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Abstract 

Image-based rendering (IBR) has attracted a lot of research interest recently. In this paper, we 

survey the various techniques developed for IBR, including representation, sampling and 

compression. The goal is to provide an overview of research for IBR in a complete and 

systematic manner. We observe that essentially all the IBR representations are derived from the 

plenoptic function, which is seven dimensional and difficult to handle. We classify various IBR 

representations into two categories based on how the plenoptic function is simplified, namely 

restraining the viewing space and introducing source descriptions. In the former category, we 

summarize six common assumptions that were often made in various approaches and discuss how 

the dimension of the plenoptic function can be reduced based on these assumptions. In the latter 

category, we further categorize the methods based on what kind of source description was 

introduced, such as scene geometry, texture map or reflection model. Sampling and compression 

are also discussed respectively for both categories.  

I. Introduction 

One might remember that in the movie Matrix, the scene with Keeanu Reeves dodging the bullets 

might be one of the most spectacular images ever caught on camera. This filming technology is 

what the movie producers called “Flo-Mo”. “Flo-Mo” lets the filmmakers shoot scenes where the 

camera moves at a normal speed while the action is frozen or happens in slow motion. Two 

movie cameras and 120 computer-controlled still cameras were used in that scene. Similarly, the 

Eyevision system developed by CBS [11], which consisted of 33 cameras spaced approximately 6 

degrees apart around the rim of the stadium, was used in a live broadcast of Super Bowl game in 

Jan. 2001. It provided a unique 3D view of selected plays in a 270-degree stop action image. 

These novel viewing experiences were brought to us by image-based rendering (IBR), which has 

been a very active research topic recently. By capturing a set of images or light rays in the space, 

the goal of IBR is to reproduce the scene correctly at an arbitrary viewpoint, with unknown or 

limited amount of geometry. Compared with geometric models that dominate the traditional 3D 

rendering pipelines, images are easier to obtain, simpler to handle and more realistic to render. 

Moreover, since image processing is one of the most widely studied research topics in the 

literature, IBR has attracted many researchers from different communities, including graphics, 

vision and signal processing.  
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Since the goal of IBR is to capture and render the 3D world, let us first see how the world can 

be described. One possible solution is to record all the objects in the world and their interactions, 

which we call a source description. The traditional model-based rendering approach adopts such 

a description: shapes of the objects are represented by certain geometric models; properties of the 

object surfaces are described by texture maps and reflection models; lighting and shading are the 

results of interaction between the light sources and objects, etc. The source description is often 

compact and insightful, because it tells how the world is composed. However, it has the 

disadvantage that such a description is not always available. From what we can observe with our 

eyes or cameras, deriving the source description is not trivial, and has been the goal of computer 

vision for more than twenty years with limited success.  

( )zyx VVV ,,

( )ϕθ ,

λ,t

 

Figure 1 The 7D plenoptic function.  

An alternative way to describe the world is through the appearance description. The 

appearance of the world can be thought of as the dense array of light rays filling the space, which 

can be observed by posing eyes or cameras in the space. These light rays can be represented 

through the plenoptic function, proposed by Adelson and Bergen [2]. As shown in Figure 1, the 

plenoptic function is a 7D function that models a 3D dynamic environment by recording the light 

rays at every space location ( xV , yV , zV ), towards every possible direction (θ ,ϕ ), over any range 

of wavelengths ( λ ) and at any time ( t ), i.e.,  

( )( )tVVVl zyx ,,,,,,7 λϕθ      (1)  

As pointed out by Adelson and Bergen [2]:  

The world is made of three-dimensional objects, but these objects do not communicate their 

properties directly to an observer. Rather, the objects fill the space around them with the 

pattern of light rays that constitutes the plenoptic function, and the observer takes samples 
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from this function. The plenoptic function serves as the sole communication link between the 

physical objects and their corresponding retinal images. It is the intermediary between the 

world and the eye.  

When we take an image for a scene with a pinhole camera1, the light rays passing through the 

camera’s center-of-projection are recorded. They can also be considered as samples of the 

plenoptic function. As image-based rendering is based on images, it adopts the appearance 

description. We define IBR under the plenoptic function framework as follows:  

Definition - image based rendering: Given a continuous plenoptic function that describes a 

scene, image-based rendering is a process of two stages – sampling and rendering2. In the 

sampling stage, samples are taken from the plenoptic function for representation and storage. In 

the rendering stage, the continuous plenoptic function is reconstructed with the captured samples.  

The above definition reminds us about what we typically do in signal processing: given a 

continuous signal, sample it and then reconstruct it. The uniqueness of IBR is that the plenoptic 

function is 7D – a dimension beyond most of the signals handled before. In fact, the 7D function 

is so general that, due to the tremendous amount of data required, no one has been able to sample 

the full function into one representation. Research on IBR is mostly about how to make 

reasonable assumptions to reduce the sample data size while keeping reasonable rendering 

quality.  

There have been many IBR representations invented in the literature. They basically follow 

two major strategies in order to reduce the data size. First, one may restrain the viewing space of 

the viewers. Such constraints will effectively reduce the dimension of the plenoptic function, 

which makes sampling and rendering manageable. For example, if we limit the viewers’ interest 

to static scenes, the time dimension in the plenoptic function can be simply dropped. Second, one 

may introduce some source descriptions into IBR, such as the scene geometry. Source description 

has the benefit that it can be very compact. A hybrid source-appearance description is definitely 

attractive for reducing the data size. To obtain the source description, manual work may be 

involved or we may resort to computer vision techniques.  

                                                      
1 Throughout this paper, we assume that the cameras we use are pinhole cameras. Most of the IBR 

technologies in the literature made such assumption. The only exception, as far as the authors know, is the 

work by Isaksen et al. [47], where the effects of various aperture and focus were studied.  
2  We believe that considering IBR as a generic term for the techniques of both sampling and rendering is 

more appropriate than the conventional definition in [82]. In the sections that follow, IBR rendering will be 

used to refer to the rendering stage specifically.  
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Once the IBR representation of the scene has been determined, one may further reduce the 

data size through sampling and compression. The sampling analysis can tell us what is the 

minimum number of images / light rays that is necessary to render the scene at a satisfactory 

quality. Compression, on the other hand, can further remove the redundancy inside and between 

the captured images. Due to the high redundancy in many IBR representations, an efficient IBR 

compression algorithm can easily reduce the data size by tens or hundreds of times.  

In this paper, we survey the various techniques developed for IBR. Although other 

classification methods are possible [48], we classify the techniques into two categories based on 

the strategies they follow. Section II presents IBR approaches that restrain the viewing space. 

Section III discusses about how to introduce source descriptions in order to reduce the data size.  

Sampling and compression are discussed for different IBR representations in different sections. 

Conclusions and future work are given in Section IV.  

II. Restraining the Viewing Space  

If the viewing space can be constrained, the amount of images required for reproducing the scene 

can be largely reduced. Take an extreme example: if the viewer has to stay at one certain position 

and view along one certain direction, an image or a video sequence captured at that position and 

direction is good enough for representing the scene. Another example is branch movies 

[68][108][85], in which segments of movies corresponding to different spatial navigation paths 

are concatenated together at selected branch points, and the user is forced to move along the paths 

but allowed to switch to a different path at the branch points.  

A. Commonly Used Assumptions to Restrain the Viewing Space 

There is a common set of assumptions that people made for restraining the viewing space in 

IBR. Some of them are preferable, as they do not impact much on the viewers’ experiences. Some 

others are more restrictive and used only when the storage size is a critical concern. We list them 

below roughly based on their restrictiveness.  

Assumption 1: As we are taking images of the scene for IBR, we may simplify the 

wavelength dimension into three channels, i.e., the red, green and blue channels. Each channel 

represents the integration of the plenoptic function over a certain wavelength range. This 

simplification can be carried out throughout the capturing and rendering of IBR without 

noticeable effects. Almost all the practical representations of IBR make this assumption.  

Assumption 2: The air is transparent and the radiances along a light ray through empty space 

remain constant. Under this assumption, we do not need to record the radiances of a light ray on 
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different positions along its path, as they are all the same. To see how we can make use of this 

assumption, let us limit our interest to the light rays leaving the convex hull of a bounded scene 

(if the viewer is constrained in a bounded free-space region, the discussion hereafter still applies).  

Under Assumption 2, the plenoptic function can be represented by its values along an arbitrary 

surface surrounding the scene. This reduces the dimension of the plenoptic function by one. The 

radiance of any light ray in the space can always be obtained by tracing it back to the selected 

surface. In other words, Assumption 2 allows us to capture a scene at some places and render it at 

somewhere else. This assumption is also widely used, such as in [62][37][119]. However, a real 

camera has finite resolution. A pixel in an image is in fact an average of the light rays from a 

certain area on the scene surface. If we put two cameras on a line and capture the light ray along 

it, they may have different results, as their observing area size on the scene surface may be very 

different. Such resolution sensitivity was pointed out by Buehler et al. in [10].  

Assumption 3: The scene is static, thus the time dimension can be dropped. Although a 

dynamic scene includes much more information than a static one, there are practical concerns that 

restrict the popularity of dynamic IBR. One concern is the sample data size. We all know that if 

we capture a video for a scene instead of a single image, the amount of data may increase for 

about 2 or 3 orders of magnitude. It can be expected that dynamic IBR will have the same order 

of size increase from static IBR. Moreover, IBR often requires a large amount of capturing 

cameras. If we want to record a dynamic scene, all these cameras must be present and capturing 

video together. Unfortunately, today’s practical systems cannot afford to have that many cameras. 

The known IBR camera array that has the largest number of cameras may be the Stanford light 

field video camera [137], which consists of 128 cameras. This is yet not enough for rendering 

high quality images. Capturing static scenes does not have the above problem, because we can 

always use the time axis to compensate for the lack of cameras. That is, images captured at 

different time and positions can be used together to render novel views.  

Assumption 4: In stead o moving in the 3D space, the viewer is constrained to be on a 

surface, e.g., the ground plane. The plenoptic function can then reduce one dimension, as the 

viewer’s space location becomes 2D. Although restricting the viewer on a surface seems 

unpleasing, Assumption 4 is acceptable for two reasons. First, the eyes of human beings are 

usually at a certain height-level for walk-through applications. Second, human beings are less 

sensitive to vertical parallax and lighting changes because their two eyes are spaced horizontally. 

Example scenes using concentric mosaics [119] showed that strong effects of 3D motion and 

lighting change could still be achieved under this assumption.  
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Assumption 5: The viewer moves along a certain path. That is, the viewer can move forward 

or backward along that path, but he / she cannot move off the path. Assumption 5 reduces two 

dimensions from the full plenoptic function. Branch movies [68][108][85] is an example that 

takes this assumption. This assumption is also reasonable for applications such as virtual touring, 

where the viewer follows a predefined path to view a large scene [52][89].  

Assumption 6: The viewer has a fixed position. This is the most restrictive assumption, 

which reduces the dimension of the plenoptic function by three. No 3D effects can possibly be 

perceived under this assumption. Nevertheless, under this assumption the representations of IBR 

can be very compact and bear much similarity to regular images and videos. Capturing such 

representations is also straightforward. Thanks to these benefits, the QuickTime VRTM technology 

[20] based on Assumption 6 has become the most popular one among all the IBR approaches in 

practice.  

There is one important thing to notice. That is, the dimension reduced by the above six 

assumptions may not be addable. In particular, Assumption 2 does not help further save 

dimension so long as one of the Assumption 4, 5 or 6 is made. This is because when the viewer’s 

position has certain constraints, usually the sampled light ray space intersects each light ray only 

at a single point, which makes Assumption 2 not useful any more. In the next subsection, we will 

show a concrete example with concentric mosaics [119].   

B. Various Representations and Their Rendering Process 

By making the assumptions mentioned above, the 7D plenoptic function can be simplified to 

lower dimensional functions, from 6D to 2D. A quick summary of some popular representations 

is given in Table 1. We will explain these techniques in detail.  

6D – The surface plenoptic function  

The surface plenoptic function (SPF) was first introduced in [149]. It is simplified from the full 

7D plenoptic function using Assumption 2. As we discussed, when radiance along a light ray 

through empty space remains constant, the plenoptic function can be represented by its values on 

any surface surrounding the scene. SPF chooses the surface as the scene surface itself. For regular 

scene surface with dimension 2, the SPF is 6D: position on the surface (2D), light ray direction 

(2D), time (1D) and wavelength (1D).  Although it is difficult to apply SPF for capturing real 

scenes due to unknown scene geometry, SPF was used in [149] for analyzing the Fourier 

spectrum of IBR representations (see more details in Section II-C). The surface light field 

[86][139] could be considered as dimension-reduced version of SPF.  
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Table 1 IBR representations with various viewing space constraints.  

