
Theoretical Computer Science 340 (2005) 102–153
www.elsevier.com/locate/tcs

A semantics for web services authentication

Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon∗
Microsoft Research, 7 J JThomson Avenue, Cambridge, UK

Abstract

We consider the problem of specifying and verifying cryptographic security protocols for XML web
services. The security specification WS-Security describes a range of XML security elements, such
as username tokens, public-key certificates, and digital signatures, amounting to a flexible vocabulary
for expressing protocols. To describe the syntax of these elements, we extend the usual XML data
model with symbolic representations of cryptographic values. We use predicates on this data model
to describe the semantics of security elements and of sample protocols distributed with the Microsoft
WSE implementation of WS-Security. By embedding our data model within Abadi and Fournet’s
applied pi calculus, we formulate and prove security properties with respect to the standard Dolev–Yao
threat model. Moreover, we informally discuss issues not addressed by the formal model. To the best
of our knowledge, this is the first approach to the specification and verification of security protocols
based on a faithful account of the XML wire format.
© 2005 Published by Elsevier B.V.

Keywords:XML security; Applied pi calculus; Web services

1. Motivations and outline

Over the past few years, a growing list of specifications has been defining aspects of
XML web services. Security is a serious concern and is addressed, in particular, by the
recent WS-Security standard[32]. WS-Security provides an XML vocabulary for design-
ing cryptographic protocols and by now has multiple implementations. Still, it provides no

∗ Corresponding author.
E-mail address:adg@microsoft.com(A.D. Gordon).

0304-3975/$ - see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.tcs.2005.03.005

http://www.elsevier.com/locate/tcs
mailto:adg@microsoft.com

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 103

formal basis for stating security goals or reasoning about correctness. The trouble is, new
cryptographic protocols are often flawed, XML or no XML.

Meanwhile, there has been a sustained and successful effort to develop formalisms for
expressing and verifying cryptographic protocols ([8,12,13,22,25,27,35,39], etc). Formal
methods can verify various security properties against a standard threat model based on
an opponent able to monitor and manipulate messages sent over the network. Such verifi-
cations are typically of abstract versions of protocols, expressed using fixed, high-level,
ad hoc message formats, rather than the standard XML syntax for ordered trees with
pointers.

This paper brings these developments together. We introduce a language-based model
for XML security protocols, and we establish process calculus techniques for verifying
authentication properties for a wide class of WS-Security protocols.

1.1. Background: Web services security

Web services [41] are a distributed systems technology based on network endpoints
exchanging SOAP [9] envelopes—XML documents with a mandatoryBody element con-
taining a request, response, or fault element, together with an optionalHeader element
containing routing or security information. SOAP allows for network intermediaries—such
as routers or firewalls—to process an envelope, by adding or modifying headers. Exam-
ples of web services include Internet-based services for ordering goods or invoking search
engines, and intranet-based services for linking enterprise applications.

A common technique for securing SOAP exchanges is to rely on a lower-level secure
tunnel between the endpoints, typically an SSL connection. This works well in many situa-
tions, but has the usual disadvantages of transport-level security: the secrecy or integrity of
messages can be guaranteed while in the tunnel, but not subsequently in files or databases,
and they may not match the security requirements of the application. Pragmatically, client
authentication is often performed by the application rather than by SSL. Besides, SSL does
not fit SOAP’s message-based architecture: intermediaries cannot see the contents of the
tunnel, and so cannot route or filter messages.

To better support end-to-end security [36], WS-Security defines how to sign or encrypt
SOAP messages without relying on a secure transport.A central—but informal—abstraction
is thesecurity token, which covers data making security claims, such as user identifiers,
cryptographic keys, or certificates.WS-Security provides a precise syntax for multiple token
formats, such as XML username tokens and XML-encoded binary tokens conveying X.509
public-key certificates or symmetric keys. It also specifies syntax for applying encryption
and signature to selected elements of SOAP messages. In this paper, we use the term token
to refer to all security elements defined in WS-Security, including identity tokens, digital
signatures, and encrypted blocks. Like many traditional protocol specifications, WS-Secu-
rity details message formats—such as the names of XML tags—rather than security goals
and their enforcement, thereby focusing on interoperability rather than security. Although it
gives a syntax for a broad range of protocols, WS-Security also emphasizes flexibility, and
does not define any particular protocol. As a result, for each given WS-Security compliant
protocol, security goals still have to be carefully specified and validated.

104 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

1.2. Background: Security protocol verification

This paper addresses authentication properties of XML-based security protocols against
a standard threat model: an opponent able to read, replay, redirect, and transform messages,
but who cannot simply guess secrets. Needham and Schroeder describe such an opponent
in their pioneering work on cryptographic protocols[33]. The first formalization was by
Dolev and Yao [18]. A great many formal methods have been deployed to verify protocols
against this threat model, with particular progress in the past few years.

This paper uses Abadi and Fournet’s applied pi calculus [1,2] as the underlying specifi-
cation language for protocols, and relies on proof techniques from concurrency theory. In
this approach, the opponent is simply an arbitrary context within the calculus; the scoping
rules of the pi calculus ensure that the opponent cannot learn names representing secrets
such as the passwords of protocol participants.

We formalize authentication properties using standard correspondence assertions [42],
as embedded within the pi calculus by Gordon and Jeffrey [22]. These assertions are based
on two kinds of events, which can be thought of as logfile entries by protocol participants.
A begin-event marks the initiation of a run of a protocol, while an end-event marks the
commitment that a run has completed. Events record data identifying the run, such as the
names of the client and server, message identifier, and payload. A protocol is safe if in every
run, every end-event corresponds to a previous begin-event with the same event record.
Moreover, a protocol is robustly safe if it is safe in the presence of an arbitrary opponent
process. Robust safety establishes message authentication, and rules out a range of attacks.
Other formulations of authentication are possible; see [21] for a comparative study.

1.3. This paper

We tackle the problem of formal reasoning about XML-encoded cryptographic protocols.
The interest and novelty in this problem arises not from the XML syntax itself, but from
the need to model low-level detail, in particular, the flexibility and hierarchical structure of
XML signatures [20], designed to tolerate changes to the headers of a SOAP message over
its lifetime.

We base our approach on three formalisms: a symbolic syntax for XML with cryptography
and a predicate language for defining acceptable messages—both defined in Section 2—and
a specialized version of the applied pi calculus. We explain the purpose of each of these
in turn.

First, to represent XML messages with embedded cryptography, we enrich the standard
XML data model with an abstract syntax for embedded byte arrays and cryptographic
functions. Formally, we define a many-sorted algebra with sorts for the usual constructs of
XML—strings, attributes, and so on—plus a new sort of symbolic byte arrays, in the style
of Dolev and Yao, to represent cryptographic materials embedded in XML.

Second, to define the semantics of security tokens and validity conditions on messages,
we introduce a Prolog-like language of predicates on XML data. By insisting on fidelity to
the low-level XML format, we are confronted with the difficulty of defining rather intricate
conditions of message acceptability, and hence we need some language of predicates on
XML. It may be possible to extend some standard type system or query language for XML

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 105

(such as DTDs, XML Schema, or XPath) to express conditions on cryptographic values.
Instead, for the sake of simplicity and being self-contained, we rely on a fairly standard
Horn-clause logic.

Third, to describe complete protocols, we embed these messages and predicates within the
applied pi calculus. We state and prove protocol properties against a large class of contexts
representing attackers. Applied pi is parameterized in general by an arbitrary equational
theory of terms, which we specialize to our data model for XML with cryptography. We
obtain a calculus expressive enough to implement our predicates, and to describe complex
protocol configurations.

In Section3, given these notations, we formalize the security goals and message for-
mats of a series of sample protocols. These protocols illustrate a range of WS-Security
concepts including message identifiers, password digests, username tokens, X.509 public-
key certificates, XML signatures based on both password-derived keys and certificates,
and processing by SOAP intermediaries as well as end-points. For each protocol, we give
predicates describing acceptable messages, and state authentication goals using the usual
message-sequence notation. WS-Security itself defines a formal syntax for messages, but
gives only an informal account of the security checks performed by compliant implementa-
tions, as each token is processed in the SOAP protocol stack. Through formalizing the series
of protocols, we accumulate a collection of re-usable predicates reflecting the semantics
of these tokens. Hence, we obtain a first formal semantics for a significant fragment of
WS-Security.

In Section 4, we formalize the message-sequence notation within the applied pi calculus
so as to verify our authentication goals. We explain the structure of the proof of three of the
sample protocols from Section 3. The proofs are compositional, and rely on identifying a
“trusted computing base” embodying the essential checks underlying the protocol.

In Section 5, we conclude, and discuss related and future work.
Appendix A is a brief introduction to the applied pi calculus. Appendix B contains addi-

tional proofs. A portion of this article is published as a conference paper [5]. A technical
report [6] contains additional details.

1.4. Contributions

In summary, we make three main contributions:
(1) A new data model and predicate language for describing XML-level cryptographic

protocols. Fidelity to the detailed messaging format enables us to address its subtleties,
such as the interpretation of compound signatures.

(2) A collection of predicates defining a semantics for the security tokens of WS-Security
and related specifications. We cover only a substantial fragment of WS-Security, but
our semantics does establish the feasibility of applying our formal developments to a
large class of protocols.

(3) Proofs for a series of concrete protocols drawn from the WSE 1.0 distribution. At an
abstract level, the protocols we consider are quite simple. Still, we have encountered
vulnerabilities to XML rewriting attacks in implementations of these conceptually sim-
ple protocols. So it is worth establishing correctness at this level, and indeed the formal
Dolev–Yao properties are non-trivial.

106 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

2. Symbolic cryptography in XML

The core of our data model—or abstract syntax—for XML trees is adapted from Siméon
and Wadler’s grammar for XML[38].

XML data model: standard core

Tag ::= anyLegalXmlName element or attribute name
str:string ::= any legal XML string XML string
a:att ::= Tag=" str" Tag-attribute
as:atts ::= a as| � attribute sequence
i : item ::= Elem| str item
is: items ::= i is | � item sequence
Elem ::= <Tag as>is</ Tag> Tag-element

Our data model represents valid, parsed XML. It resembles the XML infoset recommen-
dation [14] but with some differences. For the sake of clarity, we completely suppress
information about XML namespaces, and the document<?xml ... > directive. As a mi-
nor technical convenience, we model an element’s attributes as an ordered sequence rather
than a set. (This also reflects the capability of an attacker to observe ordering information.)

Our syntax is intentionally close to the standard XML wire format, but for brevity we rely
on three notational conventions. First, although formally an element’s attributesasand body
is are recursively defined lists, we typically use a standard tuple notation for fixed-length
sequences. Second, instead of writing an element<Envelope></Envelope> , say, in
full, we drop the tag from the closing bracket, and simply write<Envelope></> . Third,
when writing an element that spans several lines, we rely on indentation (as in Haskell or
Python) to delimit the body, and so omit the closing bracket. So, by convention,

<Envelope>
<Header></>
<Body></>

is short for

<Envelope><Header></Header><Body></Body></Envelope> .

Conventions for sequences, for closing and indenting elements

a1 . . . am
�= a1 (. . . (am �)) :atts for m�0; similarly for items.

<Tag as>is</>
�= <Tag as>is</ Tag>

<Tag as>
i1
...

im




�= <Tag as>i1 · · · im</>

Formally, our data model is a many-sorted algebra, based on the sortsstring, att, atts,
item, items, plus a sortbytes for binary data. We embed this algebra within the applied pi

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 107

calculus as described in Section4. The complete algebra is given by the “XML data model”
table above plus two more below.

We need the following general definitions. We letT, U, V range over terms of arbitrary
sort in the algebra, and writeT : string, for example, to mean thatT belongs to the sort
string. Throughout we assume that terms, predicates, and equations are well sorted, but for
the sake of brevity keep the details implicit. In addition to the syntax defined in this section,
terms include sorted variables,x, y, z, . . ., and so on. We letfv(T) be the set of variables
occurring in a termT. We say a termT is closedif and only if fv(T) = �. Otherwise,
we say the term isopen—an open term represents a closed term with some undetermined
subterms, represented by the variables. We letṼ range over vectorsV1, . . . , Vm of terms,
and similarlỹx ranges over vectorsx1, . . . , xm of variables. We often treat such vectors as
sets. We let� range over parallel substitutions{̃x = Ṽ } of the terms̃V for the variables̃x,
and we definedom({̃x = Ṽ }) �= {̃x}. We say that a substitution� is closedif and only if
�(x) is a closed term for eachx ∈ dom(�).

Next, we supplement the core data model with a symbolic representation of cryptography
and related operations.We introduce a sortbytes representing byte arrays, and extendstring
with Base64-encoded arrays (base64(x)). We assume there is an infinite set of atomic,
abstractnames, ranged over bys. Each name is either of sortbytes or string. We use these
names to represent arbitrary, unstructured cryptographic materials such as passwords and
keys. We letfn(T) be the set of names occurring in a termT.

XML data model: byte arrays, symbolic cryptography

x:bytes ::= byte array (not itself XML)
s abstract name (key, nonce)
concat(x1, x2 :bytes) array concatenation
c14n(i : item) canonical bytes of an item
utf8(str:string) UTF8 representation of strings
sha1(x:bytes) cryptographic digest
p-sha1(pwd:string, salt:bytes) key from salted password
hmac-sha1(key, x:bytes) keyed hash
pk(kpriv :bytes) map from private-to-public key
rsa-sha1(x, kpriv :bytes) public key signature
x509(sr :bytes, u :string, a :string, kpub:bytes)

X.509 certificate

str:string ::= XML string
s abstract name (password)
base64(x:bytes) Base64-encoding of byte array
principal(pwd:string) map from password to principal

While the cryptographic functions presented here are all present in the WS-Security specifi-
cation, the exact choice of primitives is a little arbitrary; we include enough operations here
for the protocols of Section3. The termconcat(x1, x2) represents the concatenation of the
two arraysx1 andx2. The termc14n(i) represents the array obtained by canonicalizing the
XML represented byi, according to some standard algorithm [10,11]. (In fact, for our pur-

108 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

poses,c14n is simply a way of symbolically treating an XML item as a byte array; ourc14n
does not sort attribute lists, for example.) The termutf8(str) represents the UTF8 encoding
of the XML stringstr. The termsha1(x) represents the one-way SHA1 hash of thex array.
The termp-sha1(pwd,salt) represents a key obtained by hashing thepwdpassword and the
salt array[17]. The termhmac-sha1(key, x) represents a keyed hash of thex array using
thekeyarray as the key [26]. The termpk(kpriv) represents the public key associated with
a private signing keykpriv. The termrsa-sha1(x, kpriv) is a public-key signature ofx under
the private keykpriv [24]. The termx509(sr , u, a, k) represents a basic X.509 public-key
certificate, wheresr is the private signing key of the certifier andu, a, k are the signed user
name, algorithm, and key for a given principal. (Such binary certificates can be embedded
as XML items; they are used here to carry public keys for the asymmetric signing algorithm
rsa-sha1.) Finally, the termprincipal(pwd) is used to represent a database of user names
associated with secrets, such as passwords, and is explained in Section 3.2.

Our threat model is that SOAP messages may be intercepted, decomposed, modified, as-
sembled, and replayed by the attacker [18,33]. The following selector functions and inverses
symbolically represent the ability of the attacker to decompose messages. It is deliberate
that there are no inverses for the three hash functions (sha1, p-sha1, andhmac-sha1),
and for the public-key (pk) and user name (principal) maps; the attacker cannot reverse
these one-way functions.

XML data model: selectors and inverses

x:bytes ::= byte array
fst(x:bytes) left part ofconcat
snd(x:bytes) right part ofconcat
i-base64(str:string) inverse ofbase64
x509-key(cert:bytes) public key in X.509 certificate
check-x509(cert, kr :bytes) X.509 certificate verification
check-rsa-sha1(x, sig, kpub:bytes) public key verification

str:string ::= XML string
Tag.parm(a:att) string param of aTag-attribute
i-utf8(x:bytes) inverse ofutf8
x509-user(cert:bytes) name in X.509 certificate
x509-alg(cert:bytes) algorithm in X.509 certificate

a:att ::= attribute
hd(as:atts) head of a sequence

as:atts ::= attributes
Tag.att(i : item) attributes of aTag-element
tl(as:atts) tail of a sequence

i : item ::= item
hd(is: items) head of a sequence
i-c14n(x:bytes) inverse ofc14n

is: items ::= items
Tag.body(i : item) body of aTag-element
tl(is: items) tail of a sequence

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 109

Most of these selectors are straightforward inverses with single arguments. The two excep-
tions arecheck-x509 andcheck-rsa-sha1. The termcheck-x509(cert, kr) checks that the
certificatecert is signed with a private key associated with the public keykr , and yieldskr

if this succeeds. The termcheck-rsa-sha1(x, sig, kpub) checks thatsig is the rsa-sha1
signature ofx under the private key corresponding to the public keykpub and yieldskpub if
this succeeds. (Some of the inverses, such as the functionsfst andsnd, would be impossible
to implement in general, and we do not rely on them to program compliant principals; they
exist to represent the possibility of the attacker correctly guessing, for example, how to
divide an array obtained by concatenation into its original two halves.)

