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ABSTRACT

Over the last several years, teams working on expert
systems have been exploring formal approaches for belief
revision and information acquisition. The formalization of
major components of expert systems operation is useful for
understanding and characterizing system behavior and for
predicting changes with modification. Formalization also
facilitates the involvement of investigators in more well-
developed disciplines such as statistics. While the use of
formal methodologies for diagnostic problem solving is
attractive because of the generality, power, and axiomatic
basis of inference, the methodologies have been criticized
for making inferences that are difficult to understand and
explain. | shall focus on the problem of explaining format
reasoning methodologies. The PATHFINDER system for
pathology diagnosis is presented as an example of current
research on aspects of the use of formal methodologies in
expert systems. [ will demonstrate that a formal system is
amenable to controlled degradation to enhance its
explanation capability.

1. INTRODUCTION

It is fitting that there be a focus of discussion on expert
systems in a session on computers and medical decision-
making. Original ground-breaking research on expert
sysiems was the result of attempts to build systems to
reason about complex medical problems [4]. Expert
systems research developed within the field of artificial
intelligence over a decade ago and is now an established
engineering sub-discipline of artificial intelligence. 1t is
the intent of expert system research (o develop
methodologies for the representation and manipuiation of
the knowledge of experts in a variety of disciplines.

Artificial intelligence research is still in its youth. As in
other new disciplines in which unifying theories have not
been developed, much work has focused on non-axiomatic,
descriptive models. In this paper, | would like to briefly
introduce the descriptive and formal approaches to research
in artificial intelligence in general. 1 will stress the
usefulness of reasoning methodologies that follow from a
set of well-characterized axioms, | will then introduce
current problems with the use of formal systems. One
frequent criticism of formal reasoning strategies is that they
are difficult to understand and explain. 1 will focus on the
problem of explanation in expert systems that use formal
methods for reasoning under uncertainty. In this regard, |
will present research on the PATHFINDER expert system
for pathology diagnosis as an example of research on
aspects of the use of formal methodologies in expert
systems. [n answer to some complaints about the rigidity
and unnatural nature of formal systems, | shall describe
how a formal system is amenable to controlled degradation
so that it can perform more descriptively.

2. AXIOMATIC AND DESCRIPTIVE APPROACHES

Science has been marked by an ongoing attempt to
explain observed patterns and relationships with models that
provide reasonable explanations and predictability. Useful
theories tend to simplify phenomena through explaining
complexity with a refatively small number of empirically or
intuitively justifiable properties or axioms.

Unfortunately, theories based on a set of justifiable
axioms often do not exist; when a theory is enumerated, it
is often not obviously optimal, unique, or desirable.
Throughout the history of science, when useful axiomatic
theories have not been available, scientists have resorted to
descriptive models. Such models summarize complex
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behavior by describing phenomenology without resorting to
fundamental axioms. They capture the behavior of systems,
often through the postulation of relations that may be
inconsistent with one another or with other accepted
knowledge. As an example, before Newton constructed the
theory of universal gravitation and Kepler developed
equations describing the motion of objects orbiting in
gravitational fields, astronomers often depended on epicycle
machines. These machines could approximately describe
the movement of heavenly bodies, as viewed from the earth,
with a complex tangle of gears and chains. They did not
explain the movement of heavenly bodies with a consistent
theory of fundamental relationships.

2.1 Descriptive Expert Systems Research

Much of expert systems research can be characterized as
either axiomatic or descriptive. The descriptive expert
system approach centers on the design and empirical
evalyation of algorithms that mimic aspects of human
behavior. Descriptive expert systems research is not
hindered by the lack of a formal axiomatic basis; it is the
intent of the research to discover useful strategies for
representing and manipulating expert knowledge regardless
of the availability or acceptability of a set of self-
consistent desiderata. Investigators in the descriptive school
of research view exploration of the sufficiency of informal
modefs of human problem solving as a more direct
approach to difficult problems. That is, given poor
understanding, many expert systems researchers attempt to
capture expertise through building and experimenting with
descriptive models in the spirit of the epicycle machines of
long ago.

As an example of the descriptive approach (o expert
system design, the Present lliness Program (PIP) [23],
developed ten years ago at M.LT., was an attempt o
simulate the cognition of a physician’s reasoning about
patients presenting with edema (swelling). A central aspect
of the design of the system involved an analysis of the
behavior of the clinician. Final versions of PIP had
descriptive cognitive structures called the supervisory
program, the short-term memory, and long-term memory
were constructed.

