Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 340 (2005) 102—153

www.elsevier.com/locate/tcs

A semantics for web services authentication

Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon
Microsoft Research7 J JThomson Avenue, Cambridge, UK

Abstract

We consider the problem of specifying and verifying cryptographic security protocols for XML web
services. The security specification WS-Security describes a range of XML security elements, such
as username tokens, public-key certificates, and digital signatures, amounting to a flexible vocabulary
for expressing protocols. To describe the syntax of these elements, we extend the usual XML data
model with symbolic representations of cryptographic values. We use predicates on this data model
to describe the semantics of security elements and of sample protocols distributed with the Microsoft
WSE implementation of WS-Security. By embedding our data model within Abadi and Fournet’s
applied pi calculus, we formulate and prove security properties with respect to the standard Dolev-Yao
threat model. Moreover, we informally discuss issues not addressed by the formal model. To the best
of our knowledge, this is the first approach to the specification and verification of security protocols
based on a faithful account of the XML wire format.
© 2005 Published by Elsevier B.V.

Keywords:XML security; Applied pi calculus; Web services

1. Motivations and outline

Over the past few years, a growing list of specifications has been defining aspects of
XML web services. Security is a serious concern and is addressed, in particular, by the
recent WS-Security standaf82]. WS-Security provides an XML vocabulary for design-
ing cryptographic protocols and by now has multiple implementations. Still, it provides no

* Corresponding author.
E-mail addressadg@microsoft.confA.D. Gordon).

0304-3975/$ - see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.tcs.2005.03.005

http://www.elsevier.com/locate/tcs
mailto:adg@microsoft.com

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 103

formal basis for stating security goals or reasoning about correctness. The trouble is, new
cryptographic protocols are often flawed, XML or no XML.

Meanwhile, there has been a sustained and successful effort to develop formalisms for
expressing and verifying cryptographic protocd®,12,13,22,25,27,35,39], etc). Formal
methods can verify various security properties against a standard threat model based on
an opponent able to monitor and manipulate messages sent over the network. Such verifi-
cations are typically of abstract versions of protocols, expressed using fixed, high-level,
ad hoc message formats, rather than the standard XML syntax for ordered trees with
pointers.

This paper brings these developments together. We introduce a language-based model
for XML security protocols, and we establish process calculus techniques for verifying
authentication properties for a wide class of WS-Security protocols.

1.1. Background: Web services security

Web services [41] are a distributed systems technology based on network endpoints
exchanging SOAP [9] envelopes—XML documents with a manddoy element con-
taining a request, response, or fault element, together with an optitasaler element
containing routing or security information. SOAP allows for network intermediaries—such
as routers or firewalls—to process an envelope, by adding or modifying headers. Exam-
ples of web services include Internet-based services for ordering goods or invoking search
engines, and intranet-based services for linking enterprise applications.

A common technique for securing SOAP exchanges is to rely on a lower-level secure
tunnel between the endpoints, typically an SSL connection. This works well in many situa-
tions, but has the usual disadvantages of transport-level security: the secrecy or integrity of
messages can be guaranteed while in the tunnel, but not subsequently in files or databases,
and they may not match the security requirements of the application. Pragmatically, client
authentication is often performed by the application rather than by SSL. Besides, SSL does
not fit SOAP’s message-based architecture: intermediaries cannot see the contents of the
tunnel, and so cannot route or filter messages.

To better support end-to-end security [36], WS-Security defines how to sign or encrypt
SOAP messages without relying on a secure transport. A central—but informal—abstraction
is the security tokenwhich covers data making security claims, such as user identifiers,
cryptographic keys, or certificates. WS-Security provides a precise syntax for multiple token
formats, such as XML username tokens and XML-encoded binary tokens conveying X.509
public-key certificates or symmetric keys. It also specifies syntax for applying encryption
and signature to selected elements of SOAP messages. In this paper, we use the term token
to refer to all security elements defined in WS-Security, including identity tokens, digital
signatures, and encrypted blocks. Like many traditional protocol specifications, WS-Secu-
rity details message formats—such as the names of XML tags—rather than security goals
and their enforcement, thereby focusing on interoperability rather than security. Although it
gives a syntax for a broad range of protocols, WS-Security also emphasizes flexibility, and
does not define any particular protocol. As a result, for each given WS-Security compliant
protocol, security goals still have to be carefully specified and validated.

104 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153
1.2. Background: Security protocol verification

This paper addresses authentication properties of XML-based security protocols against
a standard threat model: an opponent able to read, replay, redirect, and transform messages,
but who cannot simply guess secrets. Needham and Schroeder describe such an opponent
in their pioneering work on cryptographic protoc¢&3]. The first formalization was by
Dolev and Yao [18]. A great many formal methods have been deployed to verify protocols
against this threat model, with particular progress in the past few years.

This paper uses Abadi and Fournet’s applied pi calculus [1,2] as the underlying specifi-
cation language for protocols, and relies on proof techniques from concurrency theory. In
this approach, the opponent is simply an arbitrary context within the calculus; the scoping
rules of the pi calculus ensure that the opponent cannot learn names representing secrets
such as the passwords of protocol participants.

We formalize authentication properties using standard correspondence assertions [42],
as embedded within the pi calculus by Gordon and Jeffrey [22]. These assertions are based
on two kinds of events, which can be thought of as logfile entries by protocol participants.

A begin-event marks the initiation of a run of a protocol, while an end-event marks the
commitment that a run has completed. Events record data identifying the run, such as the
names of the client and server, message identifier, and payload. A protocol is safe if in every
run, every end-event corresponds to a previous begin-event with the same event record.
Moreover, a protocol is robustly safe if it is safe in the presence of an arbitrary opponent
process. Robust safety establishes message authentication, and rules out a range of attacks.
Other formulations of authentication are possible; see [21] for a comparative study.

1.3. This paper

We tackle the problem of formal reasoning about XML-encoded cryptographic protocols.
The interest and novelty in this problem arises not from the XML syntax itself, but from
the need to model low-level detalil, in particular, the flexibility and hierarchical structure of
XML signatures [20], designed to tolerate changes to the headers of a SOAP message over
its lifetime.