We represent evaluation of selectors and inverses by an equivalence,U = V , the least
sort-respecting congruence induced by the following axioms.

Equivalence of terms of the data model:U = V

hd(a as) = a tl(a as) = as
hd(i is) = i tl(i is) = is
Tag.att(<Tag as>is</>) = as i-base64(base64(x)) = x
Tag.body(<Tag as>is</>) = is i-utf8(utf8(str)) = str
Tag.parm(Tag =" str") = str i-c14n(c14n(i)) = i
fst(concat(x1, x2)) = x1 snd(concat(x1, x2)) = x2
x509-user(x509(sr , u, a, k)) = u x509-alg(x509(sr , u, a, k)) = a

x509-key(x509(sr , u, a, k)) = k

check-x509(x509(sr , u, a, k),pk(sr)) = pk(sr)
check-rsa-sha1(x, rsa-sha1(x, kpriv),pk(kpriv)) = pk(kpriv)

In the absence of additional equivalences between terms, we implicitly assume that our
cryptographic operations have no additional interactions. For instance, the hash functions
sha1, p-sha1, hmac-sha1, andrsa-sha1 are independent here. This can be informally
checked from their cryptographic specifications[19,17,26,24], or modelled as a refinement
of the term equivalence, as in [1].

We end this section by defining a logical notation for predicates on XML terms. Formally,
we present a Horn logic over our many-sorted algebra, with primitive formulas for equality
and list membership, but no recursively defined predicates. Our notation is simple, and
suffices for reasoning about security; other languages feature more expressive pattern-
matching for XML, but their semantics would be harder to formalize.

We assume there is a fixed, finite set ofpredicates, ranged over byp. For each predicatep,
we assume there is a single definitionp(̃x) :- �1∨ · · · ∨�m, where each�i is aformula,
andm > 0. (Whenm > 1, we usually present each clausep(̃x) :- �i separately, in the
style of Prolog.) Next, we define the syntax of formulas.

Syntax of formulas and predicate definitions

� ::= formula
V = T term comparison
U ∈ V list membership

110 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

p(Ṽ) predicate instance
�1,�2 conjunction

p(̃x) :- �1 ∨ · · · ∨ �m definition of predicatep with m > 0

We assume that formulas are well-sorted according to the following rules: inV = T both
terms belong to the same sort; inU ∈ V eitherU : item andV : items or U : att and
V : atts; in p(Ṽ) whenp(̃x) :- �1∨ · · · ∨�m, the length and sorts of̃V match the length
and sorts of̃x.

Let p contribute toq if and only if an instancep(Ṽ) occurs in one of the disjuncts
defining q. We stipulate that this relation is well-founded, to avoid recursively-defined
predicates.We letfv(�)be the free variables of all the terms occurring in�, and in particular,
fv(p(V1, . . . , Vm))

�= fv(V1) ∪ · · · ∪ fv(Vm). In any clausep(̃x) :- �, we say that each
z ∈ fv(�)\ x̃ is alocal variable. By convention, each occurrence in a clause of the wildcard
symbol is short for the only occurrence of a fresh local variable. Local variables are
existentially quantified in our semantics; we identify clauses up to the consistent renaming
of local variables.

Semantics of formulas:� � where fv(�) = �

� V = T
�= (V = T)

� U ∈ V
�= (V = U1 . . . Ui U V ′)

for someU1, …,Ui , V ′, with i�0
� p(Ṽ)

�= � �i {̃x = Ṽ }{̃z = Ũ}
for somei ∈ 1 . . . m and closed terms̃U
wherep(̃x) :- �1 ∨ · · · ∨ �m and̃z = fv(�i) \ x̃

� �1,�2
�= � �1 and� �2

For open formulas, we introduce notions of validity and logical equivalence.

Validity, logical equivalence of formulas

A formula� is valid when, for all substitutions� such that�� is closed,� ��.
Two formulas�, �′ arelogically equivalentwhen, for all substitutions� such that
�� and�′� are closed,� �� iff � �′�.

3. Example protocols

This section describes some WS-Security protocols, whose goal is to authenticate access
to a basic web service. We first present a typical (unauthenticated) web service, then succes-
sively refine it by introducing password-based digests, signatures, X.509 certificates, and
a firewall intermediary. The first four protocols are taken from the samples provided with
WSE 1.0[30]; we used the actual SOAP messages produced by this implementation to ex-
perimentally validate our model. (The technical report includes sample messages produced
by WSE.)

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 111

3.1. An (unauthenticated) web service

We consider a typical e-commerce website application where customers can browse
and purchase items[29]. The orders are stored on a database server, and can be retrieved
and viewed on later visits. For security, customers are required to login, with username and
password, before placing and retrieving orders. In addition to the standard website interface,
the server provides a SOAP web serviceGetOrderthat a customer may invoke to retrieve
their order in XML format, to save it as a receipt, for instance. Our aim is to provide the
same level of security for this web service as the website login.

A call to GetOrderconsists of a SOAP request and a SOAP response. We introduce
predicates to describe these messages. As a first example, a valid SOAP message is an
XML Envelope, containing aHeader and aBody. The predicatehasBody(e, b) below
meansb is the body of envelopee (the wildcard matches anything):

hasBody(e : item, b : item) :-
e = <Envelope><Header> </> b</> ,

b = <Body > </> .

The SOAP request forGetOrderis an envelope, where the body encodes the parameters of
the call. The resulting SOAP response has a body containing the order, in XML

isGetOrder(b : item,OrderId : string) :-
b = <Body >

<GetOrder>
<orderId> OrderId</>

isGetOrderResponse(b : item,OrderId : string, u : string) :-
b = <Body >

<GetOrderResponse>
<orderId> OrderId</>
<date> </>
<userId> u</>
.

We suppose there is a single server, identified by the URLS, hosting theGetOrderweb
service, identified by the URIW, and multiple client computers that may connect toS on
behalf of users. Here is a protocol for a client computer, identified by its IP addressI, to
request information about order numberOrderId from the web serviceW on serverS, on
behalf of a human useru.

Message1: I → S,W e,
wherehasBody(e, b), isGetOrder(b,OrderId).

Message2: S → I e′,
wherehasBody(e′, b′),
andisGetOrderResponse(b′,OrderId, u′).

112 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

• Message 1 is an HTTP POST request to the URLS, with an HTTP header
SOAPAction: W, and with the SOAP envelopee as its content. The predicates
hasBody(e, b) and isGetOrder(b,OrderId) specify the behaviour of both client and
server: that is, a client will only send Message 1, and a server will only accept it, if the
messagee is a suitably formatted request for some orderOrderId. We implicitly specify
that if the server receives a message that does not satisfy these predicates, it will reject the
message.

• Message 2 is the HTTP response, containing the SOAP envelopee′. The predicates
hasBody(e′, b′) andisGetOrderResponse(b′,OrderId, u′) constrain the server to send a
reply that concerns the orderOrderId requested in Message 1. In this first protocol, the
useru whose client computer sends the request need not be the same as the useru′ who
is associated with the order.

It is not a goal here to fully specify the correct behaviour of either client or server. We
are only concerned about security properties, and authentication in particular, and suppress
other information. For example, we suppress the rest of the response, which includes details
such as the credit card type, number and expiration date, billing and shipping addresses,
and the sequence of line items in the order.

Our predicates express constraints on messages sent and received by compliant imple-
mentations of our protocols. On the sender side, they express post-conditions for every
outgoing message. (The fact that these conditions do not fully determine the envelope
yields functional flexibility.) On the receiver side, they express pre-conditions that must be
checked before incoming messages are processed. (They do not specify a particular order
for the checks, but still provide enough details to review an implementation.) In the presence
of an active attacker, it is essential that the receiver dynamically check these conditions,
even if the sender enforces them.

Our first protocol offers no protection against active attacks, since any well-formed en-
velope is accepted by the server. Next, we consider more effective checks.

3.2. Password digest

Username tokens with a cryptographic digest provide a first, basic mechanism for authen-
ticating web service requests. Such tokens include a username identityu, together with a
digest of a password and a fresh timestamp. We assume that each passwordpwdu is a shared,
unguessable secret betweenu andS, so that onlyu (or S, in principle) can generate a valid
digest—this hypothesis excludes dictionary attacks, for instance. To justify this assumption,
passwords need to be strong cryptographic secrets; one might also modify the protocol to
encrypt the digest of a weak password, but we do not pursue this alternative. Moreover, as
in other applications of the applied pi calculus, we abstractly relate the password and the
user using the special one-way functionprincipal from passwords to users: we letu stand
for principal(pwdu).

To model this protocol, we develop predicates for describing WS-Security headers and
embedded username tokens. Our predicate definitions are not specific to this protocol,
and can be re-used for any protocol relying on these tokens. First, we define a predicate
to extract the security tokens from some security header of the envelope: the predicate
hasSecurityHeader(e, toks) means thattoks is a sequence of security tokens attached to

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 113

messagee. The first formula in the predicate body extracts the list of headers (headers:
items) from the envelope. The second formula,header∈ headers, requires thatheaderbe
some member of the header list. The third formula requires thatheaderbe a security header,
and extracts the security tokens from it.

hasSecurityHeader(e : item, toks: items) :-
e = <Envelope><Header> headers</> </> ,

header∈ headers,
header= <Security> toks</> .

The WS-Security specification allows envelopes to contain multiple<Security> ele-
ments, possibly containing SOAProle attributes, provided each<Security> element
in an envelope is targeted at a distinct endpoint or intermediary. For the sake of simplicity,
hasSecurityHeaderignores<Security> elements containing this attribute, and does not
check for duplicate<Security> elements.

With username tokens, the unique identifier of a message is a pair(n : bytes, t : string)
wheren is a nonce—some byte array—andt is a timestamp represented as a string. The
predicateisDigestUserToken(tok, u,pwd, n, t)means thattokis a username token for useru
with passwordpwd, identifier(n, t), and a valid digest.

isDigestUserToken(tok : item, u,pwd : string, n : bytes, t : string) :-
tok = <UsernameToken >

<Username> u</>
<Password Type="PasswordDigest"> base64(d)</>
<Nonce>base64(n)</>
<Created> t</> ,

u = principal(pwd),
d = sha1(concat(n, concat(utf8(t),utf8(pwd)))).

Finally, a top-level authentication predicate,hasUserTokenDigest, gathers all the elements
checked on envelopes received by the server;hasUserTokenDigest(e, u,pwd, n, t, b)means
that the envelopeewith bodyb contains a valid username token foru,pwd, n, t .

hasUserTokenDigest(e : item, u,pwd : string, n : bytes, t : string, b : item) :-
hasSecurityHeader(e, toks),
utok ∈ toks,

isDigestUserToken(utok, u,pwd, n, t),
hasBody(e, b).

The following protocol description includes both SOAP messages and additional begin- and
end-events, in the style of Woo and Lam[42]. We introduce these events to
express the authentication guarantee obtained by the server from running this protocol.

114 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

(The correspondence between begin- and end-events is sometimes referred to as agreement
between running and commit signals, respectively[28].)

Event1: I logs<Begin> u n t</> .
Message1: I → S,W e,

wherehasUserTokenDigest(e, u,pwd, n, t, b),
andisGetOrder(b,OrderId).

Event2: S logs<End>u n t</>
Message2: S → I e′,

wherehasBody(e′, b′),
andisGetOrderResponse(b′,OrderId, u).

We interpret events in the abstract log as follows: before issuing a request, the initiator logs
its intent as an entry<Begin> u n t</> that contains the user nameu and the message
identifier. Conversely, after checking an envelope, the server logs<End>u n t</> to man-
ifest that it accepts a request with these parameters. In any case, the attacker cannot log
entries. Ideally, begin- and end-events should be in direct correspondence, but this is clearly
not the case if the attacker can delete, reorder, or replayu’s messages. Instead, we have the
following correspondence property:

Claim 1. In the presence of an active Dolev–Yao attacker, if <End>u n t</> is logged by
S, then<Begin> u n t</> has been logged by I.

This is a fairly weak authentication property, which can be read as “ifS accepts a request
from u, thenu recently sent some request.” The two requests are not necessarily the same:
for instance, an active attacker can intercept the envelope, modify its body, and pass it to
the server. In many settings, it may be suitable to have a stronger correspondence between
u and S’s actions, for example between entries<Begin> u S W n t OrderId</> and
<End>u S Wn t OrderId</> .

Although the password digest is optional in WS-Security username tokens, our claim
would clearly not hold if the server accepted tokens without checking the digest, since
the attacker could then forge a message with any identifier(n, t) irrespective of the user’s
requests.

In itself, our protocol does not eliminate replays. (Technically, our correspondence as-
sertion is non-injective.) However, since the identifier is authenticated, the application can
safely use it to filter messages with duplicate or expired username tokens.

3.3. Password-based signature

In order to achieve more precise authentication properties under the same assumptions—
a shared password betweenu andS—one can use an XML digital signature on selected
elements of the envelope[20]. In addition to the username token, we embed a signature token
that signs (for instance) the envelope body, with a signing key derived from the password
and the username token.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 115

A hash-based signature of itemsx1, . . . , xm using a keyk, may be roughly pictured as
follows.

<Signature>
<SignedInfo>

<CanonicalizationMethod
Algorithm=" . . .normalization scheme. . . "></>

<SignatureMethod
Algorithm=" . . . keyed hash function. . . "></>

<Reference> . . .hash ofx1 . . .</>
. . .

<Reference> . . .hash ofxm . . .</>
<SignatureValue>
. . .hash ofSignedInfo element with keyk

See Section4.3 for a full example of a signed envelope. Next, we define the additional
predicates needed for our modified protocol, including predicates defining the various parts
of a signature.
• isUserTokenKey(tok, u,pwd, n, t, k) means thattok is a username token for useru with

passwordpwd, unique identifier(n, t), and derived keyk. The key derivation uses a
p-sha1 keyed hash salted with the message identifier.

• isSigVal(sv, si, k, a) means thatsv is the digital signature computed on itemsi with key
k using algorithma (which for password-based signatures ishmac-sha1).

• ref(t, r) means that the itemr is a reference containing the digest of itemt. (We use the
three wildcards to match reference attributes andTransforms andDigestMethod
elements, which are included in references for flexibility, but are irrelevant for security
in our setting.)

• isSigInfo(si, a, x1, . . . , xm)means that the signed informationsi, for signature algorithm
a, contains a list of references of which the firstm are for the itemsx1, . . . , xm. After
these references,si may contain any number of references to other items (represented in
the predicate by an). This flexibility in the predicate enables the client to sign additional
items even if not required by the server (to conform to a uniform send policy, for example).

• isSignature(sig, a, k, x1, . . . , xm) means that the signaturesig signsx1, . . . , xm with
algorithma and verification keyk.

• hasUserSignedBody(e, u,pwd, n, t, b) is the top-level predicate. It means that the enve-
lopee contains a username token foru,pwd, n, t , and that the bodyb of e is signed by
the key derived from the token.

isUserTokenKey(tok : item, u,pwd : string, n : bytes, t : string, k : bytes) :-
tok = <UsernameToken >

<Username> u</>

<Nonce>base64(n)</>
<Created> t</> ,

116 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

u = principal(pwd),
k = p-sha1(pwd, concat(n,utf8(t))).

isSigVal(sv : bytes, si : item, k : bytes, a : string) :-
a = hmac-sha1 ,

sv = hmac-sha1(k, c14n(si)).

ref(t : item, r : item) :-
r = <Reference >

<DigestValue> base64(sha1(c14n(t)))</> .

(for eachm�1)
isSigInfo(si : item, a : string, x1, . . . , xm : item) :-
si = <SignedInfo>

<SignatureMethod Algorithm=" a"></>
r1 . . . rm ,

ref(x1, r1), . . . , ref(xm, rm).

isSignature(sig : item, a : string, k : bytes, x1, . . . , xm : item) :-
sig = <Signature> si <SignatureValue> base64(sv)</> </> ,

isSigInfo(si, a, x1, . . . , xm),

isSigVal(sv, si, k, a).
hasUserSignedBody(e : item, u,pwd : string, n : bytes, t : string, b : item) :-

hasBody(e, b),
hasSecurityHeader(e, toks),
utok ∈ toks,

isUserTokenKey(utok, u,pwd, n, t, k),
sig ∈ toks,

isSignature(sig,hmac-sha1 , k, b).

The message exchange is much as in Section3.2, with two differences: each log entry
now containsu n t OrderId instead of justu n tOrderId; we use the top-level predi-
catehasUserSignedBody(e, u,pwd, n, t, b) instead ofhasUserTokenDigest(e, u,pwd, n,
t, b).