A large category of descriptive systems is based on the
rule-based methodology [(4]. The rule-based expert system
methodology is the result of attempts to adapt the use of an
automated logical inference methodology, called production
gystems [32, 1], to capture aspects of human expertise.
Production systems are comprised of sets of logically
interacting inference rules of the form IF E THEN H,
where H is a hypothesis and E is evidence having relevance
to the hypothesis. In practice, sules of logical inference are
used in automated deduction. For example, modus ponens
and simple rules of unification can be applied to a set or
knowledge base of rules to do proofs that consist of the
forward or backward "chaining” of rules. .

One of the most prolific early expert systems was
MYCIN {31], a rule-based expert system for the diagnosis
of bacterial infection. The MYCIN reasoning framework
remains one of the most popular expert system
methodologies. MYCIN's knowledge is stored as rules that
capture the relationships among relevant medical evidence
and hypotheses. For example, a rule in MYCIN might be:
"if an organism [nfecting a patient Is gram-positive and
grows in clumps then add support to the hypothesis that the
organism is staphylococcus.” It was recognized early on in
the MYCIN research that straightforward application of the
production rule methodology would be insufficient because
of the uncertainty in the relationships between evidence and



hypotheses in medicine.

In order (o accommodate these non-deterministic
retationships, MYCIN uses certainty factors [4]. To each
rule, a certainty factor is attached which represents the
change in belief about a hypothesis given some evidence.
Certainty factors range between -1 and 1. Positive numbers
correspond to an increase in belief in a hypothesis while
negative quantities correspond to a decrease in belief. An
ad hoc calculus for evidence combination was presented in
the original research [30].

2.2 The Axiomatic Approach

In contrast to the descriptive approach, investigators
pursuing the formal axiomatic approach are interested in
exploring the adequacy of systems that satisfy desired
properties. That is, they design expert systems that are
necessarily consistent with desired properties. When such a
set is deemed optimal for reasoning in the context of
particular tasks it is termed a normative theory for
reasoning.

Investigators interested in the formal approach attempt to
design expert systems that behave consistently with
established theories for reasoning under uncertainty. In
exploring the automation of reasoning under uncertainty,
investigators have focused on the use of theories for the
consistent revision of belief in the context of previous
belief and for controlling information acquisition. Examples
of axiomatic theories that have been used in expert systems
research for belief revision include probability [24], fuzzy
logic (39]), Dempster-Shafer theory [28], certainty factors
[30], and multi-valued logics [13]. Theories used for
controifing information acquisition include information
theory [29] and decision theory [25, 26].

Alternative formalisms are often based on clear sets of
properties. An expert system engineer can base an expert
system on a set of properties that is viewed to be a
particularly intuitive or desired. For example, a set of
simple properties about continuous measures of belief can
be shown to necessitate the use of probability theory to
manage the consistent assignment of belief [6, 36, 20].
Agreement with the properties necessitates the use of

probability theory. A small set of intuitive properties also -

lies at the foundation of decision theory [37]. Of course,
there are differences of opinion among the formalists about
the optimality or necessity of particular sets of axioms,
For example, there has been ongoing debate in the artificial
intelligence  community regarding the alternative
methodologies for the revision of belief [5, 20].

To date, there have been several attempts to base expert
reasoning systems on well-defined formalisms. Three
examples are the Acute Renal Failure [15] system, the
MEDAS [1] system for emergency medicine, and the
PATHFINDER [17] system for lymphoma diagnosis. These
systems were designed to be consistent with well-understood
formalisms for reasoning.

Both the descriptive and axiomatic approaches have led to
the construction of systems that perform at levels rivaling
experts in a variety of domains. Given the complexity of
problems at hand and the youth of the field, both
approaches have been useful in exploring techniques for
automated reasoning. In general there has been a healthy
interplay between the the descriptive and the axiomatic
research; a dynamic research milieu is created by the co-
existing approaches.

3. THE BENEFITS OF FORMALIZATION

A worthy fundamental goal of research should be the
eventual development of useful theories. As in any science,
the study of automated reasoning would benefit greatly
from attempts to construct theories for representing and
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‘manipulating knowiedge. Whether an investigator initially

chooses to become involved with descriptive or formal
research, a fundamental goal should be the construction of a
formal science. A strang theoretical basis for components
of expert reasoning systems would be extremely useful.
While there have aiready been strides in the application of
formal theories to expert systems, greater understanding
could facilitate the design, control, and characterization of
expert systems.

The subscription to axiomatic bases for components of
expert reasoning can be useful in a number of ways. It can
assure a system engineer that the behavior of his system
will remain consistent with a set of desired properties.
Basing a system on a formal theory also ensures that the
system will be seif-consistent. If an axiomatic theory is not
used in building an expert system, it can be quite difficult
to maintain  self-consistency. The presence of
inconsistencies in complex computer systems often leads to
unpredictable behavior.