We base our approach on three formalisms: a symbolic syntax for XML with cryptography
and a predicate language for defining acceptable messages—both defined in Section 2—and
a specialized version of the applied pi calculus. We explain the purpose of each of these
in turn.

First, to represent XML messages with embedded cryptography, we enrich the standard
XML data model with an abstract syntax for embedded byte arrays and cryptographic
functions. Formally, we define a many-sorted algebra with sorts for the usual constructs of
XML—strings, attributes, and so on—plus a new sort of symbolic byte arrays, in the style
of Dolev and Yao, to represent cryptographic materials embedded in XML.

Second, to define the semantics of security tokens and validity conditions on messages,
we introduce a Prolog-like language of predicates on XML data. By insisting on fidelity to
the low-level XML format, we are confronted with the difficulty of defining rather intricate
conditions of message acceptability, and hence we need some language of predicates on
XML. It may be possible to extend some standard type system or query language for XML

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 105

(such as DTDs, XML Schema, or XPath) to express conditions on cryptographic values.
Instead, for the sake of simplicity and being self-contained, we rely on a fairly standard
Horn-clause logic.

Third, to describe complete protocols, we embed these messages and predicates within the
applied pi calculus. We state and prove protocol properties against a large class of contexts
representing attackers. Applied pi is parameterized in general by an arbitrary equational
theory of terms, which we specialize to our data model for XML with cryptography. We
obtain a calculus expressive enough to implement our predicates, and to describe complex
protocol configurations.

In Section3, given these notations, we formalize the security goals and message for-
mats of a series of sample protocols. These protocols illustrate a range of WS-Security
concepts including message identifiers, password digests, username tokens, X.509 public-
key certificates, XML signatures based on both password-derived keys and certificates,
and processing by SOAP intermediaries as well as end-points. For each protocol, we give
predicates describing acceptable messages, and state authentication goals using the usual
message-sequence notation. WS-Security itself defines a formal syntax for messages, but
gives only an informal account of the security checks performed by compliant implementa-
tions, as each token is processed in the SOAP protocol stack. Through formalizing the series
of protocols, we accumulate a collection of re-usable predicates reflecting the semantics
of these tokens. Hence, we obtain a first formal semantics for a significant fragment of
WS-Security.

In Section 4, we formalize the message-sequence notation within the applied pi calculus
so as to verify our authentication goals. We explain the structure of the proof of three of the
sample protocols from Section 3. The proofs are compositional, and rely on identifying a
“trusted computing base” embodying the essential checks underlying the protocol.

In Section 5, we conclude, and discuss related and future work.

Appendix A is a brief introduction to the applied pi calculus. Appendix B contains addi-
tional proofs. A portion of this article is published as a conference paper [5]. A technical
report [6] contains additional details.

1.4. Contributions

In summary, we make three main contributions:

(1) A new data model and predicate language for describing XML-level cryptographic
protocols. Fidelity to the detailed messaging format enables us to address its subtleties,
such as the interpretation of compound signatures.

(2) A collection of predicates defining a semantics for the security tokens of WS-Security
and related specifications. We cover only a substantial fragment of WS-Security, but
our semantics does establish the feasibility of applying our formal developments to a
large class of protocols.

(3) Proofs for a series of concrete protocols drawn from the WSE 1.0 distribution. At an
abstract level, the protocols we consider are quite simple. Still, we have encountered
vulnerabilities to XML rewriting attacks in implementations of these conceptually sim-
ple protocols. So it is worth establishing correctness at this level, and indeed the formal
Dolev—Yao properties are non-trivial.

106 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153
2. Symbolic cryptography in XML

The core of our data model—or abstract syntax—for XML trees is adapted from Siméon
and Wadler's grammar for XMI38].

XML data model: standard core

Tag ::= anyLegalXmIName element or attribute name
str:string ::=any legal XML string XML string

a:att = Tag=" str" Tagattribute

as:atts =aas|e¢ attribute sequence

i:item ;.= Elem]| str item

is:items :=iis| e item sequence

Elem .= <Tag asis</ Tag> Tag-element

Our data model represents valid, parsed XML. It resembles the XML infoset recommen-

dation [14] but with some differences. For the sake of clarity, we completely suppress

information about XML namespaces, and the docurs@ximl ..> directive. As a mi-

nor technical convenience, we model an element’s attributes as an ordered sequence rather

than a set. (This also reflects the capability of an attacker to observe ordering information.)
Our syntax is intentionally close to the standard XML wire format, but for brevity we rely

on three notational conventions. First, although formally an element’s attrivsdes body

is are recursively defined lists, we typically use a standard tuple notation for fixed-length

sequences. Second, instead of writing an elerm&mvelope></Envelope> | say, in

full, we drop the tag from the closing bracket, and simply wsiEnvelope></> . Third,

when writing an element that spans several lines, we rely on indentation (as in Haskell or

Python) to delimit the body, and so omit the closing bracket. So, by convention,

<Envelope>
<Header></>
<Body></>

is short for
<Envelope><Header></Header><Body></Body></Envelope>

Conventions for sequences, for closing and indenting elements

I
al ... ay = a1 (... (ay &):atts for m >0; similarly foritems.
<Tag asis</> = <Tag asis</ Tag>
<Tag as
i
:1 = <Tag asiy---i,</>
im
L 1

Formally, our data model is a many-sorted algebra, based on thestanty, att, atts,
item, items, plus a sorbytes for binary data. We embed this algebra within the applied pi

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 107

calculus as described in SectidnThe complete algebra is given by the “XML data model”
table above plus two more below.

We need the following general definitions. We TetJ, V range over terms of arbitrary
sort in the algebra, and writE : string, for example, to mean thdt belongs to the sort
string. Throughout we assume that terms, predicates, and equations are well sorted, but for
the sake of brevity keep the details implicit. In addition to the syntax defined in this section,
terms include sorted variables, y, z, . . ., and so on. We lefiv(T') be the set of variables
occurring in a terml. We say a ternT is closedif and only if fw(T) = J. Otherwise,
we say the term isper—an open term represents a closed term with some undetermined
subterms, represented by the variables. Wé&leange over vector¥y, ..., V,, of terms,
and similarlyx ranges over vectors, . . ., x,, of variables. We often treat such vectors as
sets. We let range over parallel substitutiofig = V'} of the termsV for the variables:,
and we definglom({x = V}) = {xX}. We say that a substitutionis closedif and only if
o(x) is a closed term for eache dom(o).