Event1: I logs<Begin> u n t OrderId</>
Message1: I → S,W e

wherehasUserSignedBody(e, u,pwd, n, t, b),
andisGetOrder(b,OrderId)

Event2: S logs<End>u n t OrderId</>
Message2: S → I e′

wherehasBody(e′, b′),
andisGetOrderResponse(b′,OrderId, u).

We obtain a similar, but stronger authentication property

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 117

Claim 2. In the presence of an active Dolev–Yao attacker, if <End>u n t OrderId</> is
logged by S, then<Begin> u n t OrderId</> has been logged by I.

This claim can be read as “ifS accepts a request fromu, thenu recently sent this request.”
Although onlyb is signed, the usernameu and the identifier(n, t) are also authenticated
by the signature check. As before, we can rely on(n, t) for replay protection. Since the
identifier is now bound to the message, the server can safely use it to filter duplicate or
expired messages.

We make two observations concerning these predicates. First,isUserTokenKeydoes not
check the presence or validity of the optional username token digest. In fact, checking
the password digest would not provide any additional authentication guarantee here. Con-
versely, its (potential) occurrence in the envelope slightly complicates our proofs in Sec-
tion 4. Arguably, the initiator should not include both a digest and a signature, since this
may facilitate a dictionary attack on the password, unless it does not know which evidence
will be considered by the server.

Second, although each referencer typically provides a pointer to the digested element,
either as a fragment URI or as an XPath expression, we do not rely on this information in
therefpredicate. Instead, we check that the actual item we are interested in—the bodyb—is
targeted by the reference. In general, this approach is preferable, since it leaves the resolution
of pointers outside the trusted computing base. Otherwise, one should also carefully check
that these pointers are well-defined and unambiguous.

Our specification captures the flexibility of WS-Security signatures. The predicates for
key derivation (isUserTokenKey) are independent from those interpreting the signature. So,
we can composeisSignaturewith some other keying material, such as an X.509 certificate.
Similarly, we can support additional algorithms for computing the actual signature by adding
alternatives to the predicateisSigVal—see Section 3.4.

Furthermore,isSignatureallows additional elements of the message to be signed. Signing
the username, nonce, or timestamp elements is not necessary with this particular signing-key
derivation, but is harmless, and becomes necessary with other kinds of keys (see Section 3.5).
In case there are several actions on the same server, or if the same password is shared with
two different (honest) servers, then the path header (S,W) should also be signed (as in the
next section). Otherwise, the attacker might redirect an envelope from one web service to
another.

3.4. X.509 signature

The next protocol does not depend on password-based authentication. Instead, it uses
public-key signatures based on X.509 certificates. We assume that the useru has a pub-
lic/private key pair and keeps the private key secret. We also assume thatu andSagree on
the public keykr of some X.509 certification authority, and that this authority issued only
one certificate foru, with u’s public key.

In contrast with password-based signatures, X.509 signature tokens cannot use fragments
of the username token as message identifier. Instead, they can sign the globally unique
identifier included in the path header of our SOAP messages, as defined inWS-Routing [34].

118 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

This is reflected by the following additional predicates:
• isX509Token(tok, kr , u, a, k) means thattok is a binary token that contains a certificate

x509(sr , u, a, k) with certifier’s public keykr = pk(sr).
• isSigVal(sv, si, k, a) is extended with a clause that checks signatures using thersa-sha1

algorithm.
• hasPathHeader(e, ac, to, id, ea, et, ei) means that envelopee has a path header with

actionac, destinationto, and message identifierid in elementsea, et, andei, respectively.
• hasX509SignedBody(e, kr , u, ac, to, id, b, ea, et, ei) is the top-level predicate. It means

that the envelopee has an X.509 token foru certified bykr whose public key signs the
bodyb and a path headerea, et, ei containingac, to, id.

isX509Token(tok : item, kr : bytes, u : string, a : string, k : bytes) :-
tok = <BinarySecurityToken >base64(xcert)</> ,

check-x509(xcert, kr) = kr ,

u = x509-user(xcert),
a = x509-alg(xcert),
k = x509-key(xcert).

isSigVal(sv : bytes, si : item, k : bytes, a : string) :-
a = rsa-sha1 , check-rsa-sha1(c14n(si), sv, k) = k.

hasPathHeader(e : item, ac, to, id : string, ea, et, ei : item) :-
e = <Envelope><Header> headers</> </> ,

header∈ headers,
header= <path >ea et ei</> ,

ea = <action >ac</> ,

et = <to >to</> ,

ei = <id >id</> .

hasX509SignedBody(e : item, kr : bytes, u, ac, to, id : string,
b, ea, et, ei : item) :-

hasBody(e, b),
hasPathHeader(e, ac, to, id, ea, et, ei),
hasSecurityHeader(e, toks),
xtok ∈ toks,

isX509Token(xtok, kr , u, rsa-sha1 , k),

sig ∈ toks,

isSignature(sig, rsa-sha1 , k, b, ea, et, ei).

The message exchange for the X.509 signature protocol is almost the same as the one in Sec-
tion 3.3, with two differences. First, the contents of the log entries is nowuWS id OrderId
(instead ofun t OrderId). Second, we use the top-level predicatehasX509SignedBody(e, kr ,
u,W, S, id, b, ea, et, ei) instead ofhasUserSignedBody(e, u,pwd, n, t, b). The predicate
checksac =Wandto = S in the path header by unification.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 119

Event1: I logs<Begin> uWS id OrderId</> .
Message1: I → S,W e,

wherehasX509SignedBody(e, kr , u,W, S, id, b, ea, et, ei),

andisGetOrder(b,OrderId).
Event2: S logs<End>uWS id OrderId</> .

Message2: S → I e′,
wherehasBody(e′, b′),
andisGetOrderResponse(b′,OrderId, u).

We now obtain the authentication property

Claim 3. In the presence of an active Dolev–Yao attacker, if <End>uWS id OrderId</>
is logged by S, then<Begin> uWS id OrderId</> has been logged by I.

This claim can be read as “ifS accepts a request fromu, thenu, at some point, sent this
request toS.” So by signing the path header, we obtain an additional authenticity guarantee
as regardsu’s intended target(S,W), and thus prevent some redirection attacks. One can
easily implement replay protection using the authenticated message identifier.This supposes
that clients do generate globally unique identifiers (although this is not actually required to
obtain our correspondence property). Alternatively, one may use a custom unique identifier
in the envelope body.

3.5. Firewall-based authentication

By specifying the structure of security tokens, rather than their use, WS-Security en-
courages a flexible approach to web service security. For instance, a server may naturally
accept both password-based and X.509-based signatures for authentication, leaving that
choice to the client. This flexibility yields useful compositional properties in our formal
developments. For instance, a web service that runs both protocols is formally equivalent
to two web services in parallel, one for each authentication mechanism.

In this section, we illustrate this flexibility with a different composite architecture that
chainsWS-Security authentication schemes along aWS-Routing path. In addition to a server
S and a clientI acting on behalf ofu, we consider an intermediate SOAP-level firewallF .The
firewall holds the password database, has the X.509 certificate and the corresponding private
key for certificate userf, and is responsible for authenticating access toS(and possibly other
servers). The clientI sends aGetOrderrequest with a password-based signature (foru) to
S via F . The path header indicates toF that the message is intended forS. The firewallF
checks the password-based signature, adds a newfirewall header indicating that it has
authenticatedu, signs the message usingf’s X.509 certificate, and forwards the message to
S. The serverS expects an X.509 signature from a particular firewall with certificate user
namef. S checks the X.509 signature and certificate, and thus it authenticates the original
senderu without knowledge ofu’s password.

Next, we define (predicates on) the message forwarded by the firewall. To indicate to the
server that it has checked the credentials of the user, the firewall adds a new firewall header
containing the username token, but with the password digest deleted. It then embeds an

120 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

X.509 signature that includes this header as well. The predicates for this message are:
• isFirewallHeader(h, u, n, t) means that the elementh is a firewall header with the user-

name tokenu, n, t .
• hasFWHeader(e, h, u, n, t)means that the envelopeehas a firewall headerhwith u, n, t .
• hasX509SignedBodyFw(e, kr , f, u, n, t, b) is the top-level predicate checked by the

server. It means that the envelopee has a firewall header withu, n, t , a bodyb, and
that the firewall header and the body are signed with a valid certificate forf issued bykr .

isFirewallHeader(h : item, u : string, n : bytes, t : string) :-
h = <firewall >utok</> ,

utok = <UsernameToken>
<Username> u</>
<Nonce>base64(n)</>
<Created> t</> .

hasFWHeader(e, h : item, u : string, n : bytes, t : string) :-
e = <Envelope ><Header> headers</> </> ,

h ∈ headers,

isFirewallheader(h, u, n, t).

hasX509SignedBodyFw(e : item, kr : bytes, f, u : string,
n : bytes, t : string, b : item) :-

hasBody(e, b),
hasFWHeader(e, h, u, n, t),
hasSecurityHeader(e, toks),
xtok ∈ toks,

isX509Token(xtok, kr , f, rsa-sha1 , p),

sig ∈ toks,

isSignature(sig, rsa-sha1 , p, b, h).

The protocol involves three messages, as follows:

Event1: I logs<Begin> u n t OrderId</> .
Message1: I → F,W e,

wherehasUserSignedBody(e, u,pwd, n, t, b).
Message2: F → S,W e′,

wherehasX509SignedBodyFw(e′, kr , f, u, n, t, b)
andisGetOrder(b,OrderId).

Event2: S logs<End>u n t OrderId</> .
Message3: S → I e′′,

wherehasBody(e′′, b′)
andisGetOrderResponse(b′,OrderId, u).

In terms of the SOAP specification, the two envelopese and e′ represent two stages in
the lifetime of the same message: it is sent by the client endpoint, updated by the firewall
intermediary, and received by the server endpoint.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 121

Claim 4. In the presence of an active Dolev–Yao attacker, if <End>u n t OrderId</>
is logged by S, then<Begin> u n t OrderId</> has been logged by I.

Thus, we obtain the same end-to-end authenticity guarantee as with the password-based
signature protocol of Section3.3, but for a different implementation that does not requireS

to knowu’s password. We prove this claim by composing the correspondence property for
the password-based signature in Message 1 with that for the X.509 signature in Message 2.

4. A pi calculus semantics

In order to formalize and validate the claims of Section 3, we specify the behaviour of
the participants (and in particular their implementation of predicates) as processes in the
applied pi calculus. We refer to Appendix A for a brief overview of the calculus and its main
notations, and to [1] for its semantics. Here, we use the sorts, terms, and equations described
in Section 2, with coercion functions from strings to items, and with additional sorts for
communication channels [31]. (However, in our model, channels do not appear in terms
of other sorts, nor in messages sent on channels.) We always assume that terms, formulas,
processes, and contexts are well-sorted, but usually keep sort information implicit.

This section divides into the following parts. Section 4.1 describes our computational
interpretation of formulas as certain non-deterministic processes in the applied pi calcu-
lus. Section 4.2 introduces formal notions of robust safety—that embedded correspondence
assertions hold in spite of the presence of an attacker—and functional adequacy—that a
protocol may run to successful completion in the absence of an attacker. Section 4.3 uses
these definitions to state results about the password-based signature protocol of Section 3.3.
Theorem 8 asserts that a process formalizing this protocol is robustly safe—Claim 2 is
a corollary. Moreover, Theorem 9 asserts the formalization is functionally adequate. Sec-
tion 4.4 breaks the proof of Theorem 8 into two halves: first, the definition and proof of
correctness of a simpler, core protocol; second, the proof that the correctness of the core
protocol implies Theorem 8. Section 4.5 describes how to generalize our results to configu-
rations with multiple servers and users. Sections 4.6 and 4.7 state and prove similar robust
safety properties for the protocols of Sections 3.4 (with X.509 signatures) and 3.5 (with
an intermediate firewall), respectively; we obtain Claims 3 and 4 as corollaries. We do not
include a proof of Claim 1, concerning the weak protocol of Section 3.2 that uses password-
digests. We conjecture that a proof could be obtained by adapting and simplifying the proof
of Theorem 8, concerning the stronger protocol that uses password-based signatures (and
still supports password-digests).

4.1. Interpretation of formulas

We describe a (partial) implementation of our logic in the applied pi calculus. We induc-
tively define processes of the formfilter � �→ ỹ in P , where the variables̃y are bound in
P and get assigned to terms making the formula� true. When the formula is an equality
V = T we assume that one of the terms is known, and that the other can be treated as a
pattern, matching variables to known subterms in the known term. In the following formal

122 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

definitions, we always assume thatV is the known term, and thatT is the pattern, but in
our example predicates we allow either of the terms to be the pattern. For a pattern to be
implementable, there must be an inverse term for each bound variable, able to compute the
value of the variable from the known term.

Patterns

The equalityV = T binds variables̃y with patternT, writtenV = T �→ ỹ, when (1)
ỹ ⊆ fv(T) \ fv(V), and (2)T hasinverse terms̃S, with fv(S̃) ⊆ {x}, fn(S̃) = �,
and, for all termsU, W̃ , if U = T {ỹ = W̃ }, thenW̃ = S̃{x = U}.

For instance, the patternbase64(y) has inverseS
�= i-base64(x); for all V andW, if

V = base64(W) thenW = S{x = V } = i-base64(base64(W)). On the other hand, the
patternsha1(y) has no inverse, and therefore would not satisfy point (2).

The following table is the partial inductive definition offilter � �→ ỹ in P . If such a
process is defined by the following rules, we say that the formula� is implementablewith
bound variables̃y. Whenfilter � �→ ỹ in P is defined and closed, we intend that it seeks
closed terms̃V such that� �{ỹ = Ṽ }, and acts asP {ỹ = Ṽ }. Lemma5 makes this precise.

Formula implementation: filter � �→ ỹ in P when ỹ ⊆ fv(�)

filter V = T �→ ỹ in P
�=

let ỹ = S̃{x = V } in if V = T thenP
whenV = T �→ ỹ with inverse terms̃S

filter x ∈ V �→ x in P
�=

�s, c.(c(x).P | s〈V 〉 | !s(z).filter z=h t �→ h, t in (c〈h〉 | s〈t〉))
whenx �∈ fv(V) and with{s, c} ∩ fn(P) = �

filter p(Ṽ) �→ ỹ in P
�=

�s.(s〈�〉 |∏i∈1...m s().filter �i {̃x = Ṽ } �→ ỹ, z̃i in P)

whenp(̃x) :- �1 ∨ · · · ∨ �m, s /∈ fn(P)
and,∀i ∈ 1 . . . m,fv(�i) = x̃ � z̃i and(fv(Ṽ) ∪ fv(P)) ∩ z̃i = �

filter �1,�2 �→ ỹ in P
�=

filter �1 �→ (ỹ ∩ fv(�1)) in (filter �2 �→ (ỹ \ fv(�1)) in P)

WhenV = T �→ ỹ, with inverse terms̃S, the implementationfilter V = T �→ ỹ in P binds
the variables̃y of the patternT to components of the termV, and verifies that hence the
pattern matches the term. If so, the match succeeds, andP runs. Otherwise, the match fails,
and the implementation deadlocks.

Whenx /∈ fv(V), the implementationfilter x ∈ V �→ x in P outputsV on a fresh
channels, and runs the process!s(z).filter z=h t �→ h, t in (c〈h〉 | s〈t〉) which bindsh =
V1 andt = V2 . . . Vm �, providedV = V1 V2 . . . Vm � with m�1, then outputsh on c,
and t on the fresh channels. The effect of this replication is to output each of the terms
V1, . . . , Vm on the fresh channelc. The processc(x).P is the only listener onc; so the
outcome isP {x = Vi} for onei ∈ 1 . . . m. If, in fact,V is the empty list, the implementation
deadlocks.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 123

Whenp(̃x) :- �1 ∨ · · · ∨ �m, the implementationfilter p(Ṽ) �→ ỹ in P generates a
separate processs().filter �i {̃x = Ṽ } �→ ỹ, z̃i in P for each clausei ∈ 1 . . . m, wherẽzi
are the local variables for clausei. We make an internal choice of which to run by arranging
all to listen on the fresh channels, on which only a single message is sent. We are assuming
that ỹ ⊆ fv(Ṽ), which with the side-conditionfv(�i) = x̃ � z̃i , yields thatfv(�i {̃x =
Ṽ }) = fv(Ṽ) � z̃i for eachi. Therefore, the formula implementationfilter �i {̃x = Ṽ } �→
ỹ, z̃i in P satisfies the well-formedness conditioñy, z̃i ⊆ fv(�i {̃x = Ṽ }). Moreover, the
side-conditionfv(P)∩ z̃i = � guarantees there is no confusion between the local variables
z̃i and any variables inP.