Recent research on the ad hoc certainty factor model
used for combining evidence in the MYCIN system
introduced above has found the original model to be seif-
inconsistent [16, 18]. Recent work has focused on
removing inconsistencies in the model [16]. The consistent
reformulation of certainty factors demonstrates that the
belief revision theory is a specialization of probability in
that assumptions of conditional independence are imposed
by the methodology. For example, it can be shown that
evidence must be conditionally independent given H and its
negation [16]. The determination of inconsistency and the
detection of constraints were facilitated by the
formalization of MYCIN’s reasoning strategies.

Formal models can also assist an engineer greatly when a
system is modified. A formal system allows for the crisp
prediction of changes in system behavior in response to
system modifications. [t can be quite difficult to predict
the impact of modifications on systems for which no
underiying theoretical structure is available. Having the
ability to control the effect of system modifications is
extremely important for the maintenance of systems, for the
generalization of specific successes, and for the incremental
refinement of techniques. Incremental refinement can be
particularly significant in the continuing development of a
theoretical framework for automated reasoning,

Most relevant for this conference, formalization can also
be crucial for expert systems research to benefit from the
participation of investigators in other highly-developed
disciplines.  Issues surrounding descriptive and axiomatic
expert systems research are of special relevance in this
regard. For example, expert systems research would benefit
if it could attract statisticians to assist in solving difficult
problems. Formal descriptions of systems and
methodologies are important as they provide conceptual
handles necessary for communication with researchers in
other fields.

4, PROBL.LEMS WITH THE FORMAL APPROACH

Two .centra'l issues that arise in discussions of the
axiomatic approach are problems regarding the pragmatics
of engineering and computation, as well as explanation.

4.1 Tractability of Engineering and Computation

More so than for any other reason, researchers in
artificial intelligence have looked beyond axiomatic-based
techniques for complex domains because of the
computational overhead of inference and the requirement
for large amounts of knowledge. Formal methodologies are
viewed as having an insatiable thirst for data and computer
processing [8, 34].



4.2 Explanation

Another significant problem cited with respect to formal
methodologies is that it is difficult to explain
recommendations to users, The explanation of expert
systems has been identified as an significant factor in the
acceptance of expert systems [35]. In fact, the transparency
of reasoning has been cited as a fundamental feature of
expert  systems, disginguishing them from numericai
programs and other kinds of reasoning systems in artificial
intelligence [3]. The important role of reasoning
transparency in expert systems has made expianation an
artificial intetligence research focus.

It has been said that formal methodologies like
probability theory and decision analysis lead to unavoidable
losses in comprehensibility to expert system users [8, 34].
The manipulation of the equations of conditional
probability or decision trees may indeed be quite difficult
o succinctly explain. Such difficulties have provoked some
of the ongoing work on techniques for justifying the results
of formal reasoning strategies [33, 27, 20]. We shall focus
more closely on this problem below.

5. GRACEFUL DEGRADATION OF PERFORMANCE

The concerns about problems with explanation, knowledge
acquisition and computational tractability of systems based
on formalisms for reasoning under uncertainty are valid.
Indeed the methodologies demand large amounts of data and
computation. Complaints about the opacity of explanations
of recommendations are also justified.

Formal methodologies for reasoning under uncertainty
have been put forth as general theories. They have not
been designed for use in complex reasoning systems that
might be dominated by limitations in computational and
engineering resources. An interesting and potentially
fruitful area for investigation is the development of
strategies for modifying formal methodologies to perform
under specified constraints, The process of identifying
pressing resource limitations followed by an attempt to
reformulate theories (deemed optimal in a world with
infinite resources) to perform in constrained environments
could be more useful than the outright dismissal of the

theories.  Such techniques could allow an engineer to
gracefully degrade a -system$ performance to reflect
diminishing amounts of available engineering or

computational resource.

Theories of belief revision and information acquisition
have not traditionally been accompanied by tools that allow
a well-defined relaxation of restrictions or requirements. [t
would be productive to develop such methodologies to
generate well-characterized trade-offs such as between the
accuracy of a recommendation and computation time.
Useful approaches to graceful degradation of various aspects
of reasoning behavior would make the disagreement with
properties of general parent theories clear. The
development of strategies for the controlled degradation of
reasoning would allow artificial intelligence researchers to
continue to build upon the theoretical achievements of
more mature disciplines.

We will now turn to an example of the degradation of
expert system performance to satisfy constraints on the
complexity of Inference. As we shall see, degrading an
optimal reasoning methodology can serve to enhance the
explanation capability in an expert system.