Next, we supplement the core data model with a symbolic representation of cryptography
and related operations. We introduce a bgtes representing byte arrays, and extstrihg
with Base64-encoded arraylsase64(x)). We assume there is an infinite set of atomic,
abstrachamesranged over by. Each name is either of sdiytes or string. We use these
names to represent arbitrary, unstructured cryptographic materials such as passwords and
keys. We lefn(T) be the set of names occurring in a tefm

XML data model: byte arrays, symbolic cryptography

X:bytes ::= byte array (not itself XML)
s abstract name (key, nonce)
concat(xy, X2 : bytes) array concatenation
cl4n(i:item) canonical bytes of an item
utf8(str: string) UTF8 representation of strings
shal(x:bytes) cryptographic digest
p-shal(pwd: string, salt: bytes) key from salted password
hmac-shal(key, x: bytes) keyed hash
Pk (kpriv : bytes) map from private-to-public key
rsa-shal(x, kpri : bytes) public key signature

x509(s, : bytes, u :string, a : string, kpub: bytes)
X.5009 certificate

str:string ::= XML string
s abstract name (password)
base64(x:bytes) Base64-encoding of byte array
principal (pwd: string) map from password to principal

While the cryptographic functions presented here are all present in the WS-Security specifi-
cation, the exact choice of primitives is a little arbitrary; we include enough operations here
for the protocols of Sectio8. The termconcat(x;, X2) represents the concatenation of the
two arraysx; andxp. The termcl14n(i) represents the array obtained by canonicalizing the
XML represented by, according to some standard algorithm [10,11]. (In fact, for our pur-

108 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

posescl4nis simply a way of symbolically treating an XML item as a byte array;ai#n

does not sort attribute lists, for example.) The teitf8(str) represents the UTF8 encoding

of the XML stringstr. The termshal(x) represents the one-way SHA1 hash of tlzeray.

The termp-shal(pwd salt) represents a key obtained by hashinggtvwelpassword and the
saltarray[17]. The termhmac-shal(key, x) represents a keyed hash of tharray using
thekeyarray as the key [26]. The terpk(kpriv) represents the public key associated with

a private signing keypriv. The termrsa-shal(x, kpriv) is a public-key signature ofunder

the private keycpriv [24]. The termx509(s,, u, a, k) represents a basic X.509 public-key
certificate, where, is the private signing key of the certifier anda, k are the signed user
name, algorithm, and key for a given principal. (Such binary certificates can be embedded
as XML items; they are used here to carry public keys for the asymmetric signing algorithm
rsa-shal.) Finally, the ternprincipal(pwd) is used to represent a database of user names
associated with secrets, such as passwords, and is explained in Section 3.2.

Our threat model is that SOAP messages may be intercepted, decomposed, modified, as-
sembled, and replayed by the attacker [18,33]. The following selector functions and inverses
symbolically represent the ability of the attacker to decompose messages. It is deliberate
that there are no inverses for the three hash functishal(, p-shal, andhmac-shal),
and for the public-keygk) and user nameptincipal) maps; the attacker cannot reverse
these one-way functions.

XML data model: selectors and inverses

I
X:bytes ::= byte array
fst(x: bytes) left part ofconcat
snd(x: bytes) right part ofconcat
i-base64(str:string) inverse ofbase64
x509-key(cert: bytes) public key in X.509 certificate
check-x509(cert, i : bytes) X.509 certificate verification
check-rsa-shal(x, sig, kpun: bytes) public key verification
str:string ::= XML string
Tagparm(a: att) string param of dag-attribute
i-utf8(x: bytes) inverse ofutf8
x509-user(cert: bytes) name in X.509 certificate
x509-alg(cert: bytes) algorithm in X.509 certificate
a:att ::= attribute
hd(as: atts) head of a sequence
as:atts ::= attributes
Tagatt(i:item) attributes of alag-element
tl(as: atts) tail of a sequence
i:item = item
hd(is:items) head of a sequence
i-c14n(x:bytes) inverse ofc14n
is:items ::= items
Tagbody(i:item) body of aTag-element

tl(is:items) tail of a sequence
L 1

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 109

Most of these selectors are straightforward inverses with single arguments. The two excep-
tions arecheck-x509 andcheck-rsa-shal. The terncheck-x509(cert, k) checks thatthe
certificatecert is signed with a private key associated with the public keyand yieldsk,
if this succeeds. The tercheck-rsa-shal(x, sig, kpup) checks thasig is thersa-shal
signature ofk under the private key corresponding to the public kgy, and yieldskpyp if
this succeeds. (Some of the inverses, such as the funésicaredsnd, would be impossible
to implement in general, and we do not rely on them to program compliant principals; they
exist to represent the possibility of the attacker correctly guessing, for example, how to
divide an array obtained by concatenation into its original two halves.)

We represent evaluation of selectors and inverses by an equivaléneeV, the least
sort-respecting congruence induced by the following axioms.

Equivalence of terms of the data modelU = V

I

hd(aas = a tllaasg = as

hd(iis) =i ti(iis) =is

Tagatt(<Tag as’is</>) = as i-base64(baseb4(x)) = x
Tagbody(<Tag asis</>) = is i-utf8(utf8(str)) = str
Tagparm(Tag =" str") = str i-cl4n(cl4n(i)) =i
fst(concat(xq, X2)) = X1 snd(concat(xy, X2)) = X2
x509-user(x509(sy, u, a, k)) =u x509-alg(x509(sy, u, a, k)) = a

x509-key(x509(sy, u, a, k)) = k

check-x509(x509(sy, u, a, k), pk(sy)) = pk(sy)
check-rsa-shal(x, rsa-shal(x, kpriv), PK(kpriv)) = PK(kpriv)
L

In the absence of additional equivalences between terms, we implicitly assume that our
cryptographic operations have no additional interactions. For instance, the hash functions
shal, p-shal, hmac-shal, andrsa-shal are independent here. This can be informally
checked from their cryptographic specificati¢h8,17,26,24], or modelled as a refinement

of the term equivalence, as in [1].