Dimension Example Representations Assumptions  

7D Plenoptic function No 

6D Surface plenoptic function (2) 

Plenoptic modeling (1, 3) 
5D 

Light field video (1, 2) 

4D Light field / Lumigraph (1, 2, 3) 

Concentric mosaics (1, 2, 3, 4) 

Panoramic Video (1, 6) or (1, 3, 5) 

Branch movies (1, 3, 5) 
3D 

Video (1, 6) 

Image mosaicing (1, 3, 6) 
2D 

Image (1, 3, 6) 

 

Take anyone among Assumption 1, 3 and 4, we may also obtain a 6D representation of the 

scene. However, a 6D function is still too much for a practical IBR system to capture and render.  

5D – Plenoptic modeling and light field video 

By ignoring wavelength and time dimensions (Assumption 1 and 3), McMillan and Bishop [82] 

introduced plenoptic modeling, which is a 5D function: 

( )( )ϕθ ,,,,5
zyx VVVl      (2) 

They record a static scene by positioning cameras in the 3D viewing space, each on a tripod 

capable of continuous panning. At each position, a cylindrical projected image was composed 

from the captured images during the panning. This forms a 5D IBR representation: 3D for the 

camera position, 2D for the cylindrical image. To render a novel view from the 5D representation, 

the close-by cylindrical projected images are warped to the viewing position based on their 

epipolar relationship and some visibility tests.  

The light field video [137][145] is another 5D representation based on Assumption 1 and 2. It 

is a straightforward extension of the 4D light field, which will be explained in detail later. Light 

field video captures dynamic scenes using a multi-camera array. Due to hardware constraints, the 

number of cameras in the array is very limited at the current stage (128 in [137] and 64 in [145]). 

Therefore, aliasing or ghosting effects are visible from the rendered videos.  

From Table 1 it is clear that any IBR representation below 5D will make Assumption 1. The 

other assumptions are optional and can be chosen to generate new representations. For example, 
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if we constrain the viewer to be on a surface (Assumption 4), we get another 5D representation. 

Although no work has been reported to take such a representation, it is obviously feasible. What 

we need to do is to put many cameras on the viewer’s surface and capture video sequences. 

During the rendering, since we did not make Assumption 2, the rendering position is also 

restricted on that surface.  

4D – Light field / Lumigraph  

The most well-known 4D IBR representations are the light field [62] and the Lumigraph [37]. 

They both ignored the wavelength and time dimensions and assumed that radiance does not 

change along a line in free space (Assumption 1, 2 and 3). However, parameterizing the space of 

oriented lines is still a tricky problem. The solutions they came out happened to be the same: light 

rays are recorded by their intersections with two planes. One of the planes is indexed with 

coordinate ( )vu,  and the other with coordinate ( )ts, , i.e.:  

( )( )vutsl ,,,4       (3) 

v

us

t

(u0,v0)

(s0,t0)

Light ray

z

Object

Focal plane
Camera plane

Discretized point

Novel view
position

 

Figure 2 One parameterization of the light field. 

In Figure 2, we show an example where the two planes, namely the camera plane and the 

focal plane, are parallel. This is the most widely used setup. An example light ray is shown and 

indexed as ( )0000 ,,, tsvu . The two planes are then discretized so that a finite number of light rays 

are recorded. If we connect all the discretized points from the focal plane to one discretized point 

on the camera plane, we get an image (2D array of light rays). Therefore, the 4D representation is 

also a 2D image array, as is shown in Figure 3. To create a new view of the object, we just split 

the view into its light rays, which are then calculated by quad-linearly interpolating existing 

nearby light rays in the image array. For example, the light ray ( )0000 ,,, tsvu  in Figure 2 is 

interpolated from the 16 light rays connecting the solid discrete points on the two planes. The 
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new view is then generated by reassembling the split rays together. Such rendering can be done in 

real time [60][122] and is independent of the scene complexity.  

We discuss briefly the difference between light field and Lumigraph. Light field assumes no 

knowledge about the scene geometry. As a result, the number of sample images required in light 

field for capturing a normal scene is huge [15][149]. To keep the amount of samples manageable, 

pre-filtering is applied during the capturing to reduce the light field signal’s bandwidth [62]. On 

the other hand, Lumigraph reconstructs a rough geometry for the scene with an octree algorithm 

[37] to facilitate the rendering with a small amount of images (the geometry-image tradeoff is 

discussed later in Section III-B). Lumigraph also allows irregular sampling with a tracked hand-

held camera. A hierarchical algorithm was proposed to resample the irregular samples onto the 

uniform grid on the camera and focal planes.  

1 2 L

1

2

M

u

v

t

s

 

Figure 3 A sample light field image array: fruit plate. 

As we mentioned before, when Assumption 2 is made, the plenoptic function can be 

represented by its values on an arbitrary surface surrounding the scene. Often, that surface is 

where we put our capturing cameras. Light field and Lumigraph both choose this surface to be a 

box – each face of the box is the camera plane of a two-plane parameterization above. In the 

spherical light field [45][14], a spherical surface was chosen for parameterization. Another 

interesting way to represent all the oriented lines in the space is the sphere-plane light field [14]. 

In this representation, a light ray is indexed by its direction (2D) and its crossing point (2D) with 

a plane perpendicular to its direction.  

One thing to notice is that all the above representations are structured representations. There 

were some papers that tried to analyze such line space structures [62][13][41] and claimed that 

one is better than the other [13]. Nevertheless, all the above representations share one common 

drawback: they do not match with practical image capturing. For instance, in light field although 
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we may place cameras on the camera plane at the exact positions where discrete samples were 

taken, the pixel coordinates of the captured images cannot coincide with the focal plane samples. 

A sheared perspective projection was taken to compensate this [62]. In Lumigraph the images 

were taken with a hand-held camera so a resampling process was required any way. Spherical 

light field requires all the sample light rays passing through the corners of the subdivided sphere 

surface, which demands resampling for practical capturing. The sphere-plane light field does not 

have pencil (a set of rays passing through the same point in space [2]) in the representation so 

resampling is also needed. It would be attractive to store and render scenes from the captured 

images directly. In Section III-A we will discuss unstructured Lumigraph [10], which does not 

require the resampling.  

Similar to the discussions in 5D, there are other possibilities to generate 4D IBR 

representations. For example, by making Assumption 1, 3 and 4, we may capture a static scene 

for a viewer to move smoothly on a surface [5][20]. If we make Assumption 1 and 5, we may 

record a dynamic event and allow a viewer to move back and forth along a predefined path.  

3D – Concentric mosaics and panoramic video   

Other than the assumptions made in light field (Assumption 1, 2 and 3), concentric mosaics [119] 

further restricts that both the cameras and the viewers are on a plane (Assumption 4), which 

“reduces” the dimension of the plenoptic function to three. In concentric mosaics, the scene is 

captured by mounting a camera at the end of a level beam, and shooting images at regular 

intervals as the beam rotates, as is shown in Figure 4. The light rays are then indexed by the 

camera position or the beam rotation angle α , and the pixel locations ( )vu, : 

  ( )( )vul ,,3 α      (4) 

This parameterization is equivalent to having many slit cameras rotating around a common center 

and taking images along the tangent direction. Each slit camera captures a manifold mosaic, 

inside which the pixels can be indexed by ( )u,α , thus the name concentric mosaics. During the 

rendering, the viewer may move freely inside a rendering circle (Figure 4) with radius 

( )2sin FOVR , where R is the camera path radius and FOV is the field of view of the cameras. 

The rendering of concentric mosaics is slit-based. The novel view is split into vertical slits. For 

each slit, the neighboring slits in the captured images are located and used for interpolation. The 

rendered view is then reassembled using these interpolated slits.  
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Figure 4 Concentric mosaic capturing.  

There is a severe problem with concentric mosaics – the vertical distortion. Unfortunately, no 

matter how dense we capture the scene on the camera path, vertical distortion cannot be 

eliminated. In the original concentric mosaics paper [119], depth correction was used to reduce 

the distortion. That is, we need to have some rough knowledge about the scene geometry. 

Ignoring how difficult it is to obtain the geometry information, recall in the last subsection that 

the dimension reduced by Assumption 2 and Assumption 4 are not addable, we realize that the 

light ray space concentric mosaics is capturing is in fact still 4D. Recording it with 3D data must 

require extra information for rendering, in this case, the scene geometry.  

   

Figure 5 Parallax observed from concentric mosaics rendered scenes. 

Despite the severe vertical distortion, concentric mosaics is still a success. Capturing 

concentric mosaics is very simple. The viewer may experience significant horizontal parallax and 

lighting changes, as shown in Figure 5. A similar work to concentric mosaics is [50], where the 

camera path is a 1D straight line. Such scheme can be considered as a simplified version of light 
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field. On the other hand, concentric mosaics can be easily boosted to 4D if we align a vertical 

array of cameras at the end of the beam [65].  

Another popular 3D IBR representation is the panoramic video [20][35][89]. It can be used 

for either dynamic (fixed viewpoint, Assumption 1 and 6) or static scenes (Assumption 1, 3 and 

5). Compared with regular video sequences, the field of view in panoramic video is often 360º, 

which allows the viewer to pan and zoom interactively. If the scene is static, the viewer can also 

move around [20][52]. Capturing a panoramic video is an easy task. We simply capture a video 

sequence by a multi-camera system [35][123], or an omnidirectional camera [88], or a camera 

with fisheye lens [144]. Rendering of panoramic video only involves a warping from cylindrical 

or spherical projected images to planar projected images. Due to the convenience of capturing 

and rendering, the acceptable perceptual quality and the affordable storage requirement, multi-

panorama representations are adopted for several systems used to capturing large-scale scenes, 

such as in [51][129]. Many commercial panoramic video systems are also available, such as iPIX 

immersive imaging from Internet Pictures Corp.[46], 360 One VRTM from Kaidan [1], 

TotalViewTM from Be Here Technologies [132], LadybugTM from Point Grey [54], among many 

others.  

2D – Image mosaicing 

Image mosaicing composes one single mosaic with multiple input images. The output mosaic is a 

2D plenoptic function. Often such mosaic is composed for increasing the field of view of the 

camera, with early applications in aerial photography [42][84] and cel animation [140]. 

Depending on the collection of the light rays recorded in the mosaic, image mosaicing techniques 

can be classified into two categories: single-center-of-projection mosaic or multiple-center-of-

projection mosaic.  

 

Figure 6 A 360º cylindrical panorama of the Confucious Temple, Shandong, China.  

In most cases, the light rays recorded in the mosaic share the same center-of-projection 

(COP), which is called panoramic mosaic or panorama (Figure 6). The light rays are indexed by 

their directions, i.e.:  

( )( )ϕθ ,2l      (5) 
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Although a panorama can be easily obtained by hardware intensive systems [83][88][144], the 

focus of research is on how to construct spherical or cylindrical panoramas by stitching multiple 

input images together [20][82][110][124]. Usually, the input images are taken from the same 

viewpoint and are related by 2D projective transforms. If the transforms are known in advance, 

images can be composed together easily [38]. Otherwise, a common technique is to establish at 

least four corresponding points across each image pair and find such transforms [39]. Other 

techniques for deriving these transforms without specific point correspondence have also been 

developed [124][125]. One practical issue is that the input images may not strictly share the same 

COP, which causes certain ghosting effects in the resultant mosaic. Such artifacts can be partially 

eliminated through local alignment algorithms [125][133].  

In the more general scenario, the cameras of the input images can move in free form and the 

resultant mosaic has multiple COPs. In contrast to the panoramic mosaic where light rays are 

indexed by their directions, multiple-COP mosaic often indexes the light rays by a certain surface 

or manifold, thus it is also called manifold mosaic. The direction of the light rays is often 

perpendicular or tangential to the manifold surface. Recall in concentric mosaics [119] the 3D 

parameterization is equivalent to having many slit cameras rotating around a common center and 

taking images along the tangent direction. Each slit camera captures a manifold mosaic, which 

can be indexed by points on a 2D cylindrical surface ( ( )u,α  as in Figure 4). All the light rays 

captured are tangential to that surface. In [99][100][157], manifold mosaic is constructed by 

stitching slit images together, assuming the motion of the camera is slow. Effectively, the surface 

that is used for light ray parameterization has various forms such as a plane, a cylindrical or other 

general surfaces. If center slits of the captured images are used for stitching, as was suggested in 

[100], the indexed light rays will be roughly perpendicular to these manifolds. A particularly 

interesting mosaic is constructed when the camera has forward or backward motion. Pipe 

projection was used to construct the mosaic on a pipe surface [101].  