6. EXPLAINING COMPLEX REASONING

{ would like to demonstrate an example of the
decomposition of a complex reasoning methodology. 1 hope
that it may serve as an example of a category of strategies
that can help investigators successfully apply axiomatic
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models.  First 1 will present an information-optimizing
reasoning strategy that makes inferences that are difficult to
explain. [ will then describe how a less efficient but more
explainable strategy could be generated.

6.1 The Complexity of Reasoning Under Uncertainty

We have proposed [19] that a central aspect of the
difficulty that investigators have had in explaining expert
system recommendations is based on the intrinsic
complexity of formal reasoning under uncertainty, As
often noted, a fundamental difference between simpie
deduction and more general reasoning under uncertainty is
the inference complexity: within a deductive system, any
particular path to a conclusion is considered 0 be a
sufficient proof; in contrast, reasoning under uncertainty
usually entails the consideration of all paths [5]. Formal
theories of belief revision and information acquisition
generally involve the parailel consideration of a greater
number of propositions than simpie logical deduction
problems.  For example, probabilistic reasoning systems
calculate the values of single conditional probabilities to
summarize many steps of inference. This complex
summarization process, so central in probabilistic inference,
has been seen as a problem in expert system
understandability [8].

What is the fundamental basis for problems with
complexity? Cognitive psychology results can lend insight
to this question. Problems associated with the
comprehension of complex problems such as the operation
of complex reasoning strategies have been a longtime
research focus within cognitive psychology [2].  Classic
research in this field has demonstrated severe limitations in
the ability of humans to consider more than a handful of
concepts in the short term [21]. In fact, studies [38] have
discovered that humans cannot retain and reason about
more than two concepts in an environment with
distractions. Such results underscore the need for managing
the complexity of expert systems inference.

For humans to successfully understand, plan, prove, and
design in environments that are informationally complex,
they must devise schemes for decomposing large unwieldy
problems into smaller, interrelated sub-problems. [ will
present our work on the enhancement of explanation
through the decomposition of complex formal reasoning.
Before presenting the work, | must first describe the
hypothetico-deductive architecture of PATHFINDER.

7. THE PATHFINDER PROJECT

PATHFINDER [17] is a hypothetico-deductive expert
system for the diagnosis of lymph node pathology based
upon the appearance of microscopic features in lymph node
tissue. Disease manifestations in lymph node pathology are
microscopic features. Features are each subdivided into a
mutually exclusive and exhaustive list of values. Features
are evaluated by the selection of a value that reflects the
status of the feature in the case being reviewed. We say
that the assignment of a value to a feature constitutes a
piece of evidence. The PATHFINDER system reasons
about 80 diseases, considering over 500 pieces of evidence,

7.1 The Hypothetico-Deductive Architecture

The PATHFINDER system is based on the hypothetico-
deductive architecture. The hypothetico-deductive method
(also referred to as the method of sequential diagnosis
[14]) has been studied in several expert systems research
projects including the Acute Renal Failure [15] system, the
INTERNIST-1 [22] system for diagnosis within the field
of internal medicine, and the MEDAS [1] system for
emergency medicine.

Hypothetico-deductive systems are presented with an
initial set of evidence. The initial evidence is used to



assign a probabilistic or quasi-probabilistic score to each
hypothesis and a list of plausibie hypotheses is formulated
from the scores. Then, questions are selected which can
help decrease the number of hypotheses under consideration.
After a user replies to requests for new information, a new
set of hypotheses is formulated and the entire process is
repeated until a single diagnosis is reached.

The question selection strategies are termed hypothesis-
directed in that reasoning strategies operate on the current
list of hypotheses under consideration to generate
recommendations for additional evidence gathering.
Investigators in the INTERNIST-1 and PATHFINDER
research groups have explored the usefuiness of taiioring
different reasoning strategies to the current list of diseases
under consideration or differential diagnosis. For example,
the strategy selected to narrow the differential diagnosis
may depend upon the number of diseases on the
differential, the probability distribution over the
differential, or both,

The advice generated by hypothesis-directed strategies is
often difficult to explain because of the complexity of their
operation. This is especially true if recommendations are
the result of inferences based on a large hypothesis list.
Hypothesis-directed strategies may consider the relevance of
hundreds of hypotheses in a single inference step.

The scoring scheme employed by PATHFINDER is based
upon the theory of subjective probability [9]. The
subjective probabilities of experts are used to infer the
probability that each disease is responsible for the evidence
that has been entered into the system. Depending on the
number and the distribution of probabilities among diseases
on the differential diagnosis, PATHFINDER chooses one of
several alternative diagnostic strategies for selecting
questions. As in other hypothesis-directed systems, it is the
goal of the question selection strategies to suggest the
optimal test to be evaluated next in an effort to reduce the
uncertainty in the differential diagnosis.