We end this section by defining a logical notation for predicates on XML terms. Formally,
we present a Horn logic over our many-sorted algebra, with primitive formulas for equality
and list membership, but no recursively defined predicates. Our notation is simple, and
suffices for reasoning about security; other languages feature more expressive pattern-
matching for XML, but their semantics would be harder to formalize.

We assume there is a fixed, finite sepaddicatesranged over bp. For each predicaig
we assume there is a single definitipi¥) :- @1V ---Vv &, where eacld; is aformula,
andm > 0. (Whenm > 1, we usually present each clays&) :- ®@; separately, in the
style of Prolog.) Next, we define the syntax of formulas.

Syntax of formulas and predicate definitions
I

D= formula
V=T term comparison
UeV list membership

110 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

p(17) predicate instance

D1, D) conjunction
px) - D1V .-V Dy definition of predicate with m > 0
L

We assume that formulas are well-sorted according to the following rulés:=nT both
terms belong to the same sort;ih € V eitherU : item andV : items or U : att and
V :atts;in p(V) whenp(x) - &1V --- Vv &,, the length and sorts 6f match the length
and sorts of. _

Let p contribute toq if and only if an instanceg(V) occurs in one of the disjuncts
defining g. We stipulate that this relation is well-founded, to avoid recursively-defined
predicates. We ldt/(®) be the free variables of all the terms occurringirand in particular,
fv(p(Vi, ..., Vi) = fv(V1) U --- U fv(V,). In any clause(¥) :- @, we say that each
z € fv(®) \ ¥ is alocal variable By convention, each occurrence in a clause of the wildcard
symbol _ is short for the only occurrence of a fresh local variable. Local variables are
existentially quantified in our semantics; we identify clauses up to the consistent renaming
of local variables.

Semantics of formulas:F @ where fv(®) = J

I

EV=T2(V=T)

FEUeV2WV=U...U0;UV)

_ for someUs, ..., U, V/, withi >0

Fp(V) = F & = VI{Z = U) _
for somei € 1...m and closed term&
wherep(x) - ®1V---Vv &, andz = fv(P;) \ X

E @, 9o = FE &1 andF &,

L

For open formulas, we introduce notions of validity and logical equivalence.

Validity, logical equivalence of formulas

A formula @ is valid when, for all substitutions such thabg is closedfF ®o.
Two formulas®, @’ arelogically equivalentwhen, for all substitutions such that
Do and®’¢ are closeds @¢ iff E @'c.

3. Example protocols

This section describes some WS-Security protocols, whose goal is to authenticate access
to a basic web service. We first present a typical (unauthenticated) web service, then succes-
sively refine it by introducing password-based digests, signatures, X.509 certificates, and
a firewall intermediary. The first four protocols are taken from the samples provided with
WSE 1.0[30]; we used the actual SOAP messages produced by this implementation to ex-
perimentally validate our model. (The technical report includes sample messages produced
by WSE.)

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 111
3.1. An (unauthenticated) web service

We consider a typical e-commerce website application where customers can browse
and purchase iten{29]. The orders are stored on a database server, and can be retrieved
and viewed on later visits. For security, customers are required to login, with username and
password, before placing and retrieving orders. In addition to the standard website interface,
the server provides a SOAP web servigetOrderthat a customer may invoke to retrieve
their order in XML format, to save it as a receipt, for instance. Our aim is to provide the
same level of security for this web service as the website login.

A call to GetOrder consists of a SOAP request and a SOAP response. We introduce
predicates to describe these messages. As a first example, a valid SOAP message is an
XML Envelope, containing eéleader and aBody. The predicatdhnasBodye, b) below
meand is the body of envelope (the wildcard_ matches anything):

hasBodye : item, b : item) :-
e = <Envelope><Header> _</> b</>
b =<Body _>_</>.

The SOAP request fagetOrderis an envelope, where the body encodes the parameters of
the call. The resulting SOAP response has a body containing the order, in XML

isGetOrderb : item, Orderld : string) :-
b = <Body _>
<GetOrder>
<orderld> Orderld</>

isGetOrderRespongk : item, Orderld : string, u : string) :-
b =<Body _>
<GetOrderResponse>
<orderld> Orderld</>
<date> _</>
<userld> u</>

We suppose there is a single server, identified by the WRhosting theGetOrderweb
service, identified by the URWV, and multiple client computers that may connecston
behalf of users. Here is a protocol for a client computer, identified by its IP address
request information about order numig@rderld from the web servic&/ on serverS, on
behalf of a human usex.

Messagd: I — S,W ¢
wherehasBodye, b), isGetOrderb, Orderld).
Message: S — 1 €,
wherehasBodye, b'),
andisGetOrderRespongk, Orderld, u).

112 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

e Message 1 is an HTTP POST request to the URLwith an HTTP header
SOAPAction: W, and with the SOAP envelope as its content. The predicates
hasBodye, b) and isGetOrde(b, Orderld) specify the behaviour of both client and
server: that is, a client will only send Message 1, and a server will only accept it, if the
message is a suitably formatted request for some or@ederld. We implicitly specify
that if the server receives a message that does not satisfy these predicates, it will reject the
message.

e Message 2 is the HTTP response, containing the SOAP envelofiéie predicates
hasBodye, b') andisGetOrderRespongk, Orderld, u’) constrain the server to send a
reply that concerns the ord@rderld requested in Message 1. In this first protocol, the
useru whose client computer sends the request need not be the same as thienlser
is associated with the order.

It is not a goal here to fully specify the correct behaviour of either client or server. We

are only concerned about security properties, and authentication in particular, and suppress

other information. For example, we suppress the rest of the response, which includes details
such as the credit card type, number and expiration date, billing and shipping addresses,
and the sequence of line items in the order.