The implementationfilter �1,�2 �→ ỹ in P works by evaluating�1 then�2 before
runningP.

As an example, we show an implementation ofhasBody(e, b):

filter hasBody(e, b) �→ b in [-]
= �s.(s〈�〉 | s().

filter e = <Envelope><Header> y1</> b</> �→ y1, b in
filter b = <Body y2>y3</> �→ y2, y3 in [-])

= �s.(s〈�〉 | s().

let y1 : items = Header .body(hd(Envelope .body(e))) in
let b : item = hd(tl(Envelope .body(e))) in
if e = <Envelope><Header> y1</> b �</> then

let y2 : atts = Body .att(b) in
let y3 : items = Body .body(b) in
if b = <Body y2>y3</> then[-]).

To state the correctness of the embedding of our logic within the applied pi calculus, we
appeal to the following notion ofinternal choice. We write→∗ for a series of reduction
steps and∼ for strong bisimilarity, the strong form of observational equivalence[1]. For
any set of processesX, we co-inductively define the set of processes

⊕
X that are internal

choices ofX:

Internal choice:
⊕

X

A processQ is an internal choice onX, writtenQ ∈⊕
X, if and only if

(1) if P ∈ X thenQ→∗∼ P ;
(2) if Q→ Q′, then eitherQ′ ∼ P with P ∈ X orQ′ ∈⊕

Y with Y ⊆ X; and
(3) Q does not communicate on free channel names.

Lemma 5. If filter � �→ ỹ in P is defined and closed then

filter � �→ ỹ in P ∈ ⊕{P {ỹ = Ṽ } | fv(Ṽ) = � ∧ � �{ỹ = Ṽ }}.
The proof appears in AppendixB.

4.2. Safety properties, functional properties

To formalize the authenticity properties claimed in Section 3, we mark the progress of
the client and server processes with begin- and end-events, represented as message outputs
on the channelsbeginandend, respectively. Hence, our authenticity properties become

124 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

non-injective correspondence assertions[42] between messages. We write≈ for (weak)
observational congruence in applied pi. Further, to capture the occurrence of events, we
define a derived notion of observation of messages on free channels

Event occurrence:A� a〈V 〉
A outputs the termV on channela, writtenA� a〈V 〉, whenA ≈ a〈V 〉 | A′.

Much as in Gordon and Jeffrey’s formulation of correspondence assertions[22], we define
safety and robust safety: a process is safe if every end-event has a matching begin-event,
and is robustly safe if it is safe in the presence of any opponent.

Safety and robust safety

A is safeif and only if, wheneverA→∗ B, B �end〈V 〉 impliesB �begin〈V 〉.
A is robustly safeif and only if, for all evaluation contextsE[-] where the channelsbegin
andenddo not occur,E[A] is safe.

Intuitively,E[-] represents any active attacker (in the applied pi calculus) that controls both
the network and the client application behaviour;A is the initial configuration of the protocol
being considered;B represents any reachable state of the protocol, after interleaving any
number of sessions; and robust safety guarantees that, whenever a new end-event appears
in B, one can also observe a matching begin-event inB.

(We formulate robust safety in terms of a reduction-based semantics[1] and represent
events as ordinary message outputs. In contrast, others, such as Gordon and Jeffrey [22],
formulate robust safety in terms of traces of begin- and end-events. The different formula-
tions lead to slightly different properties. For instance,begin〈V 〉 | end〈V 〉 is robustly safe
in our setting but not in that of Gordon and Jeffrey, since we observe both messages simul-
taneously whereas they observe a trace with the end-event preceding the begin-event. These
appear to be superficial differences in formulating the same underlying intuition—that every
end-event is matched by a begin-event.)

In addition to security properties such as robust safety, one should check that the protocol
works as intended and may indeed succeed, at least in the absence of an attacker. The
following definition captures this intent for a processA that begins the protocol forV:

Functional adequacy

A is functionally adequate for VwhenA→∗ B with B �end〈V 〉 for someB.

If a process is not functionally adequate for anyV, then robust safety may hold vacuously,
if for example no begin- or end-events are reachable. On the other hand, if a process is both
robustly safe and functionally adequate, there is at least one run in which an end-event is
reachable, with a matching begin-event.

The next lemma states that our main security properties can be established using the
theory of observational equivalence in the applied pi calculus.

Lemma 6. SupposeA ≈ B. If A is robustly safe then so is B. Moreover, if A is functionally
adequate for V then so is B.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 125

Proof. For robust safety, assumeE[B] →∗ B ′�end〈V 〉 for some evaluation contextE[-]
that does not containbeginor end. We haveE[A] ≈ E[B] (by context-closure of≈),
E[A]→∗A′withA′ ≈ B ′ (by weak simulation),A′�end〈V 〉(since≈preserves�end〈V 〉),
A′�begin〈V 〉 (by robust safety ofA), and thusB ′�begin〈V 〉 (since ≈ preserves
�begin〈V 〉).

For functional adequacy, assumeA →∗ A′�end〈V 〉. FromA ≈ B we getB →∗ B ′
with A′ ≈ B ′ and thusB ′�end〈V 〉. �

Moreover, logical equivalence, when lifted to processes, also preserves robust safety.

Logical equivalence of processes

Two processes are logically equivalent when they differ only in their choices of imple-
mentable, logically equivalent formulas.

Lemma 7. Logical equivalence preserves robust safety.

The proof appears in AppendixB.3.

4.3. Stating password-based authentication

We are now ready to formulate and prove Claim 2 of Section 3.3 for envelopes with
password-based signatures, with or without a password digest. For the sake of simplicity,
we focus on protocol configurationsQ with a single useru, with initiator processIu and
a single serverSu that share a secret password with that user, represented as a restricted
namespwd . The two parts of the protocol also share a communication channel,http. Since
http is not restricted, an environment that enclosesQ can also read, modify, and write any
SOAP message.

Protocol configurations: Q (parameterized byEnvelope)

Q �= �spwd .
({u = principal(spwd)} | Iu | Su

)
Iu

�= !initu(n, t, b).(begin〈u n t b〉 | http〈Envelope〉)
Su

�= !http(e).filter hasUserSignedBody(e, u′, spwd, n, t, b)
�→ u′, n, t, b in end〈u′ n t b〉

The initiator,Iu, repeatedly receives high-level requests on a control channelinitu. Using
that control channel, the environment can thus initiate any number of requests on behalf of
u, for any termsN,TS, B. These requests are deemed genuine: they are echoed on channel
begin. The processIu is also parameterized by a termEnvelopethat determines the actual
SOAP envelopes constructed and sent by the initiator.

The server,Su, repeatedly receives low-level envelopes on channelhttp, filters them
using the top-level predicate defined in Section3.3 (one easily checks that this predicate
is implementable) and finally sends a message on channelendfor each accepted envelope.
(More generally, we would represent a server that accepts requests from usersu1, . . . , um
as a parallel composition

∏
i∈1...m Sui .)

126 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

The scope restriction onspwd models our secrecy assumption on the password, essentially
supposing that it is a strong secret shared between the initiator and the server and used only
in this kind of envelope.

The active substitution{u = principal(spwd)} binds the variableu to the expression
principal(spwd), and exportsu (but notspwd) to the environment.

Crucially, we do not want our robust safety result to depend on every detail of the enve-
lope. Instead, we express minimal requirements as follows:

Safe envelopes

A safe envelopeis a term of the formEnvelope= T�, for any termsT andSI such that
spwd /∈ fn(T , SI) andisSigInfo(SI,hmac-sha1 , b) is valid, with the active substitution
� defined by:

�
�= {d = sha1(concat(n, concat(utf8(t),utf8(spwd)))),

sv= hmac-sha1(p-sha1(spwd, concat(n,utf8(t))), c14n(SI))}

To elaborate, as regards safety properties,Envelopemay be any XML term, as long as the
password occurs at most in the digest and signature values. Similarly, most of the subterms
in the signature information are irrelevant for safety, even if they happen to be signed
in SI.

Theorem 8. For any safe envelope, the configurationQ is robustly safe.

From this theorem and the definition ofisGetOrder(b,orderId), we easily derive the
more specific claim of Section3.3. We devote Section 4.4 to the proof of Theorem 8.

For functional adequacy, the structure of the envelope is more constrained. For example,
T andSIcan be instantiated as follows:

T
�= <Envelope>

<Header>
<Security>

<UsernameToken Id="utoken">
<Username> u</>
<Password Type="PasswordDigest">

base64(d)
<Nonce>base64(n)</>
<Created> t</>

<Signature>
SI

<SignatureValue> base64(sv)</>
<KeyInfo>

<SecurityTokenReference>
<Reference URI="#utoken"></>

b

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 127

SI
�= <SignedInfo>

<CanonicalizationMethod Algorithm="c14n"></>
<SignatureMethod Algorithm="hmac-sha1"></>
<Reference URI="#body">

<Transforms>
<Transform Algorithm="c14n"></>

<DigestMethod Algorithm="sha1"></>
<DigestValue> base64(sha1(c14n(b)))</> .

Theorem 9. The envelopeT� withT and SI defined above is safe and, for any ground terms
N : bytes, TS : string, B : item withB = <Body Id="body"> </> , the configuration
initu〈N,TS, B〉 | Q with that envelope is functionally adequate for the termu N TSB.

Proof. We easily check thatT� is a safe envelope and that

� hasUserSignedBody(T�,principal(spwd), spwd,N,TS, B)

Then we apply Lemma5. We obtain

init〈N,TS, B〉 | Q →→ (→∗∼) begin〈u N TSB〉 | end〈u N TSB〉 | Q
with two communication steps (oninitu andhttp) followed by the reduction steps and
equivalence of condition (1) of internal choice (in some evaluation context).�

Conversely, by Theorem8, if we have bothinitu〈N,TS, B〉 | Q→∗A and also
A�end〈u′ N ′ T ′ B ′〉, thenA�begin〈u′ N ′ T ′ B ′〉 and, since a single message is sent
onbegin, we obtain thatu′, N ′, T ′, B ′ = u,N,TS, B.

4.4. Proving password-based authentication

We now present a proof of Theorem 8. An intuition behind the proof is that the security
property relies only on a few elements in the envelope. For instance, the signature bytes are
sufficient for authentication, whereas the other elements in the envelope only provide the
server with (untrusted) hints to verify the signature. Hence, to establish robust safety, we
rely on a stronger, more specific lemma about a core protocol that explicitly deals only with
these bytes.

The proof is in two stages. First, we show how the password-based signature protocol can
be decomposed into a “core protocol” that deals with authentication and an XML wrapper.
The XML wrapper has no access to the password, and need not be trusted: formally, it
becomes part of the hostile environment. We show that it is enough to prove robust safety
for the core protocol (Lemma 11). In the second stage, we prove that the core protocol itself
is robustly safe (Lemma 15) by exhibiting an invariant on its reachable states (Lemma 14).

We decompose

hasUserSignedBody(e, u,pwd, n, t, b) �→ u, n, t, b

128 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

into two implementable formulas

hasUserSignatureEvidence(e, u, n, t, b, sv, si) �→ u, n, t, b, sv, si,

checkEvidence(sv, si, u,pwd, n, t, b) �→ �

hasUserSignatureEvidenceparses the envelope and extracts the bits that are needed to verify
the signature; it has no access to the password. All the checks related to authentication are
contained incheckEvidence. These predicates are defined by

checkEvidence(sv : bytes, si : item, u,pwd : string, n : bytes,
t : string, x1, . . . , xm : item) :-

isSigInfo(si,hmac-sha1 , x1, . . . , xm),

u = principal(pwd),
k = p-sha1(pwd, concat(n,utf8(t))),
isSigVal(sv, si, k,hmac-sha1).

isUserToken(tok : item, u, n : bytes, t : string) :-
tok = <UsernameToken >

<Username> u</>
<Nonce>base64(n)</>
<Created> t</> .

hasUserSignatureEvidence(e : item, u : string, n : bytes, t : string,
b : item, sv : bytes, si : item) :-

hasBody(e, b),
hasSecurityHeader(e, toks),
utok ∈ toks,

isUserToken(utok, u, n, t),
sig ∈ toks,

sig = <Signature >si <SignatureValue> base64(sv)</> </> .

We verify the correctness of this decomposition in terms of logical equivalence:

Lemma 10. The two formulas

hasUserSignedBody(e, u,pwd, n, t, b) and
hasUserSignatureEvidence(e, u, n, t, b, sv, si), checkEvidence(sv, si, u,pwd, n, t, b)

are logically equivalent.

Proof. The two formulas are equal up to a permutation of conjunctive clauses with disjoint
variables. �

Using this decomposition, we define the core protocol configurationQ◦, a counterpart of
Q for the simpler predicatecheckEvidencethat binds no variables, and for replicated pro-
cessesI ◦u andS◦u that communicate with the environment on channelsc ands, respectively,
instead of channelhttp.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 129

Core protocol configurations: Q◦ (parameterized bySI)

Q◦[-] �= �spwd .
({u = principal(spwd)} | I ◦u | S◦u | [-]

)
I ◦u

�= !initu(n, t, b).(begin〈u n t b〉 | c〈d, sv, SI, u, n, t, b〉�)
S◦u

�= !s(sv, si, u′, n, t, b).filter checkEvidence
(sv, si, u′, spwd, n, t, b) �→ � in end〈u′ n t b〉

We writeQ◦ for Q◦[0] (the initial state of the core protocol).
Lemma11 shows that this core protocol is logically equivalent, under an evaluation

context, to the original protocol. This implies that ifQ◦ is robustly safe, so isQ.

Lemma 11(XML /core). For any safe envelope, there exists an evaluation contextEQ[-]
where the names begin, end do not occur and a processQ• logically equivalent toQ such
thatQ• ≈ EQ[Q◦].

Proof. For a given safe envelope,T�, with SI replaced bysi, we letQ• beQ up to the
logical equivalence of Lemma10 and letEQ[-] be the evaluation context

EQ[-] �= �c, s.



[-] |
!c(d, sv, si, u, n, t, b).http〈T�〉 |
!http(e). filter hasUserSignatureEvidence(e, u′, n, t, b, sv, si)

�→ u′, n, t, b, sv, si in s〈sv, si, u′, n, t, b〉




for somec, s /∈ fn(T). EQ[Q◦] differs fromQ• in two ways
(1) Instead ofIu, there is an extra communication on channelc after computingd andsi,

but before sending messages onbeginandhttp.
(2) Instead ofSu, there is an extra communication on channels after checkinghasUser

SignatureEvidencebut before checking predicatecheckEvidence.
Sincec ands are both restricted channels used only either for asynchronous outputs or as
a single replicated input, these extra communication steps do not affect≈. �

To prove robust safety for the core protocol, we first define the valid states of the core
protocol in an evaluation context. Valid states are our correctness invariant. They describe
protocol states reachable fromQ◦ after unfoldingn sessions, in which no secrets have been
leaked and only messages sent by the client have been accepted by the server.

Valid states for the core protocol

(1) �i is adapted from� in the definition of safe envelopes with variablesdi, svi, ni, ti , bi
and termSIi instead ofd, sv, n, t, b andSI.

(2) A session stateis a process of the form

Bi = begin〈u ni ti bi〉 | �i | Ji,
where Ji is any parallel composition of processes from{end〈u ni ti bi〉} ∪⊕{end〈u ni ti bi〉} ∪⊕{}. (Ci has free variablesu, ni, ti , bi and defined variables
di, svi .)

130 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

(3) An internal stateis a parallel composition of session statesC = ∏
i<m Ci , for some

m�0.
(4) A valid stateis a closed process of the formA = E[Q◦[C]]whereE[-] is an evaluation

context wherebeginandenddo not occur andC is an internal state.

For a given internal stateC, let �C be the (ordinary) substitution obtained by composing
{u = principal(spwd)} and each�i for i < m. By definition, the frame obtained from
Q◦[C], which represents the attacker’s knowledge aboutspwd , is �C = �spwd .�C . We
consider the effect of�C on the predicatecheckEvidencein Lemma13, to follow. First, we
develop some basic properties of our equational theory on terms.

Our equational theory is defined as the term-rewriting system obtained from the (oriented)
rewrite rules of Section 2. We give some basic definitions and results for this system.

Redex, normal form, selector

A termT is aredexfor the (oriented) rewrite ruleV = W whenT isV � for some substitution
�. Then,W� is the result of the rewriting.
A termT is in normal formwhen it contains no redex for any rule; it is a normal form of
V whenV = T .
A function symbolf is aselectorwhen there is a rewrite rule of the formf(Ṽ) = W .

Lemma 12. (1) Every term has a unique normal form.
(2) Two terms are equal if and only if their normal forms are identical.
(3) Supposef is one of the function symbolssha1, hmac-sha1, p-sha1, or principal. If

terms U andf(Ṽ) are in normal form, and f(Ṽ) does not occur as a subterm of U, then
U{x = f(Ṽ)} is also in normal form.