Several PATHFINDER strategies discriminate among
large numbers of diseases and features in the generation of
advice. [ shall not describe all of the hypothesis-directed
reasoning strategies used by PATHFINDER. Rather, we
will look at issues surrounding the explanation of a
particular PATHFINDER hypothesis-directed reasoning
strategy termed entropy-discriminate and its descendant,
group-discriminate.

7.2 A Strategy to Minimize Uncertainty

The PATHFINDER  entropy-discriminate reasoning
strategy was originally used to refine differential diagnosis
disease lists ranging in size from two to eighty diseases. The
strategy makes recommendations about information
acquisition by searching for tests that maximize a measure
of information contained in the differential diagnosis.
Similar information-maximizing strategies have been
examined in the MEDAS and Acute Renal Failure systems.

Entropy-discriminate makes use of a measure of
information known as relative-emtropy. In this context,
relative entropy is a measure of the additional information
provided by a piece of evidence E;, about a differential

diagnosis DD. Formaily,

H(DD,E,)
= Iy p(Dy1E4) Yog[p(Dy)/p(DylE,)].

where p(Dj) is the probability that disease Dj is present
before evidence E; is known, the prior probability of the
disease, and p(Dlei) is the prohability that disease D. is
present after evidence E; is known, the posterior probability

of the disease. For a justification of relative entropy as a
measure of information gain, see [29].
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As each feature consists of a set of mutually exclusive
and exhaustive values, we can denote the possible evidence
asgsociated with a particular feature, F, as E,.E, where n is

the number of mutually exclusive values associated with the
feature. Entropy-discriminate selects features which give
the highest expected relative entropy

CH(DD,F,)> = T, p(E,) H(DD.E,).

where the quantity is summed over feature values E.E ,
and p(E;) is calculated using the expansion rule

P(Ey) = £ p(E41Dy) P(Dy).

In an information-theoretic sense, the questions selected
by the entropy-discriminate strategy are optimal assuming
that the goal of the pathologist is to reduce uncertainty in
the differential as much as possible.

1.3 Problems With the Optimal Strategy

Soon after the implementation of entropy-discriminate
mode, we discovered that several expert pathologists,
including the expert that provided the system’s knowiedge,
often found that selected questions were difficult to
understand when the differential contained more than
approximately ten diseases. The entropy-discriminate
strategy of selecting questions that best discriminate among
all diseases on a differential diagnosis often seemed to be
too complex for experts. This is not surprising in light of
the limitations of human short term memory discussed
above.

We also had problems explaining the recommendations of
entropy-discriminate whenever there were more than two
diseases on the differential. Attempts were made to provide
textual and graphical explanations for the powerful
strategy's recommendations. One such graphical explanation
justified questions by listing, for each disease, the feature
value that would most favor the disease. Physicians found
such complex summarizations to be difficult to understand.

7.4 The Graceful Decomposition of Diagnostic Problem
Solving

The observed problems with the entropy-discriminate
strategy stimulated our interest in strategies for simplifying
and explaining - hypothesis-directed reasoning. We
discovered that pathologists often manage the complexity of
the diagnostic problem-solving task by reasoning about a
very small number of disease categories or groups at any
one time. Questions that discriminate among natural groups
tend to be proposed.

Specifically, the chief expert pathologist on the
PATHFINDER team often imposes a simple two-group
discrimination structure on the problem-solving task. As
opposed to a strategy of discriminating among all the
diseases on the differential, the pathologist's discrimination
task at any point in reasoning about a case is constrained to
only two groups of diseases. As categories of diseases are
ruled out, the particular pairs of groups considered become
increasingly specific. For example, if there are benign and
malignant diseases on a differential diagnosis, the pathology
expert often deems most appropriate those questions that
best discriminate between the benign and malignant groups
rather than questions that might best discriminate among all
of the diseases. If all benign diseases have been ruled out,
leaving only primary malignancies and metastatic diseases
on the differential diagnosis, the pathologist will attempt to
discriminate between the primary malignancy and the
metastatic categories.