Our predicates express constraints on messages sent and received by compliant imple-
mentations of our protocols. On the sender side, they express post-conditions for every
outgoing message. (The fact that these conditions do not fully determine the envelope
yields functional flexibility.) On the receiver side, they express pre-conditions that must be
checked before incoming messages are processed. (They do not specify a particular order
for the checks, but still provide enough details to review an implementation.) In the presence
of an active attacker, it is essential that the receiver dynamically check these conditions,
even if the sender enforces them.

Our first protocol offers no protection against active attacks, since any well-formed en-
velope is accepted by the server. Next, we consider more effective checks.

3.2. Password digest

Username tokens with a cryptographic digest provide a first, basic mechanism for authen-
ticating web service requests. Such tokens include a username idgritiyether with a
digest of a password and a fresh timestamp. We assume that each pgssdjasch shared,
unguessable secret betweeandsS, so that only: (or S, in principle) can generate a valid
digest—this hypothesis excludes dictionary attacks, for instance. To justify this assumption,
passwords need to be strong cryptographic secrets; one might also modify the protocol to
encrypt the digest of a weak password, but we do not pursue this alternative. Moreover, as
in other applications of the applied pi calculus, we abstractly relate the password and the
user using the special one-way functjamncipal from passwords to users: we lestand
for principal(pwd,).

To model this protocol, we develop predicates for describing WS-Security headers and
embedded username tokens. Our predicate definitions are not specific to this protocol,
and can be re-used for any protocol relying on these tokens. First, we define a predicate
to extract the security tokens from some security header of the envelope: the predicate
hasSecurityHeadée, tok9 means thatoksis a sequence of security tokens attached to

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 113

message. The first formula in the predicate body extracts the list of headeraders:
items) from the envelope. The second formul@adere headersrequires thaheaderbe
some member of the header list. The third formula requiresdembe a security header,
and extracts the security tokens from it.

hasSecurityHeadée : item, toks: items) :-
e = <Envelope><Header> headers/> _</> ,
headere headers
header= <Security> toks</> .

The WS-Security specification allows envelopes to contain mult@ecurity> ele-
ments, possibly containing SOABIle attributes, provided eachSecurity> element

in an envelope is targeted at a distinct endpoint or intermediary. For the sake of simplicity,
hasSecurityHeadegnores<Security> elements containing this attribute, and does not
check for duplicatecSecurity> elements.

With username tokens, the unique identifier of a message is &palytes, ¢ : string)
wheren is a nonce—some byte array—ahi a timestamp represented as a string. The
predicatasDigestUserToketok, u, pwd n, t) means thaibkis a username token for user
with passwordcwd, identifier (n, t), and a valid digest.

isDigestUserTokeimok : item, u, pwd: string, n : bytes, ¢ : string) :-
tok = <UsernameToken _>
<Username> u</>
<Password Type="PasswordDigest"> base64(d)</>
<Nonce>base64(n)</>
<Created> t</>,
u = principal(pwd),
d = shal(concat(n, concat(utf8(z), utf8(pwd)))).

Finally, a top-level authentication predicat@sUserTokenDigesgiathers all the elements
checked on envelopes received by the sehastJserTokenDige@t, u, pwd, n, ¢, b) means
that the envelope with bodyb contains a valid username token fampwd n, 7.

hasUserTokenDige@gt : item, u, pwd: string, n : bytes, ¢ : string, b : item) :-
hasSecurityHeadé¢, toks),
utok € toks,
isDigestUserTokemrok, u, pwd n, t),
hasBodye, b).

The following protocol description includes both SOAP messages and additional begin- and
end-events, in the style of Woo and Lafd2]. We introduce these events to
express the authentication guarantee obtained by the server from running this protocol.

114 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

(The correspondence between begin- and end-events is sometimes referred to as agreement
between running and commit signals, respectiy28).)

Eventl: Ilogs<Begin> unt</>.

Messagd: I — S,W ¢
wherehasUserTokenDige&, u, pwd n, ¢, b),
andisGetOrderb, Orderld).

Event2: Slogs<End>u n t</>

Message: S — 1 €,
wherehasBodye, b'),
andisGetOrderRespongk, Orderld,).

We interpret events in the abstract log as follows: before issuing a request, the initiator logs
its intent as an entrgBegin> u n r</> that contains the user nareand the message
identifier. Conversely, after checking an envelope, the servexdBgd>u n t</> to man-

ifest that it accepts a request with these parameters. In any case, the attacker cannot log
entries. Ideally, begin- and end-events should be in direct correspondence, but this is clearly
not the case if the attacker can delete, reorder, or reptayessages. Instead, we have the
following correspondence property:

Claim 1. Inthe presence of an active Dolev-Yao attacketEnd>u n r</> is logged by
S then<Begin> u n t</> has been logged by |

This is a fairly weak authentication property, which can be read a&séifcepts a request
from u, thenu recently sent some request.” The two requests are not necessarily the same:
for instance, an active attacker can intercept the envelope, modify its body, and pass it to
the server. In many settings, it may be suitable to have a stronger correspondence between
u and S’s actions, for example between entrieBegin> u S W n ¢ Orderld</> and
<End>u S Wn t Orderld</> .

Although the password digest is optional in WS-Security username tokens, our claim
would clearly not hold if the server accepted tokens without checking the digest, since
the attacker could then forge a message with any identitien irrespective of the user’s
requests.

In itself, our protocol does not eliminate replays. (Technically, our correspondence as-
sertion is non-injective.) However, since the identifier is authenticated, the application can
safely use it to filter messages with duplicate or expired username tokens.

3.3. Password-based signature

In order to achieve more precise authentication properties under the same assumptions—
a shared password betweerand S—one can use an XML digital signature on selected
elements of the envelof20]. In addition to the username token, we embed a signature token
that signs (for instance) the envelope body, with a signing key derived from the password
and the username token.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 115

A hash-based signature of itemsg ..., x,, using a keyk, may be roughly pictured as
follows.