The rendering of image mosaicing is very simple. For panoramic mosaic, we often perform a 

warping from the cylindrical or spherical projected mosaic to planar projected images, as what we 

have done for panoramic video. Such a warping is often unknown in a general manifold mosaic. 

Therefore regions of the mosaic may be used directly for rendering, as long as the field of view of 

the rendered image is small enough [140]. Notice that in both cases, the motion of the viewer is 

very restricted. In a panoramic mosaic the viewer can only change his/her view direction, while in 

a manifold mosaic the viewer can only move along a fixed surface/path and towards a fixed 

direction. It is possible to alleviate the restraints by capturing multiple mosaics. The QuickTime 
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hopping [20] and the manifold hopping [121] are two such extensions for panoramic mosaic and 

manifold mosaic, respectively.  

Other than increasing the field of view of the camera, image mosaicing can also be used to 

increase the image resolution, namely super-resolution. We refer the reader to [9] for a review of 

this area.  

C. Sampling 

In the last subsection, we discussed the various representations IBR may take and their rendering 

schemes, given that different viewing space constraints are employed. This answers the question 

how to sample and reconstruct the plenoptic function. However, there is one more question to 

ask: how many samples do we need for anti-aliasing reconstruction? We refer this problem as the 

IBR sampling problem and discuss its answers in this subsection.  

IBR sampling is a very difficult problem, as the plenoptic function is such a high dimensional 

signal. Obviously, the sampling rate will be determined by the scene geometry, the texture on the 

scene surface, the reflection property of the scene surface, the motion of the scene objects, the 

specific IBR representation we take, the capturing and the rendering camera’s resolution, etc. 

Over-sampling was widely adopted in the early stages, as no solution to the sampling problem 

was available. To reduce the huge amount of data recorded due to over-sampling, people used to 

resort to various compression schemes to save the storage space, which will be described in 

Subsection D. This situation was improved in the year 2000, when several pioneering papers were 

published on IBR sampling [66][15][17].  

As was pointed out in [17], IBR sampling is essentially a multi-dimensional signal processing 

problem. Following the classic sampling theorem [96][31], one may first find the Fourier 

transform of the plenoptic function and then sample it according to its spectrum bandwidth. 

Nevertheless, although performing the Fourier transform of the 7D plenoptic function is possible 

in theory, in practice we have to reduce the dimension of the signal. Again we check the 

assumptions discussed in Subsection A and see how they may affect our sampling analysis.  

Based on Assumption 1, the wavelength dimension can be ignored in most IBR applications. 

Thus sampling along the wavelength axis can also be ignored. Assumption 2 claims that the 

radiance of a light ray along its path remains constant in empty space. This means that along the 

light ray path, one sample is good enough for perfect reconstruction. In reality, although the 

resolution of real cameras is finite and Assumption 2 may not be strictly valid [10], the sampling 

along the light ray path is still less interesting because the variation of the radiance is often too 

slow. Assumption 3 said that if necessary, the time dimension could also be ignored. In practice, 
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even if we are capturing a dynamic scene, sampling on the time axis is often determined by the 

camera’s frame rate and the property of the human eyes’ temporal perception [23]. Due to the 

above reasons, most IBR sampling work in the literature [66][15][77][149] was for the light field 

and concentric mosaics.  

The earliest IBR sampling work was by Lin and Shum [66]. They performed sampling 

analysis on both lightfield and concentric mosaics with the scale-space theory. The world is 

modeled by a single point sitting at a certain distance to the cameras. Assuming using constant 

depth and bilinear interpolation during the rendering, the bounds are derived from the aspect of 

geometry and based on the goal that no “spurious detail” should be generated during the 

rendering (referred as the causality requirement). Although the viewpoint of their analysis is 

rather interesting, this method is constrained by the simple world model they chose. The texture 

and the reflection model of the scene surface and occlusions are hard to analyze with such a 

method.  

In [15], Chai et al. first proposed to perform the light field sampling analysis in the classic 

framework, i.e., applying Fourier transform to the light field signal, and then sampling it based on 

its spectrum. Assuming Lambertian surface and no occlusions, they found that the light rays 

represented by the plenoptic function have certain correspondence among themselves. For 

illustration purpose, we show a simplified 2D light field in Figure 7 (a). Notice that the camera 

plane and focal plane in Figure 2 degenerate to lines in 2D. A local discretization of the focal line 

was adopted in their analysis.  
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Figure 7 (a) The light ray correspondence in a 2D light field. (b) The spectrum of light field obtained 

in [15].   

We may easily see the following relationship from Figure 7 (a):  
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where ( )vtz ,  is the scene depth of the light ray ( )vt, . When the scene is at constant depth 

( ) 0, zvtz = , its Fourier transform can be written as:  

  ( )( ) ( ) 







Ω+ΩΩ=ΩΩ tvvvt z

f
LL

0

2 ', δ     (7) 

where ( )vL Ω'  is the Fourier transform of ( )( )vl ,02  and ( )⋅δ  is the 1D Dirac delta function. 

Obviously the spectrum has non-zero values only along a line. When the scene depth is varying 

between a certain range, a “truncating windows” analysis was given in the paper, which 

concludes that the spectral support of a lightfield signal is bounded by the minimum and 

maximum depths of objects in the scene only, no matter how complicated the scene is (Figure 7 

(b)). Such analysis provides a fairly good first-order approximation of the spectrum analysis of 

IBR. However, the dependency on mapping images captured at arbitrary position to that at the 

origin prevents it from being applied to more complicated scenes such as non-Lambertian surface, 

scenes with occlusions and other IBR methods such as concentric mosaics.  

Marchand-Maillet and Vetterli [77] performed Fourier analysis for scenes with functional 

surfaces. Instead of mapping all the images into one, they fixed the light ray direction and tried to 

find a one-to-one mapping from points on the scene surface to the camera plane. This one-to-one 

mapping is valid when no occlusion occurs. They showed that even when there is no occlusion, a 

band-limited signal pasted on a functional surface will not result in a band-limited lightfield 

spectrum.  
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Figure 8 2D surface plenoptic function and general IBR capturing.  

Noticing the fact that when Assumption 2 is made, the plenoptic function is equivalent to the 

surface plenoptic function (SPF), Zhang and Chen [149] proposed to consider the relationship 

between the SPF and the IBR representation for spectral analysis. Figure 8 shows a simple 

example of a 2D world. The SPF records the light rays emitted/reflected from the scene surface, 
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represented as ( )( )θ,2 sli , where s is the arc length on the scene surface curve; θ  is the direction; i 

is the index of objects. The IBR representation can be written as ( )( )α,2 tlc , where t is the arc 

length on the camera path, α  is the light ray direction. There exists an onto mapping from 

( )( )θ,2 sli  to ( )( )α,2 tlc  due to the light ray correspondence. By assuming certain spectrum property 

of the SPF, the paper showed that it is possible to obtain the spectrum of the IBR representation, 

even when the scene is non-Lambertian or occluded. Moreover, the same methodology is 

applicable for concentric mosaics. “Truncating windows” analysis can also be used when the 

scene geometry is not available.  

Same as in [77], analysis in [149] also showed that the spectrum of the IBR representation is 

very easy to be band-unlimited. However, from an engineering point of view, most of the signal’s 

energy is still located in a bounded region. We may sample the signal rectangularly [15] or non-

rectangularly [148] based on the high-dimensional generalized sampling theory [31]. 

Surprisingly, the non-rectangular sampling approach [148] does not show much improvement 

over the rectangular one considering the gain in rendering quality and the extra complexity 

introduced during the capturing and rendering.  

It is also possible to sample the images non-uniformly for IBR [112][150][151]. Since most 

of these approaches were discussed assuming certain knowledge about the scene geometry, we 

discuss them in Section III-C.  

D. Compression 

Although we may reduce the number of images we take for IBR to the minimum through the 

sampling analysis, the amount of images needed is still huge. For instance, the example scenes in 

[15] shows that with constant depth rendering, the number of required images is on the order of 

thousands or tens of thousands for light field. To further reduce the storage requirement for IBR, 

data compression is the solution.  

IBR compression bears much similarity as image or video compression, because IBR is often 

captured as a sequence of images. In fact, most of the IBR techniques developed so far are 

originated from image or video compression. On the other hand, IBR compression has its own 

characteristics. As pointed out in [64], images in IBR have better cross-frame correlations 

because of the regular camera motions. Thus we should expect better compression performance 

for IBR. The reaction of the human visual system (HVS) to the distortions introduced in IBR 

compression is also worth studying at very high compression ratio. Most importantly, since 

during the IBR rendering any captured light ray may be used for interpolation, it is desirable that 
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the compressed bitstream is random-accessible so that we do not need to decompress all the light 

rays into memory. Such property is also important for online streaming of IBR data.  

Vector quantization (VQ) is often the first resort for data reduction in IBR [62][119]. As a 

universal method, vector quantization provides reasonable compression ratio (around 10:1 to 20:1 

as reported) and fast decoding speed. The code index of VQ is fixed-length, which is random-

accessible and has potential applications in robust online streaming. On the other hand, VQ does 

not fully make use of the high correlations inside and between the captured images, thus the 

compression ratio is not satisfactory.  

The various image compression algorithms can also be applied to individual IBR images 

without change. Miller et al. used the standard DCT-based JPEG algorithms for light field 

compression [86] and obtained a compression ratio higher than that of VQ (around 20:1).  The 

more recent wavelet-based JPEG2000 standard [127] may further improve the performance, as 

well as add features such as scalability. Since variable length coding (VLC) is employed, the light 

ray access speed is not as fast as VQ. Yet it is still good enough for real-time rendering.  The 

limitation is that the inter frame correlation is not utilized, thus the compression ratio is still 

relatively low.  

Most of the IBR compression methods proposed so far [75][153][61][72][71] resemble video 

coding, with certain modifications to the specific characteristics of IBR data. To see the close 

relationship between them, we list the techniques in video coding and IBR compression in 

parallel in Table 2. Detailed explanation follows.  

The basic video coding techniques include motion compensation (MC), discrete cosine 

transform (DCT), quantization and VLC, among many others. The images are divided into two 

categories: intra frames and inter frames. Intra frames are often distributed uniformly and 

encoded independently, while inter frames are predicted from neighboring intra frames through 

MC. The early and widely adopted video coding standard, MPEG-2 [87], is a good example for 

all these techniques. An intuitive approach for IBR compression is to apply these methods 

directly for the IBR image sequence. In [120], Shum et al. proposed to compress the concentric 

mosaics with MPEG-2. Both the captured images and the rebinned manifold mosaics were used 

as frames in MPEG-2. The compression ratio was about 50:1. To facilitate random access, 

pointers to the start positions of each vertical group of macroblocks (MB) were built into the 

bitstream. Direct extension of the above approach for panoramic video and simplified dynamic 

light field (videos taken at regularly spaced locations along a line) were given in [91] and [16], 

respectively. 
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Table 2 Comparison between video coding and IBR compression techniques.  

Video Coding  

Techniques 

IBR Compression 

Extensions 

IBR Compression 

References 

Motion compensation (MC), 

DCT, quantization, VLC, etc 

Constrained MC structure, 

indexed bitstream 
[120][91][16] 

MC tools such as global MC, 

multiple-frame MC, etc. 
MC specific for IBR 

[153] 

[73][74][152][131] 

Sprite coding -* [61] 

Model-based MC Model-aided MC [72][76]  

Scalable video coding - [90][131][74]  

Arbitrary shaped  

video object coding 
- [19] 

3D wavelet coding 3D and 4D wavelet coding 
[71][142][143] 

[103][76][36][55] 

Error resilient coding, joint-

source-channel coding, online 

streaming 

- [154][40][106] 

 * Here “-”means that the corresponding video coding technique can apply directly for IBR 
compression.  
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Figure 9 The 2D motion compensation structure for light field.  

As the motion of the cameras during the IBR capturing is very regular, it is natural to replace 

the general MC module in MPEG-2 with more advanced methods for IBR compression. In [153], 

Zhang and Li proposed the reference block coder (RBC). RBC employs a two-stage MC scheme. 