We found that the expert's diagnostic strategy can be
described by the traversal of a hierarchy of disease
categories. The problem-solving hierarchy (see Fig. 1) is a
binary tree of disease groups. The hierarchy can be used to



group the differential diagnosis at various levels of

refinement,

[t is interesting to note that several previous studies of
medical reasoning have identified similar problem-solving
hierarchies [10, 11, 12] for managing the complexity of a
wide-variety of reasoning tasks,

The discovery of this expert reasoning strategy in lymph
node pathology suggested the development of a new
question-selection strategy that could discriminate among
binary groups of diseases instead of individual diseases. It
was hoped that design and application of such a strategy
would make explanation clear, as the user would only have
to consider the relevance of a recommendation to two
groups.

Our attempt to naturally constrain the discriminatory
focus of the -entropy-discriminate strategy led to a new
reasoning strategy we named group-discriminate.  The
group-discriminate strategy selects questions based on their
ability to discriminate between the most specific pair of
disease categories that account for all diseases on the
differential.

For a given differential diagnosis, group-discriminate
identifies the most specific grouping possible and then
selects questions that best discriminate among groups of
diseases. More formally, suppose the differentiaf is split

OGO
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Heuristic problem-solving hierarchy

<>

Figure I:

into two groups, G; and G, of n; and n, diseases
respectively:

6 = {Dy3. Dyzv .. Dpp}

62 * {0210 Dzzv -.. Dz }-

As we assume that only one lymph node disease is present
in PATHFINDER, we can consider the diseases to be
mutually exclusive events, We are interested in the
probability that the true diagnosis will be in each group. To
calculate this probability we add the probabilities of all the
diseases within each group. That is, the probability that a
group contains the true diagnosis is

P(Gy) = 5 P(Dy ).

We can also calculate p(GJ-]Ei). the probability of the final

diagnosis being contained in a group, considering a new
piece of evidence E;. This is

j=1, 2.

P(GyIE) = % POLIE). J = 1or 2.
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Therefore, 2 relative entropy of the grouped differential can
be defined. [n particular,

Hg(DD,E,) =
O D(GJlE1) 109[D(GJ|E,)/p(GJ)].
This quantity represents the additional information

contained in E; about the grouped differential diagnosis.
Group-discriminate selects those features which give the

- highest expected relative entropy.

Notice that the group-discriminate strategy ignores
information concerning the probabilities of diseases within
each group. Only the probabilities that the true diagnosis
lies within a group is considered in the calculations.

8. DISCUSSION

We integrated the group-discriminate strategy into the
PATHFINDER system so that it continues to refine
differential diagnosis lists until all diseases remaining on
the differential diagnosis are in a category at one of the
leaves of the binary problem-solving tree. At this point,
other hypothesis-directed strategies are applied to continue
pursuing a diagnosis. As the group-discriminate reasoning
strategy has a simpler discriminatory focus and more closely
follows the decision making protocol of the expert lymph
node pathologist than entropy-discriminate, it is quite easy
to expiain.

Instead of having o present complex summaries
explaining how each piece of evidence might impact on
belief in the presence of a number of diseases, an
explanation of questions generated by group-discriminate
must simply demonstrate how possible responses affect the
two groups under consideration,

The PATHFINDER system justifies the usefulness of
questions selected by group-discriminate with a graphical
display. Fig. 2 presents a small portion of a PATHFINDER
consultation. At the top of the figure is the differential
diagnosis, grouped into benign and malignant categories (at
the current level of refinement). Below, several lymph node
features recommended by group-discriminate are listed.
The group-discriminate strategy has determined that these
features can best discriminate between the benign and
malignant diseases. In this case, the user requested
explanation for the follicles density recommendation.

The positions of a set of asterisks in the justification
graph at the bottom of the figure are used to indicate the
degree (0 which each group of diseases is favored by each
possible feature value. Specifically, the position of an
asterisk is a function of the likelihood ratio

P(E|G)/p(EIG,). In the example, the values separated
and far apart strongly support diseases on the differential
diagnosis that are in the benign group, while the values
back-to-back and closely packed strongly support the
malignant disease hypotheses.

A user can easily ascertain how a question discriminates
among two groups of diseases; evidence is either supportive
for one group or the other. Even in an environment filled
with distractions, the behavior of the strategy is adequately
explained by such simple graphs.

Unfortunately, the more explainable group reasoning
strategy has some disadvantages. A predictable probiem
with the use of group-discriminate is that the differential
diagnosis refinement process does not always proceed as
quickly as it does with the application of the optimal
entropy-discriminate. That is, group-discriminate is not as
efficient as the more powerful entropy-discriminate; on
average, a larger number of evidence-gathering requests will
be made by group-discriminate to achieve a similarly
refined differential diagnosis. This must be the case as



> ask
Discriminating:
Malignant

Small cleaved, follicular lymphoma

Mixed., small cleaved and large cell,
follicular lymphoma '

Large cell, follicular lymphoma

Kaposis sarcoma

Small noncleaved, follicular lymphoma

Benign

Florid reactive follicular hyperplasia
R;6§t1vo hyperplasia
A

I recommend that the following
features be evaluated:

Status of follicles

Follicles density

Subcapsular sinuses

Medullary sinuses

Comparison of cytolo?y inside and
outside the follicles

> Justify
Which feature do you want justified?