(4) If f(Ũ) = g(Ṽ), then eitherf or g is a selector, or f = g andŨ = Ṽ .
(5) If f(Ũ) = g(Ṽ), whereŨ , Ṽ are normal, then either

(a) f = g and(Ũ = Ṽ), or
(b) f(Ṽ) is a redex, or
(c) g(W̃) is a redex.

Proof. Let U �→ V be the reduction relation obtained by orienting our equations on
terms from left to right, and closing under contexts. By standard rewriting techniques[4],
our equational theory is the reflexive, transitive, symmetric closure ofU �→ V . Whenever
U �→ V thenVhas fewer function symbols thanU, so�→ is terminating. Our term rewriting
system has no critical pairs; each selector symbol appears only as the outermost symbol in a
rule, and no two rules directly overlap. Given that the reduction relation is terminating and
has no critical pairs, it follows that it is confluent. Since�→ is terminating and confluent,
it follows that (1) every term has a unique normal form, and (2) two terms are equal if and
only if their normal forms are identical.

For (3), supposef(Ṽ) is not a subterm ofU, that both are normal, and thatf ∈ {sha1,
hmac-sha1,p-sha1,principal}. Then substituting the termf(Ṽ) for x in U cannot create
any redexes, sincef does not occur in any rewrite rule, and moreover, sincef(Ṽ) does not
already occur inU, we cannot complete a redex for either of the selectorscheck-x509 and

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 131

check-rsa-sha1 guarded by an implicit term equality. Hence,U{x = f(Ṽ)} is in normal
form.

For (4), supposef(Ũ) = g(Ṽ) and that neitherf norg is a selector. The normal forms of
f(Ũ) andg(Ṽ) must take the formf(Ũ ′) andg(Ṽ ′), since neitherf norg is a selector. These
two normal forms must be identical, so it follows thatf = g andŨ ′ = Ṽ ′, and hence that
Ũ = Ṽ .

For (5), supposef(Ũ) = g(Ṽ) whereŨ andṼ are normal. If eitherf(Ũ) or g(Ṽ) is a
redex we are done. If neither is a redex, they are two equal normal forms and thereforef = g
and(Ṽ = W̃). �

The next lemma states that if a message is received in a valid state of the protocol, and it
satisfies the predicatecheckEvidence, then it must have been sent by the client.

Lemma 13(checkEvidence is safe). LetC be an internal state withm�0 sessions. Let�′
be a substitution that ranges over open terms where the namespwd does not appear such
that�

�= �′ | �C is closed. If

� checkEvidence(sv, si, u′, spwd, n, t, b)�

then there existsi < n such that(u′, sv, si, n, t, b = u, svi, SIi, ni, ti , bi)�.

Proof. Assume� checkEvidence(sv, si, u′, spwd, n, t, b)�, and let�◦C be such that� ≡
�′ | �◦C and�◦C ranges over closed terms in normal forms. (Hence,dom(�◦C) = dom(�C) =
{u} ∪ {svj , dj |j < m} and, for allx ∈ dom(�C), x�◦C = x�.)

By definition, � checkEvidence(sv, si, u′, spwd, n, t, b)� implies there exists�′′ with
dom(�′′) = {k, c, r1,uri, talg,dalg, rest} such that:

� (u′ = principal(spwd))��′′, (1)

� (k = p-sha1(spwd, concat(n,utf8(t))))��′′, (2)

� (sv = hmac-sha1(k, c14n(si)))��′′, (3)

� (si = <SignedInfo>
c <SignatureMethod Algorithm="hmac-sha1"></>
r1 rest)��′′,

(4)

� (r1 = <Reference uri>
talg dalg
<DigestValue> base64(sha1(c14n(b)))</>)��′′.

(5)

In (1), we use the definition of�C to introduceu and obtain(u′ = u)�.
Using (2) to eliminatek in (3), we obtain

sv �= hmac-sha1(p-sha1(spwd, concat(n�,utf8(t �))), c14n(si �)). (6)

LetT = sv �′ in normal form. We havesv � = T �◦C and, by Lemma12(3) and definition of
�◦C , T �◦C is also in normal form. By plain structural matching on normal forms, we obtain
four cases forT :
• T = x for somex ∈ dom(�◦C) such thatx�◦C = hmac-sha1(,), where stands

for any subterm. By definition of�◦C , this impliesx = svi for somei < k, and thus
(sv = svi)�.

132 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

• T = hmac-sha1(x,) for somex ∈ dom(�◦C) such thatx�◦C = p-sha1(,). This is
excluded by definition of�◦C .

• T = hmac-sha1(p-sha1(x,),) for somex ∈ dom(�◦C) such thatx�◦C = spwd . This
is excluded by definition of�◦C .

• T = hmac-sha1(p-sha1(spwd,),). This is excluded by hypothesis on�′: since
T = sv �′, we havespwd /∈ fn(T).

Using the definition ofsvi in �C , Eq. (6) becomes

hmac-sha1(p-sha1(spwd, concat(ni,utf8(ti))), c14n(SIi �))
= hmac-sha1(p-sha1(spwd, concat(n�,utf8(t�))), c14n(si �))

and thus Lemma12(4) yields(si, n, t = SIi, ni, ti)�. Similarly, using Eqs. (4) and (5) to
eliminatesi thenr1 in (si = SIi)�, we obtain an equation of the form

(V {̃x = b,uri, talg,dalg, rest} = V {̃x = bi,urii , talgi ,dalgi , resti})�
for a termV built only from constructors, we obtain(b = bi)� via Lemma12(4). �

Using this lemma, we can show that all reachable configurations of the core protocol are
valid states.

Lemma 14(Invariant lemma). If A is a valid state andA→ T thenT ∼ A′ for some valid
stateA′.

Proof. Our lemma is stated for a particular definition ofQ◦; however, its proof relies on
the process structure ofQ◦, and is almost parametric in the definitions of�, checkEvidence,
and the message content oninitu, c, s, begin, end (as long as Lemma13 validates these
definitions).

Let A = E[Q◦[C]] be a valid core protocol state, with internal stateC = ∏
i<k Ci .

We perform a case analysis on the reduction stepA → A′. By definition of reduction in
applied pi, this step is either a communication or a term comparison. For communication,
we must haveA ≡ E′[a〈̃x〉.P | a(̃x).Q] andA′ ≡ E′[P | Q] for some channel name
a, variables̃x, processesP andQ, and evaluation contextE′[-]. By definition ofA and
structural equivalence, this implies one of the following cases:

(1) Both the send and receive occur inQ◦[C]: we haveA′ ≡ E[F [P | Q]]with Q◦[C] ≡
F [a〈̃x〉.P | a(̃x).Q]. By definition of core configurations, the channels used for com-
munications in evaluation context inQ◦[C] arebegin,end—only used for sending—and
initu, s—only used for receiving—plus channel names appearing in internal choices.

By property (3) of internal choices,a is thus a local channel in an internal choiceP in
some parallel compositionJi within C. For someC′ and processP ′, we have, for some
internal stateP:

C ≡ C′ | P P → P ′ A′ ≡ E[Q◦[C′ | P ′]].
By definition ofJi , we haveP ∈⊕{end〈u ni ti bi〉} ∪⊕{}. By property (2) of internal

choices, we have eitherP ′ ∼ end〈u ni ti bi〉 (and we letP ′′ = end〈u ni ti bi〉) or P ′ ∈⊕{end〈u ni ti bi〉} ∪ ⊕{} (and we letP ′′ = P ′). In both subcases,C′ | P ′′ is also an
internal state, and we haveA′ ≡ E[Q◦[C′ | P ′]] ∼ E[Q◦[C′ | P ′′]], which is a valid state.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 133

(2) Q◦[C] sends a message on a free channel: we haveQ◦[C] ≡ F [a〈̃x〉.P] wherea is
free inF [-] andE[Q◦[C]] = E′[a(̃x).P | Q◦[C]]. By definition of core configurations,
a ∈ {begin,end}, so this case is excluded by hypothesis onE[-].

(3) Q◦[C] receives a message on channela ∈ fn(Q◦[C]). Using structural equivalence,
we can assume that the message output occurs in parallel with[-] in E[-], and conveys a
tuple of any variables that do not occur inQ◦[C]. By definition of core configurations, we
have eithera = initu using the replicated input inI ◦u (case 3a) ora = s using the replicated
input inS◦u (case 3b):
(a) We have a valid stateA such that

A ≡ E′[initu〈uk, nk, tk, bk〉.P | Q◦[C]],
Q = begin〈u nk tk bk〉 | c〈dk, svk, SIk, u, nk, tk, bk〉�k,

A′ ≡ E′[P | Q◦[C | Q]].

LetJk = 0 andCk = begin〈u nk tk bk〉 | �k | Jk. By construction,C | Ck is an internal
state with an additional session at indexk. Let

F [-] �= �dk, svk.(c〈dk, svk, SIk, u, nk, tk, bk〉 | [-]) .

Using structural equivalences, we obtainQ ≡ F [Ck], Q◦[C | Q] ≡ F [Q◦[C | Ck]],
and finallyA′ ≡ E′[P | F [Q◦[C | Ck]]], which is a valid state.

(b) We have a valid stateA such that

A ≡ E′[s〈sv, si, u′, n, t, b〉.P | Q◦[C]],
Q = filter checkEvidence(sv, si, u′, spwd, n, t, b) �→ � in end〈u′ n t b〉,
A′ ≡ E′[P | Q◦[C | Q]].

We first use structural equivalence to close the processQ: we haveA′ ≡ E′′[�′ |
Q◦[C | Q]] valid state, for some evaluation contextE′′[-] that does not contain any
active substitution, and thusA′ ≡ E′′[�′ | Q◦[C | Q�]]. for some� ≡ �′ | �C .
Applying Lemma5, we obtain

Q� ∈ ⊕ {end〈u′ n t b〉� | � checkEvidence(sv, si, u′, spwd, n, t, b)�}.

Applying Lemma13, either there existsi < n such that(u′, sv, si, n, t, b = u, svi, SIi,

ni, ti , bi)�, and thenQ� ∈⊕{end〈u ni ti bi〉�}, or the predicate is never satisfied, and
Q� ∈⊕{}.

In the first subcase (the message may be accepted), we letC′ = C | Q, check thatC′
is an internal state obtained fromC by usingJ ′i = Ji | Q instead ofJi , and conclude
with A′ ≡ E′′[�′ | Q◦[C | Q�]], which is a valid state.

In the second subcase (checkEvidencefails), let Q′ ∈ ⊕{} with Q� ∼ Q′ and
spwd /∈ fn(Q′) (obtained for instance by substituting a fresh name forspwd in Q). We
haveA′ ∼ E′′[�′ | Q′ | Q◦[C]], which is a valid state with the same internal state.

134 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

(4) The communication entirely occurs inE[-]: we have a valid stateA such that

A ≡ E′[A1 | Q◦[C]], A1 | �C → A′1 | �C, A′ ≡ E′[A′1 | Q◦[C]].

Moreover,spwd /∈ A1 by hypothesis onE′, so we can pickA′′1 such thatA′1 | �C ≡ A′′1 | �C
andspwd /∈ A′′1. We conclude withA′ ≡ E′[A′′1 | Q◦[C]] valid state.

Next, we consider comparison steps. Two cases are enabled, depending on the location
of the conditional:
• The test occurs inQ◦[C], necessarily in one of the internal choices: this is another instance

of case 1.
• The test occurs inE[-]: this is another instance of case 4.�

As a corollary, we can show robust safety for the core protocol.

Lemma 15(Core robust safety). Q◦ is robustly safe.

Proof. We first show that, ifA� a〈V 〉 anda is used only for asynchronous outputs inA,
thenA→∗ a〈V 〉 | A′′ ≈ A for someA′′. By definition,A� a〈V 〉 meansA ≈ a〈V 〉 | A′
for someA′. Let C = t〈〉 | a(x).if x = V then t () for some fresh namet. We have
C | a〈V 〉 | A′ →3 A′ and thus, by context closure and simulation for≈, C | A →∗
A′′ ≈ A′ for someA′′. By definition of C and case analysis on reductions, we obtain
A→∗ a〈V 〉 | A′′. By context closure fora〈V 〉, A′′ ≈ A′ impliesa〈V 〉 | A′′ ≈ A.

AssumeE[Q◦] →∗ A�end〈V 〉 for some contextE[-]wherebeginandenddo not occur.
Using the remark above, we haveE[Q◦] →∗ A→∗ B ≈ A for someB = end〈V 〉 | A′′.
By Lemma14 and induction on the number of reduction steps, there exists a valid state
B ′ ∼ B. In particular,B ′ contains a messageend〈V 〉. By definition of valid states, this
message may occur only within some session stateIi that also containsbegin〈V 〉. Thus,
B ′�begin〈V 〉 and, sinceB ′ ≈ B ≈ A, we obtainA�begin〈V 〉. �

Theorem 8 follows as a corollary. More generally, we could derive robust safety for
configurations that may use several kinds of safe envelopes.

Restatement of Theorem8. For any safe envelope, the configurationQ is robustly safe.

Proof. By Lemma 15,Q◦ is robustly safe (RS). By Lemma 11,Q• ≈ EQ[Q◦] and, by
hypothesis onEQ,EQ[Q◦] is RS. By Lemma 6,Q• is RS. Finally,Q• is logically equivalent
to Q, and thus, by Lemma 7,Q is RS. �

4.5. Extended configurations

In the proofs above, we focused on a simple situation with a single user and a single
server dedicated to that user. Next, we illustrate how this basic result can be easily extended
to configurations with multiple users and servers.

We first state a lemma to compose robust safety properties.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 135

Lemma 16. (1) If A is robustly safe andE[-] is an evaluation context where begin and end
do not occur, thenE[A] is robustly safe.

(2) Let A be a process where begin and end do not occur.
If �c.A{a, b = begin,end} and �a.A{b, c = begin,end} are robustly safe, then �b.A
{a, c = begin,end} is robustly safe.

Proof. (1) By definition and composition of evaluation contexts.
(2) AssumeE[�b.A{a, c = begin,end}] →∗ B �end〈V 〉, andbegin,end, a, b, c do not

occur inE[-] or V (up to a renaming ofa, b, c in A). We also haveE[A] →∗ B ′� c〈V 〉
with B ≡ �b.B ′{a, c = begin,end}. Using the second, then the first hypothesis, we also
haveB ′� b〈V 〉 andB ′� a〈V 〉, and finallyB �begin〈V 〉. �

Theorem 17. LetU be a set of variables and Envelope be a family of safe envelopes indexed
byU . The configurationQU

�=∏
u∈U Q is robustly safe.

Proof. AssumeE[QU] →∗ B �end〈V 〉 for some evaluation contextE[-] that does not
containbegin,end. Let {beginu,endu | u ∈ U} be distinct channel names that do not occur
in E[-]. We define renamings�u

�= {beginu,endu = begin,end} and�
�=∏

u∈U �u, and let
Q′ be the configuration

∏
u∈U (Q�−1

u). By definition,QU is obtained fromQ′ by identifying
event channels for all users, and we haveQU = Q′�.

Event channels appear inQU only for sending messages, and do not appear inE[-], hence
every reduction step inE[QU] →∗ B commutes with our renamings. We obtainE[Q′] →∗
B ′�endu〈V 〉 for someu ∈ U andB ′ such thatB = B ′�, and finallyE[Q′�u] →∗
B ′�u �end〈V 〉.

By Theorem8 and Lemma 16(1), the configurationE[Q′�u] is robustly safe, hence
B ′�u �end〈V 〉 impliesB ′�u �begin〈V 〉 and, sinceB = B ′�, B �begin〈V 〉. �

To see that this indeed allows us to consider systems with multiple users, using structural
equivalence, we haveQU ≡ �(su)u∈U .(I | S) whereI

�= ∏
u∈U ({u = principal(su)} |

Iu) implements a parallel composition of initiators for the users inU (all using distinct
passwords) andS

�=∏
u∈U Su implements a server that accepts requests from any of these

users (with an internal choice ofu ∈ U as each envelope is received). Similarly, we could
extend our result to initiators using multiple safe envelope formats for a given user.

In our configurations so far, whenever the server accepts a message, it only sends an end-
event. The next lemma extends robust safety in case the server performs some additional
processing on accepted messages. (This lemma can be used as a preliminary step before
chaining sub-protocols using Lemma 16; see also Section 4.7 for an application.)

Lemma 18. The configurationQ′ obtained fromQ by substitutingQ[end〈u′ n t b〉 |
accept〈u′, n, t, b〉] for Q[end〈u′ n t b〉] is robustly safe.