The horizontal panning between neighboring captured images was first extracted as a global 
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horizontal translation motion vector. Local MC refinement was used to further reduce the MC 

residue. Another strength of RBC was the extensive usage of caches during the rendering, which 

guaranteed the so-called just-in-time rendering. In the light field, cameras are arranged on a 2D 

plane. Thus the MC structure should also be 2D. As shown in Figure 9, intra frames are uniformly 

distributed on the 2D plane. Given any inter frame, four neighboring intra frames are often 

available and can all be use for MC [73][75][152]. Hierarchical MC was proposed in 

[131][74][75], where images are grouped into different levels through down-sampling on the 

camera plane. The images at the lowest level are intra-coded. Higher level images are predicted 

from lower level images. Such hierarchical MC structure improves the compression ratio, but its 

bitstream may not be random accessible.  

Further development on motion compensation includes sprite based coding and model based 

coding. In [61], Leung and Chen proposed a sprite based compression method for concentric 

mosaics. A sprite is generated by sticking the central slits of all the captured images. In fact, the 

result is roughly a cylindrical panorama. The sprite is intra coded and all the captured images are 

coded based on predictions from the sprite. Such a scheme has good random accessibility, and its 

compression ratio is comparable to that of [153]. When the scene geometry is available 

[32][107][114], it can greatly enhance the image prediction [72][76]. A hierarchical prediction 

structure is still adopted [72], where the intra coded images and the geometry model are used 

jointly to predict inter frames. In [76], images are mapped back onto the geometry model as view 

dependent texture maps. These texture maps are then encoded through a 4D wavelet codec. 

Model based IBR compression methods often report very high compression ratio, though such 

performance heavily relies on how good the geometry model is.  

Two key components in the recent MPEG-4 video coding standard are the scalable video 

coding and arbitrary shaped video object coding [102]. Scalable video coding includes spatial 

scalability, temporal scalability, SNR fine granularity scalability (FGS), and object-based 

scalability. Ng et al. proposed a spatial scalability approach for the compression of concentric 

mosaics in [90]. By using a nonlinear perfect reconstruction filter bank, images are decomposed 

into different frequency bands and encoded separately with the MPEG-2 standard method. 

Consider the scenario of online streaming. A low-resolution image may be rendered first when 

the compressed base band bitstream arrives and refined later when more data are received. 

Temporal scalability is applicable to dynamic scene IBR representations such as light field video 

or panoramic video. Or, it can be considered as the scalability across different captured images. 

The above-mentioned hierarchical MC based IBR compression algorithms [131][74][75] are good 

examples. SNR FGS scalability and object-based scalability have not been employed in IBR 
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compression yet, but such methods should not be difficult to develop. Arbitrary shaped video 

object coding may improve the compression performance because it improves the motion 

compensation, removes the background, and avoids coding the discontinuity around the object 

boundary. It was adopted in a recent paper for light field compression [19].  

3D wavelet coding presents another category of methods for video coding [128][93][130]. In 

[71], Luo et al. applied 3D wavelet coding for concentric mosaics. Nevertheless, its compression 

ratio is not satisfactory due the poor cross-frame filtering performance, which is consistent with 

the results reported in 3D wavelet video coding. A smart-rebinning approach was proposed in 

[143] which reorganized the concentric mosaics data into a set of panoramas. Such rebinning 

process greatly enhanced the cross-frame correlation and helped achieve very high compression 

ratio (doubled or even quadrupled that of RBC). A progressive inverse wavelet synthesis (PIWS) 

algorithm [142] was also proposed for fast rendering. Wavelet coding was further extended to 4D 

for light field compression, such as the work in [103][76][36][55].  

Streaming the video bitstream over wired or wireless network has been a very attractive 

research topic recently. Many new techniques have been developed, such as error resilient coding, 

rate shaping, joint-source-channel coding, etc. Streaming IBR compressed data is also a very 

interesting topic, as it enables a user to walk through a realistic virtual environment. However, 

there are certain differences between video streaming and IBR streaming. For example, a frame in 

video is often associated with a critical time instance such as its playout deadline. Such deadline 

is not that critical in IBR streaming. Transmitted video is played back frame-by-frame, while in 

IBR the user may move freely as he/she wants and the light rays required by the current view are 

often distributed across multiple images. This brings some difficulty in distortion estimation 

[106]. In [154], the RBC compressed bitstream is transmitted over the Internet through a virtual 

media (Vmedia) access protocol. Only the bitstream associated with the current view is sent from 

the server to the client. The TCP/IP or UDP protocol is used and retransmission is requested if a 

packet is lost. Streaming high-resolution panoramic images with MPEG-4 was discussed in [40]. 

Recently a rate-distortion optimized streaming framework for light field transmission was 

proposed in [106]. Perfect advanced knowledge about the user’s view trajectory is assumed. 

Significant gain was shown with this framework over heuristic packet scheduling. On the other 

hand, if the user’s motion is unknown, prefetching [98] based on the user’s historical motion may 

be a worth topic to study for IBR streaming.  
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III. Introducing Source Descriptions 

Another strategy to make the image-based rendering data manageable is to introduce some source 

descriptions. Such descriptions can be the scene geometry, the texture map, the surface reflection 

model, etc. These descriptions can tell the correspondence between light rays, thus reduce the 

overall number of necessary light rays to be captured.  

A. IBR with Various Source Descriptions 

The major source descriptions employed in IBR are the scene geometry, the texture map and the 

surface reflection model. Among them the scene geometry is the most widely used. Texture map 

and reflection model are often used as additional descriptions on top of the scene geometry. A 

quick summary of the different approaches is given in Table 3.  

Table 3 A quick summary of various approaches that introduce source descriptions.  

Source Description Reference 

Correspondence between images 
View interpolation [21], view morphing [117], 

reference views [56], tensor space [6], etc. 

Dense (per pixel) depth map LDI [117], LDI tree [18], MCOP [105], etc.  Scene 

geometry 

Mesh or volumetric model 

Unstructured Lumigraph [10], spatial-temporal 

view interpolation [134], view dependent 

geometry [104], etc.  

Texture map (+ Scene geometry) 
View dependent texture map [27], image-based 

visual hull [79], etc.  

Reflection model (+ scene geometry) 
Reflection space IBR [12], surface light field 

[139], etc.  

 

1. Scene geometry 

Given the scene geometry, light rays from the same surface point can be identified. Since most 

scene surfaces are close to Lambertian, or at least locally color consistent (light rays from the 

same surface point share the same color if their reflection directions are similar) [147], geometry 

can save the number of light rays to be captured for a scene [15]. In fact, as was pointed out by 

many researchers, there is a geometry-image continuum in the representations of scenes [49][59]. 

The more we know about the scene geometry, the smaller the amount of images we need for good 

rendering.  
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The scene geometry can be described in different forms, such as correspondence between 

images (e.g., optical flow), dense depth map, volumetric or mesh model, etc. In this subsection 

we classify the various approaches based on different geometry forms they take and present them 

one by one.  

Correspondence between images  

Any scene geometry information can be considered as knowledge about the correspondence 

between images. Here we specifically mean approaches that do not have an explicit geometry 

representation. Examples of such knowledge are point feature correspondences, disparity map, 

optical flow, etc. The idea is to find corresponding light rays in the captured image set for those in 

the novel view. In the photogrammetric community, such approaches are developed under the 

name of transfer methods.  

Early work on this track was under the study of image morphing [7] and often involves 

certain manual help. For example, an animator needs to specify a set of feature correspondences, 

which form a control mesh. In [138], the novel view is generated by warping the control mesh 

through spline interpolation. A two-dimensional free-form deformation and Bézier Clipping was 

used to fulfill the same task in [92]. In [7], Beier and Neely defined a global transform/warping 

between the two images based on a set of matched line segments. For any view in between, the 

matched line segments in the novel view are first interpolated, which then determines the 

transform from one of the reference views to the novel view. A deformable surface model based 

morphing strategy that does not require the control mesh structure was also discussed in [58]. 

Recently, a feature-based light field morphing algorithm was proposed in [155].  

View interpolation [21], proposed by Chen and Williams, eliminates the need of the human 

animator. Instead, the optical flow between the two images is assumed as known. To generate an 

in-between view of the input image pair, the offset vectors in the optical flow are linearly 

interpolated and the pixels in the source images are moved by the interpolated vector to their 

destinations in the novel view. View interpolation performs very well if the two input images are 

close to each other, so that visibility ambiguity is not an issue. On the other hand, the interpolated 

views will be physically exact only if the camera motion is perpendicular to the camera viewing 

axis. In [135] a mathematical formulation was given to show the conditions when linear 

interpolation is physically correct.  

In [116][117], Seitz and Dyer proposed view morphing. View morphing guarantees that the 

rendered view is physically valid by introducing a prewarping stage and a postwarping stage. 

During the prewarping, the two reference images are rectified [44]. After the rectification, the two 

images share the same image plane and their motion becomes perpendicular to their viewing axis. 
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Linear interpolation is then used to get the intermediate view, followed by postwarping to 

compensate the rectification effect on that view.  

The novel view in view interpolation and view morphing are often in between the two 

reference images. Laveau and Faugeras [56] first proposed to make use of the epipolar constraints 

[44], which enabled extrapolation. The novel view is generated from a set of weakly or fully 

calibrated reference views. The viewpoint and the retinal plane of the novel view are specified by 

manually selected four corresponding points. A dense disparity map is also assumed to be 

available. To render the novel view, a ray-tracing like algorithm is implemented, which for each 

rendered light ray find the corresponding light rays in the reference views through the epipolar 

constraint and the disparity map. Notice that when the reference views are weakly calibrated, only 

projective structure can be recovered [44], thus the resultant novel view may appear warped. 

Knowing the intrinsic parameters of the cameras (full calibration) will solve such problem.  

In plenoptic modeling [82], a similar approach was proposed. The difference is that the 

reference view positions are known, and the reference views are now cylindrically projected 

panoramic views. Therefore, cylindrical epipolar constraints and dense angular disparity maps 

were used for novel view interpolation.  

Ref. Image 1 Ref. Image 2

Ref. Image 3
Novel view

Seed tensorUnknown tensor

TR,

 

Figure 10 Obtain the tensor between a novel view and the two reference views from a seed tensor [6].  

The epipolar constraint is between two images. For three images, there is another constraint 

represented by the trifocal tensor [44]. Given two views in correspondence and a tensor, the 

corresponding third view can be generated by a warping function. Avidan and Shashua proposed 

a view synthesis algorithm based on the above principle [6]. The key of their approach is the way 

to specify the tensor between two reference views and a novel view. As illustrated in Figure 10, 

given a seed tensor between the two reference views and an additional reference view (which 

could be a duplication of one of the two reference views), the unknown tensor could be obtained 
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by knowing the rotation and translation between the third reference view and the novel view. 

Therefore specification of a novel view is more direct compared with the epipolar constraint 

based methods such as [56], where manual selection of matching points is needed. Moreover, 

trifocal tensor based method is often more stable than the epipolar constraint based ones under 

certain singular camera configurations (e.g., when the camera centers are collinear).  

In a recent approach Lhuillier and Quan [63] presented an interpolation algorithm based on 

joint view triangulation. Starting from some points of interest selected automatically, they first 

grow the matching points to their neighborhoods. Planar patches are then fit locally for 

regularization or removing outliers assuming the matching is piecewise smooth. The two 

reference views are then triangulated jointly. Novel views are interpolated by warping the 

matched triangles. A walk-through system based on a similar framework was also developed in 

[3].  

Dense depth map 

Another popular scene geometry representation is the dense depth map. It indicates the per-pixel 

depth values of the reference views. Such a depth map is easily available for synthetic scenes, and 

can be obtained for real scenes via a range finder.  

Camera
viewpoint Object 1

Object 3

Object 2
Image plane

a b
c d 0l

 

Figure 11 The layered depth image.  

The simplest IBR representation with a dense depth map is a set of images and their depth 

maps [81][113]. An extension to the multiple-center-of-projection (MCOP) mosaic (Section II-B) 

was given in [105], where again a depth value is attached to each pixel in the MCOP image. In 

[118], Shade et al. proposed the sprite with depth and the layered depth image (LDI). Sprite with 

depth keeps an out-of-plane displacement component at each pixel in the sprite, which resembles 

the above-mentioned representations. LDI is a view of the scene from a single input camera view, 
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but with multiple pixels along each line of sight. Correspondingly, the depth map is also multi-

valued for each pixel. This is shown in Figure 11. On the path of the light ray 0l , the depth and 

color value of point a, b, c and d are all recorded. Extensions to the LDI include the layered depth 

cube [69] and the LDI tree [18].  