> follicles density

The following table slucidates the
discriminating power of this feature.
The position of the asterisk indicates
which of the two groups of diseases is
favored by each valus.

Malignant

| Benign

v v

. . back-to-back
L ]

. closely packed
.. . separated
........ ® far apart

Figure 2: PATHFINDER consultation
detailed information about the plausibility of individual
diseases within each group is discarded in the grouping
process.

In general, simplification of an optimal strategy will lead
to a less-efficient strategy. Also, given the limits of human
cognition identified by research in cognitive psychology, it
is not unexpected that a reasoning strategy derived through
the constraint or decomposition of a complex problem-
solving task may be easier to understand and explain. It
seems that for a wide variety of reasoning strategies, there
will frequently be an inverse refationship between reasoning
understandability and efficiency. In making decisions about
alternative reasoning strategies and the clarity of
explanation for expert systems, computer scientists may be
able to make use of a well-characterized
explainability/efficiency trade-off.

9. CONCLUSION

I discussed the usefulness of automated reasoning
methodologies that follow from desired fundamental
properties and presented an example of the application of a
strategy that gracefully degrades complex reasoning of an

expert system. The degradation was based in the
decomposition of the diagnostic task. The degradation
strategy enabled the system to generate transparent

justifications for its requests for information, in exchange
for a reduction in the optimality of its recommendations.
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I believe that continuing research on the pragmatics of
applying formal models in the face of severe limitations in
data and computation, as well in the abilities of system
users will be beneficial. The development and refinement
of methodologies for the controlled degradation of
reasoning will allow artificial intelligence researchers to
build upon the elegant achievements of other disciplines.

Acknowledgements

I am indebted to David Heckerman for many productive
conversations. Mr. Heckerman has been an insightful leader
of the PATHFINDER Project. 1 thank Moshe Ben-Bassat,
Lawrence Fagan, Ben Grosof, Ted Shortliffe and Peter
Szolovits for interesting discussions. | am grateful to
Bharat Nathwani and Costa Berard for sharing with me
their thoughts on problem solving in pathology. This work
was supported in part by the Josiah Macy, Jr. Foundation,
the Henry J. Kaiser Family Foundation, the Ford Aerospace
Corporation, and the SUMEX-AIM Resource under NIH
Grant RR-00785.

References

Ben-Bassat, M., et. al.

Pattern-based Interactive Diagnosis of Multiple
Disorders: the MEDAS System.

IEEE Transactions on Patiern Analysis and Machine
Intelligence 2:148-160, 1980.

1.S. Bruner, JJ. Goodnow, G.A. Austin.
A study of thinking.
Wiley, 1956.

(1]

(21

Buchanan, B. G.

Research on Expert Systems.

In J. Hayes, D. Michie, Y. H. Pao (editors), Machine
Intelligence, pages 269-299. Ellis Howard Ltd.,
Chichester, England, 1982.

Buchanan, B. G., and Shortliffe, E. H., eds.
Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic
. _ Programming Project.
Addison-Wesley, Reading, Mass., 1984.

3]

(4]

Cheeseman, P.

In defense of probability.

In Proceedings of the Ninth International Joint
Conference on Ariificial Intelligence. 1JCAI1-85,
1985.

Cox, R.

Probability, frequency and reasonable expectation.

American Journal of Physics 14(1):1-13, January-
February, 1946.

(51

[l

Davis, R., Buchanan, B, and Shortliffe, E.

Production Rules as a Representation for a
Knowledge-Based Consultation Program.

Artificial Intelligence 8:15-45, 1977,

Davis, R.

Consultation, Knowledge Acquisition, and Instruction.

In P. Szolovits (editor), Artificial [ntelligence [n
Medicine, . Westview Press, 1982,

(7]

(sl

de Finetti, B.
Theory of Probability.
Wiley, New York, 1970.

091



[10]

(1]

[12]

[13]

[14]

(15]

(16]

(17]

[18]

[19]

[20]

Elstein, A. S., Loupe, M. J., and Erdman, J. G.

An experimental study of medical diagnostic
thinking.

Journal of Structural Learning 2:45-53, 1971,

Elstein, A. S.

Clinical Judgment:
medical practice.

Science 194:696, November, 1976.