Proof. Using robust safety forQ (Theorem8), whenever a message is sent onend, we have
u = u′ and the valuesn, t, b are those received from the environment oninitu. By mapping
reductionsE[Q′] →∗ A to those ofE′[Q] whereE′ is E[-] plus messages onaccept, we
easily establish thatE[Q′] is also safe. �

136 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

4.6. Stating and proving X.509-based authentication

For expressing X.509 configurations, we model the certifier as a processAI that exports
its own public keykr plus a collection of certificates for the pairs of users and public keys
(V ,K) ∈ I, signed with the certifying private key,sr . The configuration also includes client
and server processes for a particular useru, with public keyku.

X.509 Signing Protocol Configurations:Q (parameterized byEnvelope, I)

Q �= AI | Ku | Su
AI

�= �sr .
(
{kr = pk(sr)} |∏(V ,K)∈I{xV = x509(sr , V , rsa-sha1 ,K)}

)
Ku

�= �su.({u = principal(su)} | {ku = pk(su)} | Iu)
Iu

�= !initu(b, ea, et, ei).(begin〈u b ea et ei〉 | http〈Envelope〉)
Su

�= !http(e).
filter hasX509SignedBody(e, kr , u,W, S, id, b, ea, et, ei)

�→ id, b, ea, et, ei in
end〈u b ea et ei〉

As in Section4, the configurationQ illustrates a simple protocol configuration. Its definition
can easily be adapted to deal with more general configurations. We make the following
assumptions on the contents of certificates and envelopes:

Safe collections of certificates:I
I is a finite set of pairs of terms such that, whenever(V ,K) ∈ I, either(V ,K) = (u, ku),
or fv(V ,K) = � andsr /∈ fn(V ,K).

These conditions guarantee that there is a unique certificate foru andku, and that the
certifying key is used exclusively for signing these certificates.

Safe envelopes with X.509 signing

A safe envelopeis a term of the formEnvelope= T� for any termsT andSI such that
sr , su /∈ fn(T) ∪ fn(SI) and isSigInfo(SI, rsa-sha1 , b, ea, et, ei) is valid, with the
active substitution� defined by:

�
�= {sv= rsa-sha1(c14n(SI), su)}

The structure of the proof is similar to the one detailed in Section4.4. We first decompose
hasX509SignedBody(e, kr , u, ac, to, id, b, ea, et, ei) �→ id, b, ea, et, ei into the conjunc-
tion

hasX509SignatureEvidence(e, id, x, sv, si, b, ea, et, ei) �→ id, x, sv, si, b, ea, et, ei,

checkX509Evidence(kr , u, ac, to, id, x, sv, si, b, ea, et, ei) �→ �.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 137

Here,checkX509Evidencecontains all the cryptographic tests to check the certificate and
the signature:

checkX509Evidence(kr : bytes, u, ac, to, id : string, x, sv : bytes,
si, b, ea, et, ei : item) :-

isX509Cert(x, kr , u, rsa-sha1 , k),

isSigVal(sv, si, k, rsa-sha1),

isSigInfo(si, rsa-sha1 , b, ea, et, ei),

ea = <action >ac</> ,

et = <to >to</> ,

ei = <id >id</> .

isX509Cert(x, kr : bytes, u, a : string, k : bytes) :-
check-x509(x, kr) = kr ,

u = x509-user(x),
a = x509-alg(x),
k = x509-key(x).

Next, we define core protocol configurations and their valid states.

X.509 signing core protocol configurations:Q◦ (parameterized bySI, I)

Q◦[-] �= AI | K◦u | S◦u | [-]
K◦u

�= �su.
({u = principal(su)} | {ku = pk(su)} | I ◦u

)
I ◦u

�= !initu(b, ea, et, ei).(begin〈u b ea et ei〉 |
c〈id .Body (ei), xu, sv, SI, b, ea, et, ei〉)

S◦u
�= !s(id, x, sv, si, b, ea, et, ei).

filter checkX509Evidence(kr , u,W, S, id, x, sv, si, b, ea, et, ei) �→ � in
end〈u b ea et ei〉

Valid states for the X.509 signing protocol

(1) �i is adapted from� in the definition of safe envelopes with variables
svi, bi, eai, eti , eii and termSIi instead ofsv, b, ea, et, ei andSI.

(2) A session stateis a process of the form

Ci = begin〈u bi eai eti eii〉 | �i | Ji,
whereJi is any parallel composition of processes from{end〈u bi eai eti eii〉} ∪⊕{end〈u bi eai eti eii〉} ∪ ⊕{}. (Ci has free variablesbi, eai, eti , eii and defined
variablesvi .)

(3) An internal stateis a parallel composition of session statesC = ∏
i<m Ci , for some

m�0.
(4) A valid stateis a closed process of the formA = E[Q◦[C]]whereE[-] is an evaluation

context wherebeginandenddo not occur andC is an internal state.

138 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

For a given internal stateC, let �1
C be the (ordinary) substitution obtained by composing

{kr = pk(sr)} and each{xV = x509(sr , V , rsa-sha1 ,K)} for (V ,K) ∈ I; let �2
C be

obtained by composing{u = principal(su)}, {ku = pk(su)} and each�i for i < m. Let
�C = �1

C | �2
C . By definition, the frame obtained fromQ◦[C], which represents the

attacker’s knowledge aboutsu, is �C = �sr .�1
C | �su.�2

C .
We prove the safety ofcheckX509Evidencein two steps: first we show that the certificate

scheme is safe, Lemma20, and then we show that the signature scheme is safe, Lemma 21.
Both proofs are reminiscent of the proof of Lemma 13. The first lemma in our development
states some facts about our equational theory.

Lemma 19(Normal forms with certificates). (1) Let� be a substitution ranging over two
formsof terms: eitherpk(sr),or x509(sr , V1, V2, V3)withsr /∈ fn(V1, V2, V3)anddom(�)∩
(fv(V1, V2, V3)) = �.

For each U in normal form withsr /∈ fn(U), there existsU ′ with sr /∈ fn(U ′),U ′� = U�,
andU ′� in normal form.

(2) Let� be a substitution ranging over two forms of terms: eitherpk(su), or rsa-sha1
V, su) with su /∈ fn(V).

For each U in normal form withsu /∈ fn(U), there existsU ′ with su /∈ fn(U ′),U ′� = U�,
andU ′� in normal form.

Proof. We prove the two parts in a similar fashion. As before, we writeU �→ V for the
reduction relation obtained by orienting our equations on terms from left to right, and closing
under contexts.

(1) SupposeU� reduces by a sequence of rewrite steps toV. We write �→ for a rewrite
step; so,U� �→n V . We prove, by induction on the number of rewrite stepsn, thatV is of
the formU ′� such thatsr /∈ fn(U ′). As a corollary, ifV is the normal form ofU�, then there
existsU ′ in normal form,sr /∈ fn(U ′), such thatU ′� is V.

Base case: U� is V, so, letU ′ beU.
Inductive hypothesis: U� �→k Uk�, sr /∈ fn(Uk), andUk� �→ V . Then,Uk� is C[L�]

andV is C[R�] whereL �→ R is a rewrite rule. So,Uk is C′[L′], such thatC is C′� and
L′� is L�. If L′ matchesL (L′ is L�), then the redex occurs inUk itself andV is Uk+1�,
whereUk �→ Uk+1; so, letU ′ beUk+1. Otherwise,L′� matchesL butL′ does not. By case
analysis on rewrite rules (L→R R), we find all suchL′:
• L′ is x509-user(x) and�(x) is x509(sr , V1, V2, V3), sr /∈ fn(V1, V2, V3), x /∈ fv(V1,

V2, V3). ThenC[L′�] �→ C[V1], that isC′�[V1], that is(C′[V1])� (sincex /∈ fv(V1).
So, letU ′ beC′[V1].

• L′ isx509-alg(x)and�(x) isx509(sr , V1, V2, V3), sr /∈ fn(V1, V2, V3),x /∈ fv(V1, V2,

V3). Same as previous case, withV2 instead ofV1. So, letU ′ beC′[V2].
• L′ isx509-key(x)and�(x) isx509(sr , V1, V2, V3),sr /∈ fn(V1, V2, V3),x /∈ fv(V1, V2,

V3). Same as previous case, withV3 instead ofV2. So, letU ′ beC′[V3].
• L′ is check-x509(, y), �(y) is pk(sr). ThenC[L′�] �→ C[pk(sr)], that is(C′[y])�.

So, letU ′ beC′[y].

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 139

• L′ is check-rsa-sha1(, , y), �(y) is pk(sr). ThenC[L′�] �→ C[pk(sr)], that is
(C′[y])�. So, letU ′ beC′[y].

• In all other cases, ifL′� matchesL, so doesL′.
(2) SupposeU� �→n V . Again, we prove, by induction on the number of rewrite stepsn,
thatV is of the formU ′� such thatsu /∈ fn(U ′). As a corollary, ifV is the normal form of
U�, then there existsU ′ in normal form,su /∈ fn(U ′), such thatU ′� is V.

Base case: U� is V , so, letU ′ beU .
Inductive hypothesis: U� �→k Uk�, su /∈ fn(Uk), andUk� �→ V . Then,Uk� is C[L�]

andV is C[R�] whereL �→ R is a rewrite rule. So,Uk is C′[L′], such thatC is C′� and
L′� is L�. If L′ matchesL (L′ is L�), then the redex occurs inUk itself andV is Uk+1�,
whereUk �→ Uk+1; so, letU ′ beUk+1. Otherwise,L′� matchesL butL′ does not. By case
analysis on rewrite rules (L→R R), we find all suchL′:
• L′ is check-x509(, y), �(y) is pk(su). ThenC[L′�] �→ C[pk(su)], that is(C′[y])�.

So, letU ′ beC′[y].
• L′ is check-rsa-sha1(, , y), �(y) is pk(su). ThenC[L′�] �→ C[pk(su)], that is
(C′[y])�. So, letU ′ beC′[y].

• In all other cases, ifL′� matchesL, so doesL′. �

Lemma 20(isX509Cert is safe). LetC be an internal state withm�0 sessions. Let�′ be
a substitution that ranges over open terms where the namesr does not appear such that
�

�= �′ | �1
C is closed. LetI be a safe collection of certificates. If

� isX509Cert(x, kr , w, rsa-sha1, k)�

then there exists(V ,K) ∈ I such that(x,w, k = xv, V ,K)�.

Proof. Assume� isX509Cert(x, kr , w, rsa-sha1, k)� and let�◦C be such that� = �′ |
�◦C and�◦C ranges over closed terms in normal forms. Hence,dom(�◦C) = dom(�1

C) =
{kr} ∪ {xV | (V ,K) ∈ I} and, for allx ∈ dom(�C), x�◦C = x�1

C .
From the definition ofisX509Cert, and rewriting forkr , we get

� (check-x509(x,pk(sr)) = pk(sr))�, (7)

� (w = x509-user(x))�, (8)

� (k = x509-key(x))�. (9)

Let N be the normal form ofx �. From (7), we getcheck-x509(N,pk(sr)) = pk(sr), with
both terms in normal form. Using Lemma 12(5), cases (a) and (c) can be eliminated, since
check-x509 �= pk andpk is a constructor. So only case (b) applies:check-x509(N,pk(sr))
is a redex, and must match the (only) rule forcheck-x509: N = x509(sr , u′, a′, k′), that
is x � = x509(sr , u′, a′, k′).

LetT = x �′ in normal form; so,sr /∈ fn(T) andx � = T �◦C . From the assumptions onI,
we have that the range of�◦C consists ofpk(sr) and terms of the formx509(sr , V1, V2, V3),
such thatsr /∈ fn(V1, V2, V3) anddom(�◦C) ∩ fv(V1, V2, V3) = �. Using Lemma 19(1)
and the definition of�◦C , there existsT ′ in normal form, such thatT ′ does not containsr ,
T ′ �◦C = T �◦C , andT ′ �◦C is also in normal form.

140 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

So, T ′ �◦C = x � = x509(sr , u′, a′, k′), and by plain structural matching on normal
forms, we obtain three cases forT:
• T = y for somey ∈ dom(�◦C) such thaty �◦C = x509(sr , , ,), where stands for

any subterm.
By definition of�◦C , this impliesy = xV for some(V ,K) ∈ I, and thus(x = xV)�.

• T = x509(y,) for somey ∈ dom(�◦C) such thaty �◦C = sr .
This is excluded by definition of�◦C .

• T = x509(sr ,).
This is excluded by hypothesis on�′: sinceT = x �′, we havesr /∈ fn(T).
So(x = xV)�, for (V ,K) ∈ I. Using (8), 9, and the definition ofxV in �◦C , we obtain

(w, k = V,K)�. �

Lemma 21(checkX509Evidence is safe). LetC be an internal state withm�0 sessions.
Let�′ be a substitution that ranges over open terms where the namessr , su do not appear
such that�

�= �′ | �1
C | �2

C is closed. LetI be a safe collection of certificates. If

� checkX509Evidence(kr , u,W, S, x, sv, si, b, ea, et, ei)�

then there existsi < n such that(sv, si, b, ea, et, ei = svi, SIi, bi, eai, eti , eii)�.

Proof. Assume� checkX509Evidence(kr , u,W, S, x, sv, si, b, ea, et, ei)� and let�◦C be
such that� = �′ | �1

C | �◦C and�◦C ranges over closed terms in normal forms.
Then, by definition of�, there exists�′′ with dom(�′′) = {k,auri, turi} such that

� isX509Cert(x, kr , u, rsa-sha1, k)��′′, (10)

� (sv = rsa-sha1(k, c14n(si)))��′′, (11)

� isSigInfo(si, rsa-sha1 , b, ea, et, ei)��′′, (12)

� (ea = <action auri>S</>)��′′, (13)

� (et = <to turi>W</>)��′′. (14)

Using Lemma20 and (10), we get(x, u, k = xV , V,K)��′′ for some(V ,K) ∈ I. Using
the assumption onI, we get(K = ku)�.

In (11), using the definition ofku in �2
C , and normalizing both sides of the equa-

tion, we getcheck-rsa-sha1(c14n(si′), sv′,pk(su)) = pk(su), wheresi′, sv′ are nor-
mal forms ofsi �, sv �. Using Lemma 12(5), cases (a) and (c) can be eliminated, since
check-rsa-sha1 �= pk andpk is a constructor. So from case (b),check-rsa-sha1(c14n
(si′), sv′,pk(su)) must match the (only) rule forcheck-rsa-sha1: sv′ = rsa-sha1(c14n
(si′), su), that issv � = rsa-sha1(c14n(si′), su).

Let T = sv �′ �1
C in normal form; so,su /∈ fn(T) andsv � = T �◦C .

Using Lemma 19(2) and the definition of�◦C , T �◦C = T ′ �◦C , for T ′ andT ′ �◦C in normal
form. So,T ′ �◦C = rsa-sha1(c14n(si′), su), with both terms in normal form, and by plain
structural matching on normal forms, we obtain three cases forT:
• T = y for somey ∈ dom(�◦C) such thaty �◦C = rsa-sha1(, su), where stands for

any subterm.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 141

By definition of�◦C , this impliesy = svi for somei < n, and thus(sv = svi)�.
• T = rsa-sha1(, y) for somey ∈ dom(�◦C) such thaty �◦C = su.

This is excluded by definition of�◦C .
• T = rsa-sha1(, su).

This is excluded by hypothesis on�′: sinceT = x �′, we havesu /∈ fn(T).
Using the definition ofsvi in �C , Eq. (6) becomes

rsa-sha1(c14n(si �), su) = rsa-sha1(c14n(SIi �), su)

and thus Lemma12(4) yields(si = SIi)�.
Similarly, expanding the definition ofisSigInfoin (12) and inSIi , we obtain an equation

of the form:

W {x = b}{y = ea}{z = et}{w = ei}�
= W {x = bi}{y = eai}{z = eti}{w = eii}�

for a termWbuilt only from constructors, and obtain(b, ea, et, ei = bi, eai, eti , eii)� from
Lemma12(4). �

Theorem 22. For any safe Envelope and any safe collection of certificatesI, the configu-
ration Q is robustly safe.

Proof. The proof has the same structure as in Section4.4. We rely here on a different
definition of �i andcheckEvidence, whose correctness is established in Lemma 21. We
easily establish the counterpart of Lemma 10

We check that the proofs of Lemmas 14, 15, 11 and the main proof of Theorem 8 apply
unchanged to our modified definitions.�

4.7. Stating and proving firewall-based authentication

For the firewall-based protocol, we define the full protocol configurations as follows.

Firewall protocol configurations: Q (param. by Envelopeu, Envelopef , I)

Q �= AI | �initf .
(
�su.

(
{u = principal(su)} | Iu | Sfu

)
| Ku

f

)
| Sf

AI
�= �sr .