<Signature>
<Signedinfo>
<CanonicalizationMethod

Algorithm="" ... normalization scheme."></>
<SignatureMethod

Algorithm=" ...keyed hash function ."></>
<Reference> ...hashofx;...</>
<Reference> ...hash ofx,,...</>

<SignatureValue>
... hash ofSignedinfo element with keyk. . . .

See Sectiord.3 for a full example of a signed envelope. Next, we define the additional
predicates needed for our modified protocol, including predicates defining the various parts
of a signature.

e isUserTokenKeayok, u, pwd n, ¢, k) means thatokis a username token for usemvith
passwordpwd, unique identifier(n, t), and derived keyk. The key derivation uses a
p-shal keyed hash salted with the message identifier.

e isSigValsv, si, k, a) means thasvis the digital signature computed on itestwith key
k using algorithma (which for password-based signaturebiisac-shal).

e ref(z, r) means that the itemis a reference containing the digest of iten\We use the
three wildcards to match reference attributes afichnsforms andDigestMethod
elements, which are included in references for flexibility, but are irrelevant for security
in our setting.)

e isSigInfdsi, a, x1, . . ., x;;) Means that the signed informatisinfor signature algorithm
a, contains a list of references of which the finstare for the items, ..., x,,. After
these referencesi may contain any number of references to other items (represented in
the predicate by an). This flexibility in the predicate enables the client to sign additional
items even if notrequired by the server (to conform to a uniform send policy, for example).

e isSignaturésig, a, k, x1, ..., x;;) means that the signatusgg signsxi, ..., x,, with
algorithma and verification kek.

e hasUserSignedBody, u, pwd n, ¢, b) is the top-level predicate. It means that the enve-
lope e contains a username token forpwd, n, ¢, and that the bodp of e is signed by
the key derived from the token.

isUserTokenKeyok : item, u, pwd: string, n : bytes, ¢ : string, k : bytes) :-
tok = <UsernameToken _>
<Username> u</>

<Nonce>base64(n)</>
<Created> t</>,

116 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

u = principal (pwd),
k = p-shal(pwd concat(n, utf8(t))).

isSigValsv : bytes, si : item, k : bytes, a : string) :-
a = hmac-shal ,
sv = hmac-shal(k, c14n(si)).

ref(t : item, r : item) :-
r = <Reference _>
_ _<DigestValue> base64(shal(cl4n(t)))</> .

(for eachim >1)
isSigInfdisi : item, a : string, x1, ..., x,, : item) :-
si = <Signedinfo>
_ <SignatureMethod Algorithm=" a"></>
... I'm—,
ref(xy, r1), ..., ref(xm,, rm).
isSignaturésig : item, a : string, k : bytes, x1, ..., x;, : item) :-
sig = <Signature> si <SignatureValue> baseb4(sv)</> _</> ,
isSiginfdsi, a, x1, ..., xn),

isSigValsv, si, k, a).
hasUserSignedBody : item, u, pwd: string, n : bytes, ¢ : string, b : item) :-
hasBodye, b),
hasSecurityHeadés, toks),
utok € toks,
isUserTokenKeyitok, u, pwd, n, t, k),
sig € toks,
isSignaturésig, hmac-shal |, k, b).

The message exchange is much as in Se@i@n with two differences: each log entry
now containsu n ¢ Orderld instead of just« n tOrderld; we use the top-level predi-
catehasUserSignedBody;, u, pwd, n, ¢, b) instead ofhasUserTokenDige@&t, u, pwd, n,
t,b).

Eventl: I logs<Begin> u nt Orderld</>
Messagd: I — S,W e
wherehasUserSignedBody, u, pwd n, ¢, b),
andisGetOrdetb, Orderld)
Event2: S logs<End>u n t Orderld</>
Message: S —1 ¢€
wherehasBodye, b'),
andisGetOrderRespongk, Orderld, u).

We obtain a similar, but stronger authentication property

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 117

Claim 2. In the presence of an active Dolev-Yao attackerEnd>u n t Orderld</> is
logged by Sthen<Begin> u n t Orderld</> has been logged by |

This claim can be read as ‘$faccepts a request fromthenu recently sent this request.”
Although onlyb is signed, the usernameand the identifien, t) are also authenticated
by the signature check. As before, we can rely(anr) for replay protection. Since the
identifier is now bound to the message, the server can safely use it to filter duplicate or
expired messages.

We make two observations concerning these predicates. iBldsierTokenKegoes not
check the presence or validity of the optional username token digest. In fact, checking
the password digest would not provide any additional authentication guarantee here. Con-
versely, its (potential) occurrence in the envelope slightly complicates our proofs in Sec-
tion 4. Arguably, the initiator should not include both a digest and a signature, since this
may facilitate a dictionary attack on the password, unless it does not know which evidence
will be considered by the server.

Second, although each referemdgpically provides a pointer to the digested element,
either as a fragment URI or as an XPath expression, we do not rely on this information in
theref predicate. Instead, we check that the actual item we are interested in—thie-bazly
targeted by the reference. In general, this approach is preferable, since it leaves the resolution
of pointers outside the trusted computing base. Otherwise, one should also carefully check
that these pointers are well-defined and unambiguous.

Our specification captures the flexibility of WS-Security signatures. The predicates for
key derivation isUserTokenKéyare independent from those interpreting the signature. So,
we can composisSignaturavith some other keying material, such as an X.509 certificate.
Similarly, we can support additional algorithms for computing the actual signature by adding
alternatives to the predicaigSigVal—see Section 3.4.

FurthermoreisSignatureallows additional elements of the message to be signed. Signing
the username, nonce, or timestamp elements is not necessary with this particular signing-key
derivation, butis harmless, and becomes necessary with other kinds of keys (see Section 3.5).
In case there are several actions on the same server, or if the same password is shared with
two different (honest) servers, then the path heaslgij should also be signed (as in the
next section). Otherwise, the attacker might redirect an envelope from one web service to
another.

3.4. X.509 signature

The next protocol does not depend on password-based authentication. Instead, it uses
public-key signatures based on X.509 certificates. We assume that the e pub-
lic/private key pair and keeps the private key secret. We also assumeahdSagree on
the public keyk, of some X.509 certification authority, and that this authority issued only
one certificate fou, with u's public key.