Elstein, A. S.. Shulman, L. S, and Sprafka, S. A.

Medical problem solving: An analysis of clinical
reasoning.

Harvard University Press, Cambridge, Mass., 1978.

Psychological research and

Gaines, B.R.
Fuzzy and probability uncertainty logics.
Information and Control 38:154-169, 1978.

Gorry, G. A, and Barnett, G. O.
Experience with a Model of Sequential Diagnosis.
Computers and Biomedical Research 1:490-507, 1968.

Gorry, G. A., Kassirer, J. P, Essig, A., and Schwartz,

w. B.

Decision Analysis as the Basis for Computer-Aided
Management of Acute Renal Failure.

American Journal of Medicine 55:473-484, 1973,

Heckerman, D.E.

Probabilistic Interpretations for MYCIN's Certainty
Factors.

In Uncertainty in Artificial Inielligence, . North
Hoiland, New York, 1986.

Horvitz, EJ., Heckerman D.E., Nathwani, B.N., and

Fagan, LM.

Diagnostic Strategies in the Hypothesis-Directed
PATHFINDER System.

In Proceedings of the First Conference on Artificial
Intelligence Applications, pages 8. Denver, CO,
December, 1984,

Horvitz, E. J., and Heckerman, D. E. ,

The [nconsistent Use of Measures of Certainty in
Artificial [ntelligence Research.

In Uncertainty in Artificial Intelligence, . North
Holland, New York, 1986.

Also available as Technical Report No. KSL-85-57,
Knowledge Systems Laboratory, Stanford
University.

Horvitz, EJ., Heckerman, D.E., Nathwani, B.N.,

Fagan, LM.

The use of a heuristic problem-solving hierarchy to
facilitate the explanation of hypothesis-directed
reasoning.

In Proceedings of Medinfo. Medinfo, October, 1986.

Knowledge Systems Lab Technical Report KSL-86-2,
Stanford University, 1986.

Horvitz, E. J., Heckerman, D. E., Langlotz, C. P.

A framework for comparing formalisms for plausible
reasoning.

In Proceedings of the AAAl. AAAI, Morgan
Kaufman, Philadelphia, August, 1986.

Knowledge Systems Lab Technical Report
KSL-86-25, Stanford University.

51

(21]

[22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

[30]
031]
032]

£33]

[34]

Miller, G.A.
The magical number seven, plus or minus two.
Psychological Review §3:31-97, 1956.

Miller, R. A, Pople, H. E., and Myers, J. D.
INTERNIST-1, An Experimental Computer-Based
Diagnostic Consultant for General Internal

Medicine.
New England Journal of Medicine 307(8):468-476,
1982.

Pauker, S. G., Gorry, G. A, Kassirer, J. P, Schwartz,

W. B.

Toward The Simulation Of Clinical Cognition:
Taking A Present [liness by Computer.

American Journal of Medicine 60:981-995, 1976.

Pearl, J.

Fusion, propagation, and structuring in Bayesian
networks.

1985.

Presented at the Symposium on Complexity of
Approximately Solved Problems, Columbia
University, 1985.

Pract, J. W., Raiffa, H., and Schlaifer, R,

Introduction to Statistical Decision Theory
( Preliminary Edition).

McGraw-Hill, New York, 1965.

Raiffa, H.

Decision Analysis: Introductory Lectures on Choice
Under Uncertainty.

Addison-Wesley, Reading, Mass., 1968.

Reggia, J.A., Perricone, B.T.

Answer Justification in Medical Decision Support
Systems Based on Bayesian Classification.

Comp. Biol. Medicine 15(4):161-167, 1985.

Shafer, G.
A Mathematical Theory of Evidence.
Princeton University Press, 1976.

Shore, J.E.

Relative entropy, probabilisitic inference, and Al

In Uncertainty in Artificial Intelligence, . North
Holland, 1986.

Shortliffe, E. H. and Buchanan, B. G.
A model of inexact reasoning in medicine.
Mathematical Biosciences 23:351-379, 1975.

Shortliffe, E. H.
Computer-Based Medical Consultations: MYCIN.
Elsevier/North Hoiland, New York, 1976,

Simon, H.A.
The Theory of Problem Solving.
Information Processing 71:261-2717, 1972,

Spiegelhalter, D.J., and Kniti-Jones, R.P.

Statistical and knowledge-based approaches to clinical
decision-support systems, with an application in
gastroenterology.

J. R. Statist. Soc. A 147:35-71, 1984.

Szolovits, P.

Artificial Inteiligence in Medicine.

In P. Szolovits (editor), Artificial Intelligence in
Medicine, . Westview Press, 1982.