(
{kr = pk(sr)} |∏(V ,K)∈I{xV = x509(sr , V , rsa-sha1 ,K)}

)
Iu

�= !initu(n, t, b).(begin〈u n t b〉 | httpu〈Envelopeu〉)
S
f
u

�= !httpu(e). filter hasUserSignedBody(e, u, su, n, t, b) �→ n, t, b in
endu〈u n t b〉 | initf 〈u, n, t, b〉

Ku
f

�= �sf .
({f = principal(sf)} | {kf = pk(sf)} | If

)
If

�= !initf (u, n, t, b).(beginf 〈u n t b〉 | httpf 〈Envelopef 〉)
Sf

�= !httpf (e). filter hasX509SignedBodyFw(e, kr , f, u′, n, t, b) �→ u′, n, t, b in
end〈u′ n t b〉

142 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

This configuration is obtained by merging those of Sections4.3 and 4.6: up to indexing,
Iu andSuf are the same as for password-based signature (Section 4.3).AI is defined as
in Section 4.6;Ku

f andIuf are similar toKu andIu in that section: the main difference is
that the originator (u) received oninitf is used instead of the immediate sender (f). Sf is
similar toSu in Section 4.6: they differ mostly in the content of the signature. We adapt the
definition of safe X.509-signed envelopes accordingly:

Safe envelopes with X.509 signing (adapted for Firewall)

A safe envelopeis a term of the formEnvelopef = T� for some termsT,
SI, and FW such thatsr , sf /∈ fn(T) ∪ fn(SI), isSigInfo(SI, rsa-sha1 , b, FW) and
isFirewallHeader(FW, u, n, t) are valid, with the active substitution� defined by:

�
�= {sv = rsa-sha1(c14n(SI), su)}

We also adapt the definition of safe collections of certificates to guarantee a unique certificate
for (f, kf) instead of(u, ku).

Lemma 23. For any safe envelope and any safe collection of certificatesI, the adapted
X.509 protocol configuration: Q′ �= AI | Ku

f {beginf = begin} | Sf is robustly safe.

Proof. The proof is almost identical to the main proof of Section4.6; we use variables
u, n, t, b instead ofb, ea, et, ei to represent arbitrary terms received oninitf then signed.
The main difference is in showing that if
• � isSigInfo(SI, rsa-sha1 , b1, FW1)�, � isFirewallHeader(FW1, u1, n1, t1),
• � isSigInfo(SI, rsa-sha1 , b2, FW2)�, � isFirewallHeader(FW2, u2, n2, t2),
then(b1, u1, n1, t1 = b2, u2, n2, t2)�. �

Lemma 24. Let� be the event renaming{begin,endu,beginf ,end= beginu,begin,end,
endf }. The configurationQ� is robustly safe.

Proof. Let Q◦ be Q with initf 〈u, n, t, b〉 replaced by the messagesbeginf 〈u n t b〉 |
httpf 〈Envelopef 〉 in S

f
u . Since messages sent oninitf are exclusively received byIf , we

obtainQ◦ ≈ Q using a standard observational equivalence in the pi calculus.
We remark thatQ◦� ≡ C[end〈u, n, t, b〉 | begin〈u, n, t, b〉] for some contextC[-]where

the channelsbeginandenddo not occur, and easily establish that any configuration with
this structural property is robustly safe.�

Theorem 25. For any safe envelopes(Envelopeu,Envelopef) for password-based signing
and adapted X.509 signing, respectively, and for any certificates safe collection of certifi-
catesI, the configuration�endu,beginf .Q is robustly safe.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 143

Proof. Relying on Lemma16, we compose Lemma 18 with the renaming{accept= initf }
in evaluation context, Lemmas 24 and 23 in evaluation context.�

5. Conclusions and future work

In this paper, we introduced a framework for reasoning about the security of SOAP proto-
cols and their cryptographic implementations in terms ofWS-Security tokens.We illustrated
our framework using a series of simple authentication protocols. Surprisingly, perhaps, these
XML-based protocols can be studied at the same (syntactic) level of abstraction:
• formally, using a faithful, predicate-based implementation in the applied pi calculus with

proofs of correspondence properties against a Dolev–Yao adversary;
• experimentally, using sample programs and SOAP traces on top of the WSE toolkit[30].
This should provide a principled basis for testing compliant implementations, and also
reduce the risk of attacks in concrete refinements of correct, abstract protocols.

As can be expected, this also complicates the formal model, with for example a large
syntax and equational theory for terms in the applied pi calculus. However, our experi-
ence suggests that a modular definition of predicates, together with standard compositional
techniques in the pi calculus, should enable a good reuse of the proof effort for numerous
WS-Security protocols.

Our choice of authentication protocols stresses that small variations in WS-Security en-
velope formats may lead to much weaker correspondence properties. Each service should
therefore clearly prescribe (and enforce) the intended property. Specifically, a prudent prac-
tice in the selection of XML signatures is to request that all potentially relevant headers be
jointly authenticated—not just the message identifier or its body. In the case authentication
relies on username tokens, this strongly suggests the use of a signature instead of a digest.
Moreover, XML signatures have a complex structure, which should be used with caution.
Specifically, authentication should not rely on signed elements whose interpretation depends
on an unsigned context.

5.1. Related work

There have been many formal studies of remote procedure call (RPC) security mecha-
nisms. The earliest we are aware of is the formalization within the BAN logic [12] of Secure
RPC [37] in the Andrew distributed computing environment. More recently, process calculi
[3] have been used to formalize the secure implementation of programming abstractions
such as communication channels and network objects [40].

We are aware of very little prior formal work on XML security protocols. Gordon and
Pucella [23] implement and verify attribute-driven SOAP-level security protocols, but do
not use the WS-Security syntax. Their representation of SOAP messages abstracts many
details of the XML wire format, and hence would be blind to any errors in the detailed
structure of names or signatures. Damiani et al. [15] describe an access control model
for SOAP messages, but rely on a secure transport rather than WS-Security; a subsequent
paper [16] discusses connections between SOAP security and authorization languages such
as SAML and XACML.

144 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

5.2. Future work

Our approach to authenticity properties should extend to complementary security proper-
ties, such as secrecy and anonymity. Similarly, we should be able to deal with more complex
protocols (with series of related messages) and configurations (with more principals and
roles). Our predicate structure is quite modular, with predicates being re-used in different
protocols. Hence, we are hopeful that the method will scale up. Moreover, our seman-
tics is suitable for automation, and we have recently built a tool TulaFale[7] that allows
us to construct authentication and secrecy proofs automatically using Blanchet’s Proverif
tool [8].

At this stage, we are exploring the range of WS-Security protocols, rather than attempting
its thorough description. Our fragment of WS-Security omits certain features and options
such as encryption, Kerberos tokens, and XPath transforms, but we see no fundamental
barrier to modelling all of the specification.

Finally, although all the protocols are implemented using WSE, our goal has not been to
verify the WSE implementation itself. There is an informal gap between our formal model
and the actual implementation: we have not mechanically checked that our predicates cor-
respond correctly to the checks made by WSE. Still, we are investigating ways of verifying
at least parts of the implementation by relating it to our semantics.

Acknowledgements

We thank Tony Hoare, Riccardo Pucella, and the anonymous reviewers for their com-
ments.

Appendix A. The applied pi calculus (overview)

The applied pi calculus is a simple, general extension of the pi calculus with value
passing, primitive function symbols, and equations between terms. Abadi and Fournet [1],
introduce this calculus, develop semantics and proof techniques, and apply those techniques
in reasoning about some security protocols. This appendix gives only a brief overview
derived from [2].

In the applied pi calculus, the constructs of the classic pi calculus can be used to represent
concurrent systems that communicate on channels, and function symbols can be used to
represent cryptographic operations and other operations on data. Large classes of important
attacks can also be expressed in the applied pi calculus, as contexts. These include the typical
attacks for which a symbolic, mostly “black-box” view of cryptography suffices (but not for
example some lower-level attacks that depend on timing behaviour or dictionary attacks).
Some of the properties of the protocol can be nicely captured in the form of equivalences
between processes. Moreover, some of the properties are sensitive to the equations satisfied
by the cryptographic functions upon which the protocol relies. The applied pi calculus is
well-suited for expressing those equivalences and those equations.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 145

Abstractly, asignature	 consists of a finite set of function symbols, such asconcat
andsha1, each with an integer arity. Given a signature	, an infinite set of names, and an
infinite set of variables, the set oftermsis defined by the grammar

Grammar for terms

T ,U, V, SI,Envelope::= terms
begin,end,http, init, c, s name (for communication channels)
spwd, sr , su name (for cryptographic secrets)
b, e, n, x, y, t, u variable
f (T1, . . . , Tl) function application

wheref ranges over the function symbols of	 andl matches the arity off. We use metavari-
ablesv andw to range over both names and variables.

The grammar forprocessesis similar to the one in the pi calculus, except that messages
can contain terms (rather than only names) and that names need not be just channel names:

Grammar for processes

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
�s.P name restriction (“new”)
if U = V thenP elseQ conditional
v(x).P message input
v〈T 〉.P message output

The null process0does nothing;P | Q is the parallel composition ofPandQ; the replication
!P behaves as an infinite number of copies ofP running in parallel. The process�s.P makes a
new namesthen behaves asP. The conditional constructif U = V thenP elseQ is standard,
but we should stress thatU = V represents equality in the equational theory, rather than
strict syntactic identity. We abbreviate itif U = V thenP whenQ is 0. Finally, the input
processv(x).P is ready to input from channelv, then to runP with the actual message
replaced for the formal parameterx, while the output processv〈T 〉.P is ready to output
messageT on channelv, then to runP. In both of these, we may omitP when it is 0.
When(Pi)i∈I is a finite set of processes indexed byI = 1 . . . m, we write

∏
i∈I Pi as an

abbreviation forP1 | . . . | Pm (with
∏

i∈� Pi = 0).
Further, we extend processes withactive substitutions:

Grammar for extended processes

A,B,C, I,K, S ::= extended processes
P plain process
A | B parallel composition

146 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

�n.A name restriction
�s.A variable restriction
{x = T } active substitution

We write {x = T } for the substitution that replaces the variablex with the termT. The
substitution{x = T } typically appears when the termT has been sent to the environ-
ment, but the environment may not have the atomic names that appear inT; the variablex
is just a way to refer toT in this situation. The substitution{x = T } is active in the
sense that it “floats” and applies to any process that comes into contact with it. In order
to control this contact, we may add a variable restriction:�x.({x = T } | P) corresponds
exactly to let x = T in P . Although the substitution{x = T } concerns only one vari-
able, we can build bigger substitutions by parallel composition. We always assume that
our substitutions are cycle-free. We also assume that, in an extended process, there is
at most one substitution for each variable, and there is exactly one when the variable is
restricted.

A frame is an extended process built up from active substitutions by parallel compo-
sition and restriction. Informally, frames represent the static knowledge gathered by the
environment after communications with an extended process. Anevaluation contextE[-]
is an extended process with a hole in the place of an extended process. As usual, names
and variables have scopes, which are delimited by restrictions and by inputs. WhenX
is any expression,f v(X) and fn(X) are the sets of free variables and free names ofX,
respectively.

We rely on a sort system for terms and extended processes[1, Section 2]. We always
assume that terms and extended processes are well-sorted and that substitutions and context
applications preserve sorts.

Given a signature	, we equip it with an equational theory (that is, with an equivalence
relation on terms with certain closure properties). We write simplyU = V to mean the
termsU andV are related by the equational theory associated with	.

Structural equivalences, writtenA ≡ B, relate extended processes that are equal by any
capture-avoiding rearrangements of parallel compositions, restrictions, and active substitu-
tions, and by equational rewriting of any terms in processes.

Reductions, writtenA→ B, represent steps of computation (in particular, internal mes-
sage transmissions and branching on conditionals). Reductions are closed by structural
equivalence, hence by equational rewriting on terms.

Observational equivalences, writtenA ≈ B, relate extended processes that cannot be
distinguished by any evaluation context in the applied pi calculus, with any combination
of messaging and term comparisons. (We let≈ be the largest weak bisimulation on ex-
tended processes for reductions that preserves all potential observation of input or out-
put on free names and that is closed by application of evaluation contexts [1].)Strong
equivalence, written A ∼ B, is a finer, auxiliary equivalence similarly defined by con-
sidering strong bisimulation and immediate observations. The applied pi calculus has a
useful, general theory of observational equivalence, parameterized by	 and its equational
theory [1].

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 147

Appendix B. Additional proofs

We gather here proofs and additional lemmas that deal with internal choices, formula
implementations, and logical equivalence in applied pi. These developments are not specific
to the protocols considered in the paper.

B.1. Properties of internal choice

We begin by elaborating the co-inductive definition of internal choice given in the body
of the paper. Let a binary relationS between processes and sets of processes be achoice-
relation if and only if P S X implies (1) ifQ ∈ X thenP →∗∼ Q; (2) if P → P ′, then
either (a)P ′ ∼ Q for someQ ∈ X or (b)P ′ S X′ for someX′ ⊆ X; and (3)P does not
communicate on free channel names.

Let S⊕ be the union of all choice-relations. In effect, Section4.1 takes
⊕

X to be the
greatest choice-relation. By standard, simple arguments, the union of all choice-relations is
in fact the greatest choice-relation. Hence, we have thatP ∈⊕

X if and only ifP S⊕ X.
Next, we present some useful lemmas concerning internal choice.

Lemma 26. If P ∼ Q andQ ∈⊕
X thenP ∈⊕

X.

Proof. This follows easily by definition of bisimilarity,∼, and internal choice. �

In our implementations, it is convenient to identify reduction steps that are deterministic,
such as term comparisons; we introduce the relation→d for these reduction steps. For the
next lemma, we only need to assume that→ and→d commute, that is,P →d Q and
P → P ′ implies eitherP ′ = Q or the existence ofQ′ with P ′ →d Q

′ andQ→ Q′.

Lemma 27. If P →d Q andQ ∈⊕
X thenP ∈⊕

X.

Proof. This follows easily by definition ofP →d Q and internal choice. �

Lemma 28. If Pi ∈⊕
Xi for all i ∈ I then

⊕{Pi | i ∈ I } ⊆⊕ ⋃{Xi | i ∈ I }.

Proof. AssumePi ∈⊕
Xi for all i ∈ I .

Let P S X just if P ∈⊕{Pj | j ∈ J } andX =⋃{Xj | j ∈ J } for someJ ⊆ I .
The lemma follows if the relationS ∪ S⊕ is a choice-relation, for then we have that

S ⊆ S⊕, and therefore thatP S⊕
⋃{Xi | i ∈ I } for all P ∈ ⊕{Pi | i ∈ I }, that is,⊕{Pi | i ∈ I } ⊆⊕ ⋃{Xi | i ∈ I }.

To see thatS∪S⊕ is a choice-relation it suffices to consider anyP ∈⊕{Pj | j ∈ J } and
X =⋃{Xj | j ∈ J } for someJ ⊆ I , and to establish the three conditions in the definition
of a choice-relation.

(1) Consider anyQ ∈ X so thatQ ∈ Xj for somej ∈ J . By assumption,Pj ∈ ⊕
Xj ,

and thereforePj →∗∼ Q. SinceP ∈⊕{Pj | j ∈ J }, we haveP →∗∼ Pj , and therefore,
by bisimilarity,P →∗∼ Q.

148 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

(2) SupposeP → P ′. SinceP ∈ ⊕{Pj | j ∈ J }, either (a)P ′ ∼ Pj for somej ∈ J or
(b) P ′ ∈ ⊕{Pj | j ∈ J ′} for someJ ′ ⊆ J . In case (a),P ′ ∼ Pj ∈ ⊕

Xj soP ′ ∈ ⊕
Xj

by Lemma26, and hence we have case (b),P ′ S⊕ Xj with Xj ⊆ X. In case (b), we have
case (b),P ′ S ⋃{Xj | j ∈ J ′} ⊆ X sinceJ ′ ⊆ J ⊆ I .

(3) FromP ∈ ⊕{Pj | j ∈ J } it follows thatP does not communicate on free channel
names.

Hence,S ∪ S⊕ is a choice-relation, and the lemma follows.�

B.2. Properties of formula implementation

We state some basic facts concerning the implementation of a predicate�, with bound
variables̃y, as a processfilter � �→ ỹ in P . The following may be proved by inductions on
the definitions of the filters.

Lemma 29. (1) fv(filter � �→ ỹ in P) ⊆ (fv(�) ∪ fv(P)) \ {ỹ}.
(2) fn(filter � �→ ỹ in P) ⊆ fn(�) ∪ fn(P).
(3) (filter � �→ ỹ in Q)� = filter �� �→ ỹ in Q� whenỹ do not occur in�.

Next, the main property of formula implementation to be proved here is Lemma5.

Restatement of Lemma5. If filter � �→ ỹ in P is defined and closed then:

filter � �→ ỹ in P ∈ ⊕{P {ỹ = Ṽ } | f v(Ṽ) = � ∧ � �{ỹ = Ṽ }}.