In contrast with password-based signatures, X.509 signature tokens cannot use fragments
of the username token as message identifier. Instead, they can sign the globally unique
identifier included in the path header of our SOAP messages, as defined in WS-Routing [34].

118 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

This is reflected by the following additional predicates:

e isX509Toke(rok, k., u, a, k) means thatokis a binary token that contains a certificate
x509(s,, u, a, k) with certifier’'s public keyk, = pk(s;).

e isSigValsv, si, k, a) is extended with a clause that checks signatures usingahghal
algorithm.

e hasPathHeadde, ac, to, id, ea, et, ei) means that envelopehas a path header with
actionac, destinatiorto, and message identifigrin element®a, et, andei, respectively.

e hasX509SignedBoWy k,, u, ac, to, id, b, ea, et, ei) is the top-level predicate. It means
that the envelope has an X.509 token fau certified byk, whose public key signs the
bodyb and a path header, et, ei containingac, to, id.

isX509Toke(rok : item, k, : bytes, u : string, a : string, k : bytes) :-
tok = <BinarySecurityToken _>baseb4(xcert)</> ,
check-x509(xcert, k) = k,,
u = x509-user(xcert),
a = x509-alg(xcert),
k = x509-key(xcert).

isSigValsv : bytes, si : item, k : bytes, a : string) :-
a =rsa-shal , check-rsa-shal(cl4n(si), sv, k) = k.

hasPathHeadée : item, ac, to, id : string, ea, et, ei : item) :-
e = <Envelope><Header> headers/> _</> ,
headere headers
header= <path _>ea et ei</> ,
ea = <action _>ac</>,
et = <to _>to</>,
el =<id _>id</>.

hasX509SignedBody: item, k, : bytes, u, ac, to, id : string,
b, ea,et,ei :item) :-
hasBodye, b),
hasPathHead€e, ac, ro, id, ea, et, ei),
hasSecurityHeadé#, toks),
xtok € toks,
isX509Toketxrok, k-, u, rsa-shal k),
sig € toks,
isSignaturésig, rsa-shal ,k, b, ea,et, ei).

The message exchange for the X.509 signature protocol is almost the same as the one in Sec-
tion 3.3, with two differences. First, the contents of the log entries istBWS id Orderld

(instead of: n r Orderld). Second, we use the top-level predidaas X509SignedBo, ,,

u,W, S, id, b, ea, et, ei) instead othasUserSignedBody, u, pwd =, ¢, b). The predicate
checksac = Wandro = S in the path header by unification.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 119

Eventl: I logs<Begin> u W S id Orderld</> .
Messagd: I — S,W ¢
wherehasX509SignedBody; k., u, W, S, id, b, ea, et, ei),
andisGetOrde(b, Orderld).
Event2: Slogs<End>u W S id Orderld</> .
Message: S — 1 €,
wherehasBodye, b'),
andisGetOrderResponge, Orderld, u).

We now obtain the authentication property

Claim 3. In the presence of an active Dolev-Yao attacketEnd>u W S id Orderld</>
is logged by Sthen<Begin> u W S id Orderld</> has been logged by |

This claim can be read as “f accepts a request from thenu, at some point, sent this
request te5.” So by signing the path header, we obtain an additional authenticity guarantee
as regardsr's intended targetsS, W), and thus prevent some redirection attacks. One can
easily implement replay protection using the authenticated message identifier. This supposes
that clients do generate globally unique identifiers (although this is not actually required to
obtain our correspondence property). Alternatively, one may use a custom unique identifier
in the envelope body.

3.5. Firewall-based authentication

By specifying the structure of security tokens, rather than their use, WS-Security en-
courages a flexible approach to web service security. For instance, a server may naturally
accept both password-based and X.509-based signatures for authentication, leaving that
choice to the client. This flexibility yields useful compositional properties in our formal
developments. For instance, a web service that runs both protocols is formally equivalent
to two web services in parallel, one for each authentication mechanism.

In this section, we illustrate this flexibility with a different composite architecture that
chains WS-Security authentication schemes along aWS-Routing path. In addition to a server
S and aclient acting on behalf of, we consider an intermediate SOAP-level firewalThe
firewall holds the password database, has the X.509 certificate and the corresponding private
key for certificate useff and is responsible for authenticating acces¥tmd possibly other
servers). The clieritsends a&etOrderrequest with a password-based signature ijao
S via F. The path header indicates Fothat the message is intended frThe firewall F
checks the password-based signature, adds afnewwall header indicating that it has
authenticated, signs the message usifig)X.509 certificate, and forwards the message to
S. The serverS expects an X.509 signature from a particular firewall with certificate user
namef. S checks the X.509 signature and certificate, and thus it authenticates the original
sendem: without knowledge ofi’s password.

Next, we define (predicates on) the message forwarded by the firewall. To indicate to the
server that it has checked the credentials of the user, the firewall adds a new firewall header
containing the username token, but with the password digest deleted. It then embeds an

120 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

X.509 signature that includes this header as well. The predicates for this message are:

o isFirewallHeadefr#, u, n, t) means that the elemehts a firewall header with the user-
name token, n, t.

o hasFWHeaddg, h, u, n, t) means that the envelopéas a firewall headérwith u, n, .

e hasX509SignedBodykw k., f,u,n,t,b) is the top-level predicate checked by the
server. It means that the envelopdas a firewall header with, n, r, a bodyb, and
that the firewall header and the body are signed with a valid certificateseuned by, .

isFirewallHeaderh : item, u : string, n : bytes, ¢ : string) :-
h = <firewall _>Sutok</> ,
utok = <UsernameToken>
<Username> u</>
<Nonce>base64(n)</>
<Created> t</> .

hasFWHeadsde, & : item, u : string, n : bytes, 7 : string) :-
e = <Envelope ><Header> headers</> _</> ,
h € headers,
isFirewallheadeth, u, n, t).

hasX509SignedBodykw: item, &, : bytes, f, u : string,

n : bytes, ¢t : string, b : item) :-
hasBodye, b),

hasFWHeadde, h, u, n, t),
hasSecurityHeadés, toks),

xtok € toks,

isX509Toke(x ok, k,, f,rsa-shal | p),
sig € toks,

isSignaturésig, rsa-shal , p, b, h).

