E ` P it follows that E ` Q too.Since Q is a part of P , fv(Q) � fv(P ) and fn(Q) � fn(P ). For anyinjective �0 with E ` �0, we have P�0 = [N1�0 is N2�0]Q�0 > Q�0as required.The other cases are routine, given that M must be a ciphertext if it isin the range of �. 109



(2) By induction on the derivation of P� ��! A0.(Comm In) Here P =M(x):Q withM� = m = � and A0 = (x)(Q�),where we may assume that bound variable x is not in the domainor range of �. Since M� is a name, m, it must be that M itselfis the name, since only ciphertexts are in the range of �. LetA = (x)Q. From E ` P it follows that E ` A too. Further,fv(A) = fv(Q) � fxg � fv(P ) and fn(A) = fn(Q) � fn(P ). Wehave A0 = (x)(Q�) = A�. For any injective �0 with E ` �0, wehave: P�0 = m(x):Q�0 m�! (x)(Q�0) = A�0as required.(Comm Inter 1) Here P = P1 j P2, with P1� m�! F 0 and P2� m�! C 0,� = � , and A0 = F 0@C 0. By induction hypothesis, there is Fsuch that F 0 = F�, E ` F , fv(F ) � fv(P1), fn(F ) � fn(P1),and P1�0 m�! F�0 for all injective �0 with E ` �0. By inductionhypothesis, there is C such that C 0 = C�, E ` C, fv(C) � fv(P2),fn(C) � fn(P2), and P2�0 m�! C�0 for all injective �0 with E ` �0.Let A = F@C. Interaction, @, is de�ned so that it commuteswith substitution, so we have A� = F�@C� = F 0@C 0 = A0.From E ` F and E ` C follows E ` A. Further, fv(A) � fv(F )[fv(C) � fv(P1) [ fv(P2) = fv(P ) and fn(A) = fn(F ) [ fn(C) �fn(P1) [ fn(P2) = fn(P ). For any injective �0 with E ` �0, wehave: P�0 = P1�0 j P2�0��! F�0@C�0= (F@C)�0where the � commitment follows using (Comm Inter 1) and thefacts that P1�0 m�! F�0 and P2�0 m�! C�0. We have obtainedP�0 ��! A�0, as required.(Comm Red) Here P� > Q0 and Q0 ��! A0. By part (1), there is Qwith E ` Q, fv(Q) � fv(P ), fn(Q) � fn(P ), Q0 = Q�, and P�0 >Q�0 for all injective �0 with E ` �0. Since E ` Q and Q� ��! A0,by induction hypothesis, there is A with E ` A, fv(A) � fv(Q),fn(A) � fn(Q), A0 = A�, and Q�0 ��! A�0 for all such �0. By110



transitivity, we have fv(A) � fv(P ) and fn(A) � fn(P ). Further,for any injective �0 with E ` �0, we have obtained P�0 > Q�0 andQ�0 ��! A�0, so by (Comm Red) P� ��! A�0, as required.The case for (Comm Out) is similar to that for (Comm In). The casefor (Comm Inter 2) is like that for (Comm Inter 1). Those for (CommPar 1), (Comm Par 2), and (Comm Res) are by simple uses of theinduction hypothesis. 2This lemma would still hold in a spi calculus with the mismatch operatormentioned in Section 4.2. The case for mismatch in part (1) would be likethat of (Red Match), with a similar appeal to Lemma 39.
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