Proof. The proof is by induction on the definition offilter � �→ ỹ in P . Sincefilter � �→
ỹ in P is defined and closed, Lemma29 implies we may assume thatfv(P) ⊆ ỹ and that
fv(�) = ỹ. We proceed by cases on the structure of�.
• In case� = (V = T), we are to showQ ∈⊕

X, where

Q = let ỹ = S̃{x = V } in if V = T thenP ,
X = ⊕{P {ỹ = Ṽ } | f v(Ṽ) = � ∧ (V = T){ỹ = Ṽ }},

whenf v(T) = ỹ, f v(V) = �, f v(P) ⊆ ỹ, andV = T �→ ỹ with inverse terms̃S.
We consider two cases: either there areṼ such thatT {ỹ = Ṽ } = V , or not. In the first
case, by clause (2) of the definition ofV = T �→ ỹ, we haveṼ = S̃{x = V }, and
therefore the vector̃V is unique. We have:

Q = if V = T {ỹ = S̃{x = V }} thenP {ỹ = S̃{x = V }}
= if V = T {ỹ = Ṽ } thenP {ỹ = Ṽ }
→d P {ỹ = Ṽ },

X = {P {ỹ = Ṽ } | f v(Ṽ) = � ∧ T {ỹ = Ṽ } = V }
= {P {ỹ = Ṽ }}.

In the second case, when there are noṼ such thatT {ỹ = Ṽ } = V , we have

Q →∗
d if V = T {ỹ = S̃{x = V }} thenP {ỹ = S̃{x = V }} ∼ 0,

X = � .

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 149

Using Lemmas26 and 27, we can establishQ ∈⊕
X in both cases.

• In case� = (x ∈ V) andỹ = {x}, we are to showQ ∈⊕
X where

Q = filter x ∈ V �→ x in P,

X = {P {x = U} | (V = U1 . . . Ui U V ′) for someU1, …,Ui , U, V ′, i�0},
whenf v(V) = � andf v(P) ⊆ {x}. Now, by appeal to Lemma12, the normal form of
the closed termV must take the formV = V1 . . . Vm W wherem�0 andV1, …, Vm,
Ware closed, normal terms, andW �= W1 W2 for anyW1, W2. We calculate as follows,
whereR = s(z).filter z=h t �→ h, t in (c〈h〉 | s〈t〉).

Q = filter x ∈ V1 · · ·Vm W �→ x in P

= �s, c.(c(x).P | s〈V1 · · ·Vm W 〉 | !R)
→ 2n

d �s, c.(c(x).P | c〈V1〉 | . . . | c〈Vm〉 | s〈W 〉 | !R)
→ 2

d ∼ �c.(c(x).P | c〈V1〉 | . . . | c〈Vm〉)
∈ ⊕{P {x = Vi} | i ∈ 1 . . . m}
= ⊕

X.

By Lemmas26 and 27,Q ∈⊕
X follows.

• In case� = p(W̃), we are to showQ ∈⊕ ⋃{Xi | i ∈ 1 . . . m} where

Q = �s.(s〈�〉 |∏i∈1...m s().filter �i {̃x = W̃ } �→ ỹ, z̃i in P),

Xi = {P {ỹ = Ṽ } | fv(Ũ , Ṽ) = � ∧ � �i {̃x = W̃ }{̃zi = Ũ}{ỹ = Ṽ }}
whenf v(W̃) = ỹ, f v(P) ⊆ ỹ, andp(̃x) :- �1 ∨ · · · ∨ �m and, for alli ∈ 1 . . . m,
f v(�i) = x̃ � z̃i and (f v(W̃) ∪ f v(P)) ∩ z̃i = �. By examining them possible
transitions ofQ, we clearly haveQ ∈⊕{Pi | i ∈ 1 . . . m}, where:

Pi = filter �i {̃x = W̃ } �→ ỹ, z̃i in P.

By induction hypothesis, for eachi ∈ 1 . . . m,Pi ∈⊕
Xi . Hence,

⊕{Pi | i ∈ 1 . . . m} ⊆⊕ ⋃{Xi | i ∈ 1 . . . m}, by Lemma28, and henceQ ∈⊕ ⋃{Xi | i ∈ 1 . . . m}.
• In case� = �1,�2, we are to showQ ∈⊕

X where

Q = filter �1 �→ ỹ1 in (filter �2 �→ ỹ2 in P)

X = {P {ỹ1, ỹ2 = Ṽ1, Ṽ2} |
� �1{ỹ1 = Ṽ1} ∧ � �2{ỹ1, ỹ2 = Ṽ1, Ṽ2} ∧ f v(Ṽ1, Ṽ2) = �},

whenf v(P) ⊆ ỹ, f v(�1,�2) = ỹ, ỹ1 = ỹ ∩ f v(�1), andỹ2 = ỹ \ f v(�1), so that
ỹ = ỹ1 � ỹ2. By induction hypothesis,Q ∈⊕{PṼ1

| Ṽ1 ∈ I } where

PṼ1
= filter �2{ỹ1 = Ṽ1} �→ ỹ2 in (P {ỹ1 = Ṽ1})

I = {Ṽ1 | f v(Ṽ1) = � ∧ � �1{ỹ1 = Ṽ1}}.
By induction hypothesis,PṼ1

∈⊕
XṼ1

, for eachṼ1 ∈ I , where

XṼ1
= {P {ỹ1, ỹ2 = Ṽ1, Ṽ2} | Ṽ2 ∈ JṼ1

},
JṼ1

= {Ṽ2 | f v(Ṽ2) = � ∧ � �2{ỹ1, ỹ2 = Ṽ1, Ṽ2}}.

150 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

Hence, with Lemma28, we have

Q ∈ ⊕{PṼ1
| Ṽ1 ∈ I }

⊆ ⊕ ⋃{XṼ1
| Ṽ1 ∈ I }

= ⊕{P {ỹ1, ỹ2 = Ṽ1, Ṽ2} | Ṽ1 ∈ I, Ṽ2 ∈ JṼ1
}

= ⊕
X.

This completes all the cases of the induction.�

B.3. Properties of logical equivalence

We extend our definition of occurrence from events to sets of events as follows: we
write A�L whenL = {a〈V 〉 | A� a〈V 〉}. We can formulate robust safety (and other
safety properties) using these observable sets:A is robustly safe if and only if, whenever
E[A] →∗� L,E[-] does not bind the channels ofL, andend〈V 〉 ∈ L, then alsobegin〈V 〉 ∈
L.

For a given set of processesX, the processes in
⊕

X are not necessarily observationally
equivalent (as they may commit to different subsets ofX). Still, we can substituteQ for P
with P,Q ∈⊕

X without changing global set observations:

Lemma 30. Internal choice implementations do not affect observationsA→∗� L.

Proof. In this proof, we say that two processes arerelatedwhen they differ only on their
implementation of internal choices:A andB are related whenA = F [S̃], B = F [S̃′] for
somem-ary contextF [-] and there existsXi with Si, S

′
i ∈

⊕
Xi for eachi ∈ 1 . . . m. (More

general forms with nested internal choices are handled by transitivity.)
For any reduction stepA→ A′, one of the following holds:

(1) A ≡ E[S] for someX andS ∈⊕
X, and

(a) A′ ∼ E[P] for someP ∈ X (completion step); or
(b) A′ ≡ E[S′] for someY ⊆ X andS′ ∈⊕

Y (internal step).
(2) A→ A′ does not depend on internal choice implementations (external step).
Internal and completion steps for different internal choices commute with one another, and
internal steps commute with any external steps. Besides, condition (3) on internal choices
implies that internal choices (and thus internal steps) never directly affect observations
A�L.

AssumeA andB are related. For any givenL, we show that, if there existsA′ such that
A→∗ A′�L, then there existsB ′ such thatB →∗ B ′�L, by induction on the number of
completion steps inA→∗ A′.

Base case(No completion step): By reordering reductionsA →∗ A′, we obtain some
A1 with external stepsA→∗ A1 and internal stepsA1 →∗ A′. There exist external steps
B →∗ B1 in direct correspondence withA →∗ A1 for someB1 related toA1. Finally,
A′�L impliesA1 �L, and we can conclude usingB →∗ B1 �L.

Inductive case: By reordering reductionsA→∗ A′, we obtain

A→∗≡ EA[SA] →∗→ EA[P ′] →∗≡ A′,

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 151

whereEA[-] is an evaluation context,X is a set of processes, andSA ∈ ⊕
X, P ∈ X,

andP ′ ∼ P are processes with external stepsA →∗ EA[SA], internal steps and a first
completion stepSA →∗→ P ′, and any stepsEA[P ′] →∗≡ A′.

By definition of external step, we also have external stepsB →∗ EB [SB] such that
EA[SA] andEB [SB] are related, for someSB ∈⊕

X and evaluation contextEB [-].
By condition (1) on internal choiceSB , there existP ′′ ∼ P with reductionsSB →∗ P ′′,

and thusEB [SB] →∗ EB [P ′′]with EB [P ′′] ∼ EB [P ′]. The processesEB [P ′] andEA[P ′]
are related, hence, by induction hypothesis,EA[P ′] →∗ A′�L impliesEB [P ′] →∗ �L

and finallyB →∗ �L. �

Next, we show that one can replace a formula by another (implementable) equivalent
one without affecting set observations. This is useful to decompose message processing, as
detailed in Section4.4.

Lemma 31. If A and B are logically equivalent andA→∗� L, thenB →∗� L.

Proof. This is Lemma30 applied to the internal choices obtained by Lemma 5.�

Given the definition of robust safety, Lemma 7 now follows as a corollary.

Restatement of Lemma7. Logical equivalence preserves robust safety.

References

[1] M. Abadi, C. Fournet, Mobile values, new names, and secure communication, in: 28th ACM Symp. on
Principles of Programming Languages (POPL’01), 2001, pp. 104–115.

[2] M. Abadi, C. Fournet, Private authentication, Theoret. Comput. Sci. 322 (3) (2004) 427–476.
[3] M. Abadi, C. Fournet, G. Gonthier, Authentication primitives and their compilation, in: 27th ACM Symp. on

Principles of Programming Languages (POPL’00), 2000, pp. 302–315.
[4] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, 1998.
[5] K. Bhargavan, C. Fournet, A.D. Gordon, A semantics for web services authentication, in: 31st ACM Symp.

on Principles of Programming Languages (POPL’04), 2004, pp. 198–209.
[6] K. Bhargavan, C. Fournet, A.D. Gordon, A semantics for web services authentication, Technical Report

MSR-TR-2003-83, Microsoft Research, 2004.
[7] K. Bhargavan, C. Fournet, A.D. Gordon, R. Pucella, TulaFale: a security tool for web services, in: Formal

Methods for Components and Objects (FMCO’03), Lecture Notes in Computer Science, vol. 3188, Springer,
Berlin, 2004.

[8] B. Blanchet, An efficient cryptographic protocol verifier based on prolog rules, in: 14th IEEE Comput.
Security Found. Workshop (CSFW-14), IEEE Computer Society, Silver Spring, MD, 2001, pp. 82–96.

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte, D.
Winer, Simple Object Access Protocol (SOAP) 1.1, 2000, W3C Note, athttp://www.w3.org/
TR/2000/NOTE-SOAP-20000508/ .

[10] J. Boyer, Canonical XML, 2001, W3C Recommendation, athttp://www.w3.org/TR/2001/
REC-xml-c14n-20010315/ .

[11] J. Boyer, D.E. Eastlake, J. Reagle, Exclusive XML Canonicalization, 2002. W3C Recommendation, at
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/ .

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

152 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153

[12] M. Burrows, M. Abadi, R.M. Needham, A logic of authentication, Proc. Roy. Soc. London A 426 (1989)
233–271.

[13] E. Cohen, TAPS: a first-order verifier for cryptographic protocols, in: 13th IEEE Comput. Security Found.
Workshop; IEEE Computer Society Press, Silver Spring, MD, 2000, pp. 144–158.

[14] J. Cowan, R. Tobin, XML Information Set, 2001, W3C Recommendation, athttp://www.w3.org/TR/
2001/REC-xml-infoset-20011024/ .

[15] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, Securing SOAP e-services, Internat. J.
Inform. Security 1 (2) (2002) 100–115.

[16] E. Damiani, S. De Capitani di Vimercati, P. Samarati, Towards securing XML web services, in: ACM
Workshop on XML Security 2002, 2003, pp. 90–96.

[17] T. Dierks, C. Allen, The TLS protocol: Version 1.0, 1999, RFC 2246.
[18] D. Dolev, A.C. Yao, On the security of public key protocols, IEEE Trans. Inform. Theory IT–29 (2) (1983)

198–208.
[19] D. Eastlake, P. Jones, US Secure Hash Algorithm 1 (SHA1), 2001, RFC 3174.
[20] D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMacchia, E. Simon,

XML-Signature Syntax and Processing, 2002, W3C Recommendation, athttp://www.w3.org
/TR/2002/REC-xmldsig-core-20020212/ .

[21] R. Focardi, R. Gorrieri, F. Martinelli, A comparison of three authentication properties, Theoret. Comput. Sci.
291 (3) (2003) 285–327.

[22] A.D. Gordon, A. Jeffrey, Authenticity by typing for security protocols, J. Comput. Security 11 (4) (2003)
451–521.

[23] A.D. Gordon, R. Pucella, Validating a web service security abstraction by typing, in: ACM Workshop on
XML Security 2002, 2003, pp. 18–29.

[24] J. Jonsson, B. Kaliski, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1, 2003, RFC 3447.

[25] R. Kemmerer, C. Meadows, J. Millen, Three systems for cryptographic protocol analysis, J. Cryptol. 7 (2)
(1994) 79–130.

[26] H. Krawczyk, M. Bellare, R. Canetti, HMAC: keyed-hashing for message authentication, 1997, RFC 2104.
[27] G. Lowe, Breaking and fixing the Needham–Schroeder public-key protocol using CSP and FDR, in: Tools

andAlgorithms for the Construction andAnalysis of Systems, Lecture Notes in Computer Science,Vol. 1055,
Springer, Berlin, 1996, pp. 147–166.

[28] G. Lowe, A hierarchy of authentication specifications, in: Proc. 10th IEEE Comput. Security Found.
Workshop, 1997, IEEE Computer Society Press, Silver Spring, MD, 1997, pp. 31–44.

[29] Microsoft Corporation, Microsoft .NET Pet Shop, 2002, athttp://www.gotdotnet.com
/team/compare/petshop.aspx .

[30] Microsoft Corporation, Web Services Enhancements for Microsoft .NET, December 2002, at
http://msdn.microsoft.com/webservices/building/wse/default.aspx .

[31] R. Milner, Communicating and Mobile Systems: the
-Calculus, Cambridge University Press, Cambridge,
1999.

[32] A. Nadalin, C. Kaler, P. Hallam-Baker, R. Monzillo, OASIS Web Services Security: SOAP Message
Security 1.0 (WS-Security 2004), March 2004,athttp://www.oasis-open.org/committees/
download.php/5941/oasis-200401-wss-soap-message-security-1.0.pdf

[33] R.M. Needham, M.D. Schroeder, Using encryption for authentication in large networks of computers, Comm.
Assoc. Comput. Mach. 21 (12) (1978) 993–999.

[34] H.F. Nielsen, S. Thatte, Web services routing protocol (WS-Routing), athttp://msdn.microsoft.
com/library/en-us/dnglobspec/html/ws-routing.asp , October 2001.

[35] L.C. Paulson, The inductive approach to verifying cryptographic protocols, J. Comput. Security 6 (1998)
85–128.

[36] J.H. Saltzer, D.P. Reed, D.D. Clark, End-to-end arguments in system design, ACM Trans. Comput. Systems
2 (4) (1984) 277–288.

[37] M. Satyanarayanan, Integrating security in a large distributed system, ACM Trans. Comput. Systems 7 (3)
(1989) 247–280.

[38] J. Siméon, P. Wadler, The essence of XML, in: 30th ACM Symp. on Principles of Programming Languages
(POPL’03), 2003, pp. 1–13.

http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.gotdotnet.com/team/compare/petshop.aspx
http://www.gotdotnet.com/team/compare/petshop.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://www.oasis-open.org/committees/download.php/5941/oasis-200401-wss-
http://www.oasis-open.org/committees/download.php/5941/oasis-200401-wss-
http://soap-message-security-1.0.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102–153 153

[39] F.J. Thayer Fábrega, J.C. Herzog, J.D. Guttman, Strand spaces: proving security protocols correct, J. Comput.
Security 7 (1999) 191–230.

[40] L. van Doorn, M. Abadi, M. Burrows, E. Wobber, Secure network objects, in: IEEE Comput. Soc. Symp. on
Research in Security and Privacy, 1996, pp. 211–221.

[41] W. Vogels, Web services are not distributed objects, IEEE Internet Comput. 7 (6) (2003) 59–66.
[42] T.Y.C. Woo, S.S. Lam, A semantic model for authentication protocols, in: IEEE Comput. Soc. Symp. on

Research in Security and Privacy, 1993, pp. 178–194.