The rendering algorithms of IBR representations with dense depth map are often similar to 

each other. In [81], a 3D warping algorithm was proposed to render novel views that are close to 

a reference view. The pixels of the reference view are first projected back to their 3D locations 

and then re-projected to the novel view. To speed up the above process, Oliveira and Bishop [95] 

proposed to factorize the warping process into a simple pre-warping stage followed by a standard 

texture mapping. The pre-warp handles only the parallax effects resulting from the depth map and 

the direction of view. The subsequent texture-mapping operation handles the scaling, rotation, 

and remaining perspective transformation, which can be accelerated by standard graphics 

hardware. A similar factoring algorithm was performed for the LDI [118], where the depth map is 

first warped to the output image with visibility check, and colors are pasted afterwards.  

One major problem in the above rendering methods is that holes may occur in the rendered 

view due to undersampling or disocclusion (scene is occluded in the reference view but visible in 

the novel view). By introducing multiple depth values along a light ray, the disocclusion problem 

is partially solved in the LDI representation [118]. In [113], because multiple images are available 

for rendering, holes due to disocclusion are also not serious as long as the number of images is 

large enough.  The undersampling problem can also be solved by taking more images. The LDI 

tree [18] is a modified LDI approach which combines multiple reference views in to a single 

hierarchical representation, which maintains the resolution of each reference view in the data 

structure. On the other hand, even if holes do happen, they may be removed through algorithms 

such as splatting [78][118] or meshing [78][105].  

Mesh or volumetric model 

Mesh model is the most widely used components in model-based rendering. Despite the difficulty 

to obtain such a model, if it is available in image-based rendering, we should make use of it to 

improve the rendering quality.  

Buchler et al. proposed the unstructured Lumigraph rendering [10], which addressed the 

above rendering problem. They first proposed eight goals for IBR rendering: use of geometric 

proxies; unstructured input; epipole consistency; minimal angular deviation; continuity; 

resolution sensitivity; equivalent ray consistency and real-time. These goals served as the 

guidelines of their proposed unstructured Lumigraph rendering approach. Weighted light ray 

interpolation was used to obtain light rays in the novel view. The weights are largely determined 
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by how good the reference light ray is to the interpolated one according to the goals. A clever 

weight blending field for the reference views is described to guarantee real-time rendering.  

For real-world scenes, the geometry model we reconstruct is often in a volumetric form 

[37][134][115][32]. Although the volumetric model can be easily converted to a mesh model 

[70], sometimes it may be preferable to render with the volumetric model directly. The algorithm 

in [10] can be applied straightforwardly without any change. One concern about the volumetric 

model is that it has a finite resolution. To remove the granular effects in the rendered image due 

to finite resolution, in [134] a model smoothing algorithm was applied during the rendering, 

which greatly improved the resultant image quality.  

Rademacher proposed an interesting approach called view dependent geometry [104]. 

Namely, the geometry used during the rendering may vary when the view position changes. Such 

approach is attractive for scenes where the geometry reconstruction algorithm can only obtain a 

model that is locally applicable, such as those obtained through stereo methods [111].  

Image-based modeling  

Scene geometry can often greatly improve the rendering quality, but acquiring the geometry is 

not a trivial task unless the scene is synthetic or a range finder is on hand. When no geometry is 

directly available, we may resort to computer vision techniques to reconstruct the scene geometry 

based on the captured images. Such techniques are called image-based modeling. Due to the close 

coupling of image-based rendering and image-based modeling, we see a clear convergence of the 

graphics community and the vision community [59].  

As a survey of the various image-based modeling techniques is out of the scope of this paper, 

we refer the reader to the survey paper by Zhang [156] and by Oliveira [94] for more information.  

2. Texture map (+ scene geometry)  

Texture map is one of the most widely used source descriptions in model-based rendering. As 

texture maps are often obtained from real objects, a geometric model with texture mapping can 

produce very realistic scenes.  

In image based rendering, when the scene geometry is available, it is possible to generate 

texture maps from the reference views. This has already been demonstrated in the 3D warping 

algorithm [81] for IBR representations with dense depth map mentioned before. Notice that in 

IBR we do not apply reflection models of the scene surface as we do in model-based rendering. A 

scene becomes Lambertian if both the geometry and the texture map are fixed. Such scenes may 

not be highly interesting. It is therefore natural to introduce texture maps that vary when the 

viewpoint changes, namely view dependent texture mapping (VDTM) [27].  
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In [27], Debevec et al. proposed to project the reference views onto the geometric model to 

form the texture map through a weighting scheme. The weights are determined by the angular 

deviation from the reference views to the virtual view to be rendered. Later a more efficient 

implementation of VDTM was proposed in [29], where the per-pixel weight calculation was 

replaced by a per-polygon search in a pre-computed lookup table. Note that VDTM is in fact a 

special case of the later proposed unstructured Lumigraph rendering [10].  

The image-based visual hull (IBVH) algorithm [79] can be considered as another example of 

VDTM. In IBVH, the scene geometry was reconstructed through an image space visual hull [57] 

algorithm. A texture pixel was generated from the reference views by back projection using only 

the light ray with the smallest angular deviation. Such adaptation is partially due to the fact that 

only four cameras were used in IBVH.  

3. Reflection models (+ scene geometry) 

Other than the texture map, the appearance of an object is also determined by the interaction of 

the light sources in the environment and the surface reflection model. This becomes more obvious 

if the texture map is very simple (e.g., uniform color) and the object is highly specular, such as a 

simple mirror ball.  

In image-based rendering, we often do not try to figure out what the scene object’s reflection 

model is. Instead, we capture light rays that are reflected from the scene surface. Recall that such 

parameterization has been discussed under the name surface plenoptic function [149] in Section 

II-B. The advantages of recording only the reflected light rays are numerous: we do not need to 

derive the underlying surface reflection model any more; we do not need to model the complex 

light sources in a real environment; and we do not need to calculate the interaction between the 

light source and the reflection model. The downside is that the light source and the reflection 

model are now tightly coupled. Efforts need to be made for relighting the scene under different 

lighting conditions [141][26].  

In [12], Cabral et al. proposed reflection space image-based rendering. Reflection space IBR 

records the total reflected radiance for each possible surface direction. Note the difference 

between such a radiance environment map and the traditional environment map, where the 

incoming radiance is stored [8][39]. The proposed radiance environment map is viewpoint 

dependent, thus a set of such maps are pre-computed before rendering, as the multiple images we 

often have in normal IBR representations. During the rendering, the radiance environment map is 

first interpolated/warped to the desired viewpoint and then used for novel view generation. An 

interesting application of radiance environment map is given in [25], where synthetic objects are 

rendered into real scenes. A probing mirror ball is used to obtain the radiance environment map at 
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the position the synthetic objects are located. A differential rendering technique allows for good 

results to be obtained when only an estimate of the local scene reflectance properties is known.  

The above method assumes that if two surface points share the same surface direction, they 

have the same reflection pattern. This might not be true due to multiple reasons such as inter-

reflections. A more general approach is to really capture the scene reflections at arbitrary surface 

points as in the surface plenoptic function [149]. By ignoring the time and the wavelength 

dimensions, Wood et al. proposed surface light field [139]. They first obtained a base mesh of the 

scene object through a range scanner. For points on the base mesh, they obtained the reflections 

along different directions by capturing hundreds of images of the scene. A pointwise fairing 

algorithm was proposed to resample the irregular sample light rays into a reflection map or 

lumisphere with a piecewise linear model. Notice that these lumispheres may have missing data 

as only light rays reflected to the outside of the object can be captured. Rendering surface light 

field is as straightforward as tracing each rendered light ray onto the geometric model and obtain 

its radiance. A more compact representation of surface light field suitable for an accelerated 

graphics pipeline was recently proposed in [22]. A surface light field created on the surface of a 

visual hull rather than the true scene geometry is discussed in [80]. As we mentioned earlier in 

Section II-A, under Assumption 2 (the radiance of a light ray does not change along its path in 

empty space), using the visual hull surface for recording the light rays is equivalent to using the 

true scene geometry as long as the viewpoint is outside the visual hull.  

As mentioned before, the surface plenoptic function captures the scene only at a fixed 

lighting condition. Recently there has been some work on the relighting of IBR, such as the 

human face reflectance field [26], the plenoptic illumination function [141] and the reflected 

irradiance field [67]. These approaches share similar ideas. Images of the scene under different 

point light source or directional light source are first captured. These images can then be 

superimposed to render scenes under a much more complex lighting environment. Such operation 

can be performed to live-action scenes in real time [28].  

B. Sampling 

When certain source description is available, the number of images required is dramatically 

reduced. Most of the work listed in this section considered the set of reference images as granted 

and tried to render the scene in the best effort. However, it is still interesting to know how many 

images we really need for capturing a scene. The problem is in fact much harder than the one 

discussed in Section II-C for several reasons. First, the sampling rate will certainly be affected by 

how much source description is known and how good the knowledge is. Second, the rendering 
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algorithms used in this section are much more difficult to analysis due to the introduction of many 

assumptions and heuristics. How true these assumptions are will also affect the sampling rate. 

Last, images used in the IBR representations in this section are usually non-uniformly distributed. 

Work in [15][149] is not easily extendable to non-uniform sampling analysis.  

Uniform sampling with known scene descriptions  

We first discuss several approaches that perform uniform sampling with known scene description. 

In [15], a minimum sampling curve was proposed in the joint image and geometry space for light 

field. Recall the conclusion in Section II-C that a Lambertian scene at constant depth corresponds 

to a tilted line in the frequency domain. If the scene geometry is represented via dense depth map 

and each depth value has a finite precision (a certain number of bits), we may divide the scene 

into multiple layers based on the depth values. If occlusions between layers are ignored, each 

layer can be sampled and rendered independently. This is equivalent to having many scenes with 

much smaller depth variation, which reduces the number of images required. An example 

minimum sampling curve is shown in Figure 12 (a). Based on this curve, given the number of 

depth layers, we may tell the minimum number of images needed. On the other hand, given the 

number of images, we can also tell how many depth layers we need. The minimum sampling 

curve is also related with the capturing and rendering resolution. The higher the resolution, the 

more images or depth layers are required, as shown in Figure 12 (b). Such analysis can be easily 

extended to non-Lambertian and occluded scenes as in [149].  
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Figure 12 The minimum sampling curve in [15].  

Another uniform sampling discussion is on the reflected irradiance field [67]. Reflected 

irradiance field records the light rays reflected from a scene to a fixed viewpoint as a point light 

source moves on a plane. It belongs to the category of “IBR with reflection models”. The 

sampling of the positions of the light source is uniform on that plane. To obtain the minimum 

number of samples required for the light source, they proposed a method based on linear 
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interpolation and absolute error bound. They concluded that there exists a geometry-independent 

bound for the sampling interval whenever the second-order derivatives of the surface BRDF and 

the minimum scene depth are bounded. The fact that such bound is geometry-independent is 

largely due to the fixed camera position.  

Non-uniform sampling  

Similar to the eight goals for IBR rendering in [10], Zhang and Chen [151] listed seven desired 

properties for IBR sampling: adaptive; ease of setup, control and calibration; matching between 

the viewing space and the capturing space; high and consistent rendering quality; low storage and 

short capturing time; robust and use robust geometry. Uniform sampling bears some of these 

properties such as robust and ease of setup, control and calibration, but it lacks most of the other 

desired properties. On contrary, non-uniform sampling provides a possible solution to all the 

seven properties.  

Note that the sampling approaches discussed below are different from the previously 

mentioned IBR approaches in this section. Before we focused on how to represent and render a 

scene given a set of pre-captured images. In uniform sampling analysis we only need to tell how 

many images are needed. The non-uniform sampling analysis followed need to answer not only 

how many images are needed but also where to place these cameras.  

Fleishman et al. [34] proposed an automatic camera placement algorithm for IBR. A mesh 

model of the scene is known. The goal is to place the cameras optimally such that the captured 

images can form the best texture map for the mesh model. They found that such problem can be 

regarded as a 3D art gallery problem, which is NP-hard [97]. They then proposed an 

approximation solution for the problem by testing a large set of camera positions and selecting 

the ones with higher gain rank. Here the gain was defined based on the portion of the image that 

can be used for the texture map. A similar approach was proposed in [136], where the set of 

reference views were selected from a large image pool in order to minimize a certain target 

function.  