The protocol involves three messages, as follows:

Eventl: I logs<Begin> u nt Orderld</> .
Messagd: I —- F,W ¢
wherehasUserSignedBodg, u, pwd, n, ¢, b).
Message®: F — S,W ¢,
wherehasX509SignedBodyRel, k., f,u,n,t,b)
andisGetOrderb, Orderld).
Event2: Slogs<End>u n t Orderld</> .
Message: S — 1 €',
wherehasBodye”, b')
andisGetOrderResponge, Orderld, u).

In terms of the SOAP specification, the two envelopende’ represent two stages in
the lifetime of the same message: it is sent by the client endpoint, updated by the firewall
intermediary, and received by the server endpoint.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 121

Claim 4. In the presence of an active Dolev—-Yao attackexEnd>u n ¢ Orderld</>
is logged by Sthen<Begin> u n t Orderld</> has been logged by |

Thus, we obtain the same end-to-end authenticity guarantee as with the password-based
signature protocol of Sectidh3, but for a different implementation that does not reqfiire
to knowu’s password. We prove this claim by composing the correspondence property for
the password-based signature in Message 1 with that for the X.509 signature in Message 2.

4. A pi calculus semantics

In order to formalize and validate the claims of Section 3, we specify the behaviour of
the participants (and in particular their implementation of predicates) as processes in the
applied pi calculus. We refer to Appendix A for a brief overview of the calculus and its main
notations, and to [1] for its semantics. Here, we use the sorts, terms, and equations described
in Section 2, with coercion functions from strings to items, and with additional sorts for
communication channels [31]. (However, in our model, channels do not appear in terms
of other sorts, nor in messages sent on channels.) We always assume that terms, formulas,
processes, and contexts are well-sorted, but usually keep sort information implicit.

This section divides into the following parts. Section 4.1 describes our computational
interpretation of formulas as certain non-deterministic processes in the applied pi calcu-
lus. Section 4.2 introduces formal notions of robust safety—that embedded correspondence
assertions hold in spite of the presence of an attacker—and functional adequacy—that a
protocol may run to successful completion in the absence of an attacker. Section 4.3 uses
these definitions to state results about the password-based signature protocol of Section 3.3.
Theorem 8 asserts that a process formalizing this protocol is robustly safe—Claim 2 is
a corollary. Moreover, Theorem 9 asserts the formalization is functionally adequate. Sec-
tion 4.4 breaks the proof of Theorem 8 into two halves: first, the definition and proof of
correctness of a simpler, core protocol; second, the proof that the correctness of the core
protocol implies Theorem 8. Section 4.5 describes how to generalize our results to configu-
rations with multiple servers and users. Sections 4.6 and 4.7 state and prove similar robust
safety properties for the protocols of Sections 3.4 (with X.509 signatures) and 3.5 (with
an intermediate firewall), respectively; we obtain Claims 3 and 4 as corollaries. We do not
include a proof of Claim 1, concerning the weak protocol of Section 3.2 that uses password-
digests. We conjecture that a proof could be obtained by adapting and simplifying the proof
of Theorem 8, concerning the stronger protocol that uses password-based signatures (and
still supports password-digests).

4.1. Interpretation of formulas

We describe a (partial) implementation of our logic in the applied pi calculus. We induc-
tively define processes of the foffitter @ — y in P, where the variableg are bound in
P and get assigned to terms making the form@ilrue. When the formula is an equality
V = T we assume that one of the terms is known, and that the other can be treated as a
pattern, matching variables to known subterms in the known term. In the following formal

122 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

definitions, we always assume thais the known term, and thatis the pattern, but in

our example predicates we allow either of the terms to be the pattern. For a pattern to be
implementable, there must be an inverse term for each bound variable, able to compute the
value of the variable from the known term.

Patterns

The equalityV = T binds variable§ with patternT, written V =T +_y, when (1)
y € fw(T) \ fv(V), and (2)T hasinverse termss, with fv(S) C {x}, fn(S) = T,

and for all termd/, W, if U = T{y = W} thenW = S{x =U}.

For instance, the patteltmase64(y) has inverseS = i-base64(x); for all V andW, if
V = base64(W) thenW = S{x = V} = i-base64(base64(W)). On the other hand, the
patternshal(y) has no inverse, and therefore would not satisfy point (2).

The following table is the partial inductive definition filter @ — v in P. If such a
process is defined by the following rules, we say that the forrukimplementablevith
bound variable§'. Whenfilter @ — y in P is defined and closed, we intend that it seeks
closed term&’ such that ®{y = V}, and acts a®{y = V}. Lemmab makes this precise.

Formula implementation: filter @ — yin P wheny C fv(®)

I
filter V=T 1> FinP =
lety = S{x = V}inif V = T thenP
whenV = T — ¥ with inverse termss
filterx € V> xin P =
vs, c.(c(x).P | 5(V) | Is(z).filter z=h t — h,tin (¢(h) | 5(t)))
whenx g fv(V) and with{s, c} N fn(P) = &
filter p(‘7) — yin P =
vs.(5(e) | [Tjer m s)fllter(b{x_V}|—>y Z; in P)
whenp(x) :- @1V --- Vv Dy, s ¢ fn(P)
andViel...m fv(<13)=FWZ and(f(V) UV(P) NZ =T
filter @1, @ —~ yin P =
filter @1 — (Y Nfv(®1)) in (filter &5 > (3 \ fv(P1)) in P)

WhenV = T > 5, with inverse terms, the implementatiofilter V =7 > ¥ in P binds
the variablesy of the patternl to components of the terd, and verifies that hence the
pattern matches the term. If so, the match succeeds? amak. Otherwise, the match fails,
and the implementation deadlocks.

Whenx ¢ fv(V), the implementatioriilter x € V — x in P outputsV on a fresh
channek