Zhang and Chen proposed to use stochastic sampling and the sampling density function to 

analyze IBR non-uniform sampling [150]. The idea is to assume that the optimal stochastic 

sampling strategy on the scene surface is known. Using the Monte Carlo method [43], we may 

obtain the optimal sampling scheme for the IBR representation. Unfortunately, this approach 

requires too much knowledge about the scene, such as the scene geometry and the scene surface’s 

optimal sampling density function. The application of such analysis may be limited.  

A systematic framework called position-interval-error (PIE) function for studying non-

uniform sampling was proposed in [151], using IBR as an example. The PIE function is defined 
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as the average reconstruction error for any pair of samples, as is shown in Figure 13. Assumptions 

were made for the PIE function, such as that the average reconstruction error monotonically 

decreases when the interval between two samples decreases. The goal of non-uniform sampling 

defined in [151] is to have a uniform reconstruction error across all the sample pairs, which 

corresponds to one of the desired IBR sampling properties: high and consistent rendering quality.  
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Figure 13 An example position-interval-error (PIE) function. (a) The original function, its samples 

and reconstruction. (b) The PIE function. 

Under the PIE framework, two non-uniform sampling approaches were proposed in [151], 

namely the progressive capturing (PCAP) and the rearranged capturing (RCAP). Both methods 

adopt an inward-looking concentric mosaics setup, but the samples on the camera trajectory can 

be non-uniform. To estimate the reconstruction error between two neighboring samples, a simple 

scheme was proposed based on the color consistency criterion. PCAP is applicable for static 

scenes. Based on the images captured so far, PCAP determines where to take the next image. The 

strategy is to always capture the next image between the image pair that has the maximum 

reconstruction error. RCAP, on the other hand, is for capturing both static and dynamic scenes. 

The goal is to intelligently arrange the positions of a limited number of cameras such that the 

final rendering quality is optimal. A force-based method was proposed to move the cameras 

towards the direction where the reconstruction error is higher. Experimental results demonstrated 

that the non-uniform sampling approaches outperform the traditional uniform methods.  

The PIE framework can also be easily extended to sampling in the high dimensional space. 

Two previous work, adaptive Lumigraph acquisition [112] and active IBR [147] can both be 

considered as examples of such extension for PCAP. Again the next image is taken at the place 

where the reconstruction error is the highest. Slightly different methods were used for estimating 

the reconstruction error and determining the next capturing positions in the two approaches.  
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Non-uniform sampling will inevitably increase the complexity of the capturing system in real 

applications. However building such systems is still possible, such as the simple PCAP system in 

[146].  

C. Compression 

The compression of IBR representations with source descriptions in this section has not been 

widely studied in the literature. However, most of the compression algorithms described in 

Section II-D can be directly applied for compressing the reference images. On the other hand, 

there are still the source descriptions needed to be compressed other than the images.  

In [53] Krishnamurthy et al. considered the compression of depth maps in IBR. Depth map 

compression is different from traditional image compression because the compression error has 

different impact on the perceived visual quality. In a depth map, certain regions may be more 

crucial to the final rendering quality compared to others. For example, they observed that sharp 

discontinuities in depth and intensity require more accurate depth maps. Accordingly, a region-of-

interesting (ROI) based coding scheme was proposed. Also, they found that depth error is more 

sensitive for closer scene objects and proposed to reshape the dynamic range of the depth image 

before compression. This observation coincides with the conclusion in [15], which said that the 

depth quantization should be performed in the disparity space rather than the depth space. A 

JPEG2000 encoder [127] was used in [53] after the preprocessing.  

Duan and Li proposed an algorithm for compressing LDI data [30]. Different from normal 

image or depth map, in LDI each pixel is associated with multiple colors and depth values. The 

data were organized layer by layer based on how far the scene is from the viewpoint. One key 

issue is that for a farther layer, the color and depth map are very sparse. They proposed to 

aggregate the data first and then perform compression. High compression ratio at about 10:1 to 

20:1 was achieved.  

For the compression of other geometric models such as mesh models, there have been many 

approaches in the literature. We refer the reader to [126] for a detailed introduction on geometry 

compression.  

For representations that records the reflected light rays from the scene surface, compression is 

also desired. In [139], along with the proposed surface light field, Wood et al. also proposed two 

methods to compress the lumispheres, namely function quantization and principal function 

analysis. Function quantization resembles the traditional vector quantization, and principal 

function analysis is a generalization to the principle component analysis (PCA). These 

generalizations are mainly for the purpose of handling the missing data in the lumispheres. In the 
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light field mapping [22], Chen et al. proposed another compression approach that relies on PCA, 

VQ and S3 texture compression (S3TCTM) [109]. Since real-time rendering was their goal, many 

decisions made in [22] are due to speed concerns. Compression of the plenoptic illumination 

function was also discussed in [141] using spherical harmonic transform [24], VQ and DCT.  

IV. Conclusions and Future Work 

We have surveyed the field of image-based rendering including its representations, sampling and 

compression. We found that all the IBR representations are originated from the 7D plenoptic 

function, which describes the appearance of the world. As the 7D plenoptic function has too 

many data to handle, various approaches were proposed to reduce the data size while still give the 

viewer a good browsing experience. Two major strategies were adopted: restraining the viewing 

space and introducing source descriptions. We have presented the various IBR representations 

based on such categorization. Sampling and compression were discussed separately for the two 

strategies, as different strategies results in different representations and thus different sampling 

and compression methods.  

It is always exciting to predict some of the future directions for IBR. In terms of 

representation, IBR through restraining the viewing space is more and more widely adopted in the 

real world. For example, many websites now provide virtual tour to their place, among which 

most are based on panoramic images. It is expectable that panoramic videos will be an attractive 

approach to virtual touring for many resorts. Immersive TV recently receives much attention and 

is considered as the next generation of TV technology [33]. Other applications include online 

game, remote education, e-commerce, virtual museum, virtual reality/chat room, etc. The key to 

the success of IBR representations through restraining the viewing space in the future is the 

relaxation of these constraints. We may count on the rapid increasing of storage and memory 

space, as well as the increasing of the Internet bandwidth. More devices may need to be 

developed (such as dense camera array) in order to capture large, dynamic scenes.  

IBR through introducing source descriptions, on the other hand, still requires more future 

work. The key problem is not how to perform the rendering, but how to obtain a good source 

description. Take the scene geometry as an example. There have been many geometry 

reconstruction algorithms proposed in the computer vision literature. However, few of them are 

really robust enough to be applied in practical systems. To solve this problem, either we may 

develop some low-cost 3D sensing devices, or we may develop new algorithms that can perform 

good source description reconstruction.  
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The rendering process in IBR is usually very fast and can be implemented with software. 

However, hardware acceleration will be definitely helpful for future high-resolution IBR 

rendering. As most operations in IBR rendering are simple mathematical operations such as linear 

interpolation, and most IBR rendering process can be performed in parallel, we expect that such 

hardware is not difficult to develop and can dramatically increase the rendering speed.  

No matter how much the storage and memory increase in the future, sampling and 

compression are always useful to keep the IBR data at a manageable size. The work on sampling 

and compression, however, has just started. There are still many problems remain unsolved, such 

as the sampling rate when certain source description is available. A high compression ratio in IBR 

seems rely heavily on how good the images can be predicted, which depends on, e.g., how good a 

certain source description can be reconstructed. Joint work between the signal processing 

community and the computer vision community is highly expected.  

Image-based rendering is still an emerging field. From this survey, it is obvious that IBR has 

attracted many researchers from various communities, including computer graphics, computer 

vision and signal processing. We believe that the cooperation of different communities will 

certainly bring a bright future for IBR.  

Reference 

[1] 360 One VRTM, Kaidan, http://www.kaidan.com/.  

[2] E. H. Adelson, and J. R. Bergen, “The plenoptic function and the elements of early vision”, 

Computational Models of Visual Processing, Edited by Michael Landy and J. Anthony Movshon. The MIT 

Press, Cambridge, Mass. 1991, Chapter 1.  

[3] G. Agarwal, D. Rathi, P. K. Kalra and S. Banerjee, “A System for Image Based Rendering of Walk-

throughs”, Computer Graphics International (CGI2002), Bradford, UK, July 2002.  

[4] T. Akenine-Moller and E. Haines, Real-Time Rendering, 2nd Edition, A K Peters Ltd.  

[5] D. G. Aliaga and I. Carlbom, “Plenoptic stitching: a scalable method for reconstructing 3D 

interactive walkthroughs”, Computer Graphics (SIGGRAPH’01), August 2001, pp. 443-450.  

[6] S. Avidan and A. Shashua, “Novel view synthesis in tensor space”, CVPR’97, San Juan, Puerto 

Rico, 1997, pp. 1034-1040.  

[7] T. Beier and S. Neely, “Feature-Based Image Metamorphosis”, Computer Graphics 

(SIGGRAPH’92), July 1992, pp. 35-42.  

[8] J. F. Blinn and M. E. Newell, “Texture and Reflection in Computer Generated Images”, 

Communications of the ACM, Vol. 19, No. 10, 1976, pp. 542-546.  

[9] S. Borman and R. L. Stevenson, “Super-Resolution from Image Sequences - A Review”, Midwest 

Symposium on Circuits and Systems, 1998.  



 37

[10] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen,  “Unstructured Lumigraph 

rendering”, Computer Graphics (SIG-GRAPH’01), August 2001, pp 425-432.  

[11] CBS Broadcasting Inc., http://www.cbs.com.  

[12] B. Cabral, M. Olano, P. Nemec, “Reflection space image based rendering”, Computer Graphics 

(SIGGRAPH’99), August 1999, pp. 165-171.  

[13] E. Camahort and D. Fussell, “A Geometric Study of Light Field Representations”, Technical Report 

TR99-35, Department of Computer Sciences, The University of Texas at Austin.  

[14] E. Camahort, A. Lerios and D. Fussell, “Uniformly sampled light fields”, 9th Eurographics 

Workshop on Rendering, Vienna, Austria, June/July 1998, pp. 117-130.  

[15] J.X. Chai, X. Tong, S.C. Chan and H. Y. Shum, “Plenoptic sampling”, Computer Graphics 

(SIGGRAPH’00), July 2000, pp. 307-318.   

[16] S. C. Chan, K. T. Ng, Z. F. Gan, K. L. Chan and H.-Y. Shum, “The Data Compression of Simplified 

Dynamic Light Fields”, ICASSP’03, Hong Kong, Apr. 2003.  

[17] S. C. Chan and H. Y. Shum, “A Spectral Analysis for Light Field Rendering”, ICIP’00, Vancouver, 

Canada, Sep. 2000. 

[18] C. Chang, G. Bishop and A. Lastra, “LDI tree: A hierarchical representation for image-based 

rendering”, Computer Graphics (SIGGRAPH’99), August 1999, pp. 291-298.  

[19] C.-L. Chang, X. Zhu, P. Ramanathan and B. Girod, “Shape Adaptation for Light Field 

Compression”, ICIP’03, Barcelona, Spain, Sep. 2003. 

[20] S. E. Chen, “QuickTime VR – An Image-Based Approach to Virtual Environment Navigation”, 

Computer Graphics (SIGGRAPH’95), August 1995, pp. 29-38.  

[21] S. E. Chen and L. Williams, “View interpolation for image synthesis”, Computer Graphics 

(SIGGRAPH’93), August 1993, pp. 279-288.  

[22] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, R. Grzeszczuk, “Light field mapping: efficient 

representation and hardware rendering of surface light fields”, Computer Graphics (SIGGRAPH’02), July 

2002, pp. 447-456.  

[23] T. N. Cornsweet, Visual Perception, Academic Press, 1971.  

[24] R. Courant and D. Hilbert, Methods of Mathematical Physics, New York: Interscience, 1953.  

[25] P. Debevec, “Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-Based 

Graphics with Global Illumination and High Dynamic Range Photography”, Computer Graphics 

(SIGGRAPH’98), Aug. 1998, pp. 189-198.  

[26] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin and M. Sagar, “Acquiring the 

Reflectance Field of a Human Face”, Computer Graphics (SIGGRAPH’00), July 2000, pp. 145-156.  

[27] P. Debevec, C. J. Taylor and J. Malik, “Modeling and rendering architecture from photographs: a 

hybrid geometry- and image-based approach”, Computer Graphics (SIGGRAPH’96), August 1996, pp. 11-

20.  



 38

[28] P. Debevec, A. Wenger, C. Tchou, A. Gardner, J. Waese and T. Hawkins, “A Lighting Reproduction 

Approach to Live-Action Compositing”, Computer Graphics (SIGGRAPH’02), July 2002, pp. 547-556.  

[29] P. Debevec, Y.-Z. Yu and G. Borshukov, “Efficient View-Dependent Image-Based Rendering with 

Projective Texture-Mapping”, 9th Eurographics Rendering Workshop, Vienna, Austria, June 1998.  

[30] J. G. Duan and J. Li, “Compression of the Layered Depth Image”, IEEE Data Compression 

Conference (DCC’01), Snowbird, UT, Mar. 2001.  

[31] D. E. Dudgeon and R.M. Mersereau, Multidimensional Digital Dignal Processing, Prentice-hall 

signal processing series, 1984. 

[32] P. Eisert, E. Steinbach and B. Girod, “3-D Shape Reconstruction from Light Fields Using Voxel 

Back-Projection”, Vision, Modeling and Visualization Workshop 1999, Erlangen, Germany, November, 

1999, pp. 67-74.  

[33] C. Fehn, P. Kauff, O. Schreer and R. Schäfer, “Interactive Virtual View Video for Immersive TV 

Applications”, Proc. IBC '01, Vol. 2, Amsterdam, Netherlands, Sep. 2001, pp. 53-62.  

[34] S. Fleishman and D. Cohen-Or and D. Lischinski, “Automatic Camera Placement for Image-Based 

Modeling”, Computer Graphics Forum, Vol. 19, No. 2, Jun. 2000. 

[35] J. Foote and D. Kimber, “FlyCam: Practical Panoramic Video”, Proc. ICME’00, August 2000.  

[36] B. Girod, C.-L. Chang, P. Ramanathan and Xiaoqing Zhu, “Light field compression using disparity-

compensated lifting”, ICASSP’03, Hong Kong, China, Apr. 2003.  

[37] S. J. Gortler, R. Grzeszczuk, R. Szeliski and M. F. Cohen, “The Lumigraph”, Computer Graphics 

(SIGGRAPH’96), August 1996, pp. 43-54.  

[38] N. Greene and P. Heckbert, “Creating Raster Omnimax Images from Multiple Perspective Views 

Using the Elliptical Weighted Average Filter”, IEEE Computer Graphics and Applications, pp. 21-27, Vol. 

6, No. 6, June 1986.  

[39] N. Greene and M. Kass, “Approximating Visibility with Environment Maps”, Technical Report #41, 

Apple Computer, November 1994.  

[40] C. Grünheit, A. Smolić, and T. Wiegand, “Efficient representation and interactive streaming of high-

resolution panoramic views”, ICIP’02, Rochester, NY, Sep. 2002.  

[41] X. Gu, S. J. Gortler and M. Cohen, “Polyhedral Geometry and the Two-Plane Parameterization”, 8th 

Eurographics Rendering Workshop, Saint Etienne, France, June 1997, pp. 1-12.  

[42] R. Gupta, R. I. Hartley, “Linear pushbroom cameras”, IEEE Trans. on PAMI, Vol. 19 No. 9, Sep. 

1997, pp. 963-975.  

[43] J. H. Halton, “A Retrospective and Prospective Survey of the Monte Carlo Method”, SIAM Review, 

Vol. 12, No. 1, Jan. 1970, pp. 1-63. 

[44] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 

Sep. 2000.  

[45] I. Ihm, S. Park, and R. Lee, “Rendering of spherical light fields”, Pacific Graphics, Seoul, Korea, 

October 1997, pp. 59-68.  



 39

[46] IPIX®, Internet Pictures Corp., http://www.ipix.com/.  

[47] A. Isaksen, L. McMillan, S. J. Gortler, “Dynamically reparameterized light fields”, Computer 

Graphics (SIGGRAPH’00), July 2000, pp. 297-306.  

[48] S. B. Kang, “A survey of image-based rendering techniques”, VideoMetrics, SPIE Vol. 3641, 1999, 

pp. 2-16.  

[49] S.B. Kang, R. Szeliski, and P. Anandan, “The geometry-image representation tradeoff for 

rendering,” ICIP’00, Vancouver, Canada, September 2000.  

[50] A. Katayama, K. Tanaka, T. Oshino and H. Tamura, “Viewpoint-dependent stereoscopic display 

using interpolation of multi-viewpoint images”, Proc. SPIE, Vol.2409, 1995, pp.11-20.  

[51] H. Kawasaki, K. Ikeuchi and M Sakauchi, “Light field rendering for large-scale scenes ”, Proc. 

CVPR’01, Kauai, Hawaii, Dec. 2001, Vol.2, pp.64-71.  

[52] D. Kimber, J. Foote and S. Lertsithichai, “FlyAbout: Spatially Indexed Panoramic Video”, Proc. 

ACM  Multimedia 2001, Ottawa, Canada, Oct. 2001.  

[53] R. Krishnamurthy, B.-B. Chai, H. Tao and S. Sethuraman, “Compression and Transmission of Depth 

Maps for Image-Based Rendering”, ICIP’01, Thessaloniki, Greece, Oct. 2001.  

[54] LadybugTM, Point Grey, http://www.ptgrey.com/products/ladybug/index.html.  

[55] P. Lalonde and A. Fournier, “Interactive Rendering of Wavelet Projected Light Fields”, Graphics 

Interface 1999, Kingston, Ontario, Canada, Sep. 1999, p.107-114.  

[56] S. Laveau and O. Faugeras, “3-D Scene Representation as a Collection of Images and Fundamental 

Matrices”, Technical Report 2205, INRIA, Feb. 1994.   

[57] A. Laurentini, “The Visual Hull Concept for Silhouette Based Image Understanding.” IEEE PAMI, 

Vol. 16, No. 2, 1994, pp. 150-162.  

[58] S. Lee, K.-Y. Chwa, J. Hahn and S.Y. Shin, “Image Morphing Using Deformation Techniques”, 

Journal of Visualization and Computer Animation, Vol. 7, No. 1, 1996, pp. 3-23.  

[59] J. Lengyel, “The convergence of graphics and vision”, Technical Report, IEEE Computer, July 

1998.  

[60] H. Lensch, “Techniques for Hardware-Accelerated Light Field Rendering”, Master Thesis, 

Friedrich-Alexander-Universität Erlangen-Nürnberg, 1999.  

[61] W. H. Leung and T. Chen, “Line-Space Representation and Compression for Image-Based 

Rendering”, Carnegie Mellon Technical Report: AMP01-02.     

[62] M. Levoy and P. Hanrahan, “Light field rendering”, Computer Graphics (SIGGRAPH’96), August 

1996, pp. 31-42.  

[63] M. Lhuillier and L. Quan, “Image Interpolation by Joint View Triangulation”, Proc. CVPR’99, Fort 

Collins, USA, June 1999.  

[64] J. Li, H. Shum and Y. Zhang, "On the compression of the image based rendering scene: a 

comparison among block, reference and wavelet coders", International Journal on Image and Graphics, 

Vol. 1, No. 1, 2001, pp.45-61.  



 40

[65] J. Li, K. Zhou, Y. Wang and H.-Y. Shum, “A Novel Image-Based Rendering System With A 

Longitudinally Aligned Camera Array”, EUROGRAPHICS’00, Interlaken, Switzerland, Aug. 2000, 

pp.107-114.  

[66] Z. C. Lin and H. Y. Shum, “On the Number of Samples Needed in Light Field Rendering with 

Constant-Depth Assumption”, Proc. CVPR’00, Hilton Head Island, South Carolina, USA, June 2000.  

[67] Z.-C. Lin, T.-T. Wong and H.-Y. Shum, “Relighting with the Reflected Irradiance Field: 

Representation, Sampling and Reconstruction”, International Journal of Computer Vision, Vol. 49, No. 2-

3, Sep.-Oct. 2002, pp. 229-246.  

[68] A. Lippman, “Movie Maps: An Application of the Optical Videodisc to Computer Graphics”, 

Computer Graphics (Proc. SIGGRAPH’80), 1980, pp. 32-43.  

[69] D. Lischinski and A. Rappoport, “Image-Based Rendering for Non-Diffuse Synthetic Scenes”, 

Rendering Techniques '98, Vienna, Austria, June 1998.  

[70] W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3-D Surface Construction 

Algorithm”, Computer Graphics (SIGGRAPH’87), Anaheim, CA, July 1987, pp. 163-169.  

[71] L. Luo, Y. Wu, J. Li, and Y. Zhang, “Compression of concentric mosaic scenery with alignment and 

3D wavelet transform”, SPIE: Image and Video Commun. And Processing 2000, San Jose CA, January 

2000, pp. 89-100.  

[72] M. Magnor, P. Eisert, B. Girod, “Model-Aided Coding of Multi-Viewpoint Image Data”, ICIP’00, 

Vancouver, Canada, 2000, pp. 919-922.  

[73] M. Magnor and B. Girod, “Adaptive Block-Based Light Field Coding”, 3rd Int. Workshop on 

Synthetic and Natural Hybrid Coding and Three-Dimensional Imaging (IWSNHC3DI’99), Santorini, 

Greece, Sep. 1999.  

[74] M. Magnor and B. Girod, “Hierarchical Coding of Light Fields with Disparity Maps”, ICIP’99, 

Kobe, Japan, Oct. 1999.  

[75] M. Magnor and B. Girod, “Data compression for light field rendering”, IEEE Trans. on CSVT, Vol. 

10, No. 3, Apr. 2000, pp. 338-343.  

[76] M. Magnor and B. Girod, “Model-Based Coding of Multi-Viewpoint Imagery”, VCIP’00, Perth, 

Australia, June 2000.  

[77] D. Marchand-Maillet and M. Vetterli, “Sampling Theory for Image-Based Rendering”, Master 

thesis, EPFL, Apr. 2001.  

[78] W. R. Mark, L. McMillan and G. Bishop, “Post-rendering 3D warping”, Proc. 1997 Symposium on 

Interactive 3D Graphics, ACM Press, 1997, pp. 7-16.  

[79] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based Visual Hulls”, 

Computer Graphics (SIGGRAPH’00), July 2000, pp. 369-374. 

[80] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler and L. McMillan, “Image-based 3D 

photography using opacity hulls”, Computer Graphics (SIGGRAPH’02), July 2002, pp. 427-437.  



 41

[81] L. McMillan, “An Image-Based Approach to Three-Dimensional Computer Graphics”, Ph.D. Thesis, 

Department of Computer Science, University of North Carolina at Chapel Hill, 1997.  

[82] L. McMillan and G. Bishop, “Plenoptic modeling: an image-based rendering system”, Computer 

Graphics (SIGGRAPH’95), August 1995, pp. 39-46.  

[83] J. Meehan, Panoramic Photograph, Watson-Guptill, 1990.  

[84] D.L. Milgram, “Computer methods for creating photomosaics”, IEEE Trans. Comput. C-24, 1975, 

pp. 1113-1119. 

[85] G. Miller, E. Hoffert, S. E. Chen, E. Patterson, D. Blackketter, S. Rubin, S. A. Aplin, D. Yim, J. 

Hanan, “The Virtual Museum: Interactive 3D Navigation of a Multimedia Database”, The Journal of 

Visualization and Computer Animation, Vol. 3, No. 3, 1992, pp. 183-197. 

[86] G. Miller, S. Rubin, and D. Ponceleon, “Lazy decompression of surface light fields for precomputed 

global illumination”, Eurographics Rendering Workshop 1998, Vienna, Austria, June 1998, pp. 281-292.  

[87] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG video: compression standard, 

Chapman & Hall, 1996. 

[88] S. Nayar, “Catadioptric omnidirectional camera”, Proc. CVPR’97, Puerto Rico, June 1997, pp. 482-

488.  

[89] U. Neumann, T. Pintaric, A. Rizzo, “Immersive Panoramic Video”, Proc. ACM Multimedia 2000, 

October 2000, pp. 493-494.  

[90] K. T. Ng, S. C. Chan and H.-Y. Shum, “Scalable Coding and Progressive Transmission of 

Concentric Mosaic Using Nonlinear Filter Banks”, ICIP’01, Thessaloniki, Greece, Oct. 2001.  

[91] K. T. Ng, S. C. Chan, H.-Y. Shum and S. B. Kang, “On the Data Compression and Transmission  

Aspects of Panoramic Video”, ICIP’01, Thessaloniki, Greece, Oct. 2001.  

[92] T. Nishita, T. Fujii and E. Nakamae, “Metamorphosis Using Bézier Clipping”, Proc. of the First 

Pacific Conference on Computer Graphics and Applications, Seoul, Korea, 1993.  

[93] J. R. Ohm, “Three-dimensional subband coding with motion compensation”, IEEE Trans. on Image 

Processing, Vol. 3, No. 5, Sep. 1994, pp. 559-571.  

[94] M. Oliveira, “Image-Based Modeling and Rendering Techniques: A Survey”, RITA - Revista de 

Informática Teórica e Aplicada, Volume IX, Number 2, October 2002, pp. 37-66.  

[95] M. Oliveira and G. Bishop, “Relief textures”, Technical report, UNC Computer Science TR99-015, 

March 1999.  

[96] A. V. Oppenheim, A. S. Willsky, S. N. Nawab, S. H. Nawab, H. Nawad, S. H. Nawab, Signals and 

Systems, 2nd Edition, Prentice Hall, 1996.  

[97] J. O’Rourke, Art Gallery Theorems and Algorithms, The International Series of Monographs on 

Computer Science. Oxford University Press, New York, NY, 1987.  

[98] V. Padmanabhan and J. Mogul, “Using Predictive Prefetching to Improve World-Wide Web 

Latency”, Proc. SIGCOMM’96, Stanford University, California, Aug. 1996.  



 42

[99] S. Peleg and M. Ben-Ezra, “Stereo Panorama with a Single Camera”, Proc. CVPR’99, Ft. Collins, 

Colorado, June 1999.  

[100] S. Peleg and J. Herman, “Panoramic Mosaics by Manifold Projection”, Proc. CVPR’97, 

Washington, June 1997, pp. 338-343.  

[101] S. Peleg, B. Rousso, A. Rav-Acha, A. Zomet, “Mosaicing on adaptive manifolds”, IEEE Trans. on 

PAMI, Vol. 22 No. 10, Oct 2000, pp. 1144-1154.  

[102] T. Ebrahimi and F. Pereira, The MPEG-4 Book, Prentice Hall PTR, July 2002.  

[103] I. Peter and W. Straßer, “The Wavelet Stream - Progressive Transmission of Compressed Light Field 

Data”, IEEE Visualization 1999, San Francisco, CA.  

[104] P. Rademacher, “View-dependent geometry”, Computer Graphics (SIGGRAPH’99), August 1999, 

pp. 439-446.  

[105] P. Rademacher and G. Bishop, “Multiple-center-of-projection images”, Computer Graphics 

(SIGGRAPH’98), August 1998, pp. 199-206.  

[106] P. Ramanathan, M. Kalman and B. Girod, “Rate-Distortion Optimized Streaming of Compressed 

Light Fields”, ICIP’03, Barcelona, Spain, Sep. 2003.  

[107] P. Ramanathan, E. Steinbach, P. Eisert and B. Girod, “Geometry refinement for light field 

compression”, ICIP’02, Rochester, NY, Sep. 2002.  

[108] D. G. Ripley, “DVI-a Digital Multimedia Technology”, Communications of the ACM, Vol. 32 No. 7, 

1989, pp. 811-822. 

[109] S3TCTM, SONICblue Incorporated, http://www.s3.com/.  

[110] H. S. Sawhney and R. Kumar, “True multi-image alignment and its application to mosaicing and 

lens distortion correction”, IEEE Trans. PAMI, Vol. 21 No. 3, Mar. 1999, pp. 235-243.  

[111] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense Two-Frame Stereo 

Correspondence Algorithms”, Int. Journal of Computer Vision, Vol. 47, No. 1/2/3, Apr.-Jun. 2002, pp7-42. 

[112] H. Schirmacher, W. Heidrich and H. P. Seidel, “Adaptive Acquisition of Lumigraphs from Synthetic 

Scenes”, EUROGRAPHICS’99, Vol. 18, No. 3, 1999.  

[113] H. Schirmacher, W. Heidrich and H. P. Seidel. “High-quality interactive Lumigraph rendering 

through warping” Graphics Interface 2000, Montreal, Canada, May 2000. 

[114] I. O. Sebe, P. Ramanathan and B. Girod, “Multi-View Geometry Estimation for Light Field 

Compression”, Proc. Vision, Modeling and Visualization (VMV-2002), Erlangen, Germany, Nov. 2002, pp. 

265-272.  

[115] S. M. Seitz and C. R. Dyer, “Photorealistic Scene Reconstruction by Voxel Coloring”, Proc. 

CVPR’97, San Juan, Puerto Rico, June 1997, pp. 1067-1073.  

[116] S. M. Seitz and C. R. Dyer, “Physically-Valid View Synthesis by Image Interpolation”, Proc. 

Workshop on Representation of Visual Scenes, 1995, pp. 18-25.  

[117] S. M. Seitz and C. M. Dyer, “View morphing”, Computer Graphics (SIGGRAPH’96), August 1996, 

pp. 21-30.  



 43

[118] J. Shade, S. Gortler, L.-W. He and R. Szeliski, “Layered depth images”, Computer Graphics 

(SIGGRAPH’98), August 1998, pp. 231-242.  

[119] H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics”, Computer Graphics 

(SIGGRAPH’99), August 1999, pp.299-306.  

[120] H.-Y. Shum, K. T. Ng and S. C. Chan, “Virtual Reality Using the Concentric Mosaic: Construction, 

Rendering and Data Compression”, ICIP’00, Vancouver, Canada, Sep. 2000, pp. 644-647.   

[121] H.-Y. Shum, L.-F. Wang, J.-X. Chai and X. Tong, “Rendering with Manifold Hopping”, 

International Journal of Computer Vision, Vol. 50, No. 2, Nov. 2002, pp. 185-201.  

[122] P. P. Sloan, M. F. Cohen and S. J. Gortler, “Time critical Lumigraph rendering”, Symposium on 

Interactive 3D Graphics, Providence, RI, USA, 1997, pp.17-23.  

[123] R. Swaminathan and S.K. Nayar, “Polycameras: Camera Clusters for Wide Angle Imaging”, 

Columbia University Technical Report, CUCS-013-99.  

[124] R. Szeliski, “Image Mosaicing for Tele-Reality Applications”, Technical Report CRL94/2, DEC 

Cambridge Research Lab, May 1994.  

[125] R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and texture-mapped 

models”, Computer Graphics (SIGGRAPH’97), August 1997, pp. 251-258.  

[126] G. Taubin and J. Rossignac, Course 38: 3D Geometry Compression, Siggraph'2000 Course Notes, 

July 2000.  

[127] D. Taubman and M. Marcellin, Jpeg2000: Image Compression Fundamentals, Standards, and 

Practice, Kluwer Academic Publishers, Nov. 2001.  

[128] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of video”, IEEE Trans. on Image Proc-

essing, Vol. 3, No. 5, Sep. 1994, pp. 572-588. 

[129] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, N. Master, “Calibrated, Registered 

Images of and Extended Urban Area”, to appear in the International Journal of Computer Vision, 2003.  

[130] J. Y. Tham, S. Ranganath, and A. A. Kassim, “Highly scalable wavelet-based video codec for very 

low bit-rate environment”, IEEE Journal on Selected Areas in Communications, vol. 16, no. 1, Jan. 1998. 

[131] X. Tong and R. M. Gray, “Coding of Multi-View Images for Immersive Viewing”, ICASSP’00, 

Istanbul, Turkey, vol. 4, June 2000, pp. 1879-1882.  

[132] TotalViewTM, Be Here Technologies, http://www.behere.com/.  

[133] M. Uyttendaele A. Eden, R. Szeliski, “Eliminating Ghosting and Exposure Artifacts in Image 

Mosaics”, Proc. CVPR’01, Kauai, Hawaii, Dec. 2001, pp. 509-516.  

[134] S. Vedula, S. Baker and T. Kanade, “Spatio-Temporal View Interpolation”, Proc. of the 13th ACM 

Eurographics Workshop on Rendering, June, 2002. 

[135] T. Werner, R. D. Hersch and V. Hlavác, “Rendering Real-World Objects Using View Interpolation”, 

Proc. ICCV’95, Boston, MA, June 1995.  

[136] T. Werner, V. Hlavác, A. Leonardis and T. Pajdla, “Selection of Reference Views for Image-Based 

Representation”, Proc. ICPR’96, Vienna, Austria, Aug. 1996, pp.73-77.  



 44

[137] B. Wilburn, M. Smulski, H.-H. K. Lee and M. Horowitz, “The Light Field Video Camera”, 

Proceedings of Media Processors 2002, SPIE Electronic Imaging 2002.  

[138] G. Wolberg, Digital Image Warping, IEEE Computer Society Press, 1990.  

[139] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H. Salesin and W. Stuetzle, 

“Surface light fields for 3D photography”, Computer Graphics (SIGGRAPH’00), July 2000, pp. 287-296.  

[140] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer and D. H. Salesin, “Multiperspective 

panoramas for cel animation”, Computer Graphics (SIGGRAPH’97), August 1997, pp.243-250.   

[141] T.-T. Wong, C. W. Fu, P.-A. Heng and C.-S. Leung, “The Plenoptic Illumination Function”, IEEE 

Trans. on Multimedia, Vol. 4, No. 3, Sep. 2002, pp. 361-371.  

[142] Y. Wu, L. Luo, J. Li and Y. Zhang, “Rendering of 3D Wavelet Compressed Concentric Mosaic 

Scenery with Progressive Inverse Wavelet Synthesis (PIWS)”, VCIP’00, Perth, Australia, June 2000. 

[143] Y. Wu, C. Zhang and J. Li, “Smart-Rebinning for Compression of Concentric Mosaic”, IEEE Trans. 

on Multimedia, Vol. 4, No. 3, Sep. 2002, pp 332-342.  

[144] Y. Xiong and K. Turkowski, “Creating image-based VR using a self-calibration fisheye lens”, Proc. 

CVPR’97, Puerto Rico, June 1997, pp. 237-243.  

[145] J. C. Yang, M. Everett, C. Buehler and L. McMillan, “A Real-Time Distributed Light Field 

Camera”, Eurographics Workshop on Rendering 2002, pp. 1-10.  

[146] C. Zhang and T. Chen, “A System for Active Image-Based Rendering”, ICME’03, Baltimore, 

Maryland, July 2003.  

[147] C. Zhang and T. Chen, “Active Scene Capturing for Image-Based Rendering”, Carnegie Mellon 

Technical Report: AMP03-02.  

[148] C. Zhang and T. Chen, “Generalized Plenoptic Sampling”, Carnegie Mellon Technical Report: 

AMP01-06.  

[149] C. Zhang and T. Chen, “Spectral Analysis for Sampling Image-Based Rendering Data”, to appear in 

IEEE Trans. on CSVT, Special Issue on Image-based Modeling, Rendering and Animation.  

[150] C. Zhang and T. Chen, “Surface Plenoptic Function as a Tool for Image-Based Rendering Sampling 

Analysis”, ICASSP’03, Hong Kong, China, April 2003.  

[151] C. Zhang and T. Chen, “Non-Uniform Sampling of Image-Based Rendering Data with the Position-

Interval-Error (PIE) Function”, VCIP’03, Lugano, Switzerland, July 2003.  

[152] C. Zhang and J. Li, “Compression of Lumigraph with Multiple Reference Frame (MRF) Prediction 

and Just-In-Time Rendering," Proc. IEEE Data Compression Conf. (DCC'00), Snowbird, Utah, March 

2000, pp. 254-263.  

[153] C. Zhang and J. Li, “Compression and Rendering of Concentric Mosaics with Reference Block 

Codec (RBC)”, VCIP'00, Perth, Australia, June 2000.  

[154] C. Zhang and J. Li, “Interactive Browsing of 3D Environment over the Internet”, VCIP’01, San Jose, 

CA, Jan. 2001.  



 45

[155] Z.-P. Zhang, L.-F. Wang, B.-N. Guo, H.-Y. Shum, “Feature-based light field morphing”, Computer 

Graphics (SIGGRAPH’02), July 2002, pp. 457-464.   

[156] Z.-Y. Zhang, “Image-based geometrically-correct photorealistic scene / object modeling (IBPhM): a 

review”, Asian Conference on Computer Vision (ACCV’98), Hong Kong, Jan. 8-11, 1998.  

[157] J. Y. Zheng and S. Tsuji, “Panoramic Representation of Scenes for Route Understanding”, Proc. 

ICPR’90, June 1990, pp. 161-167.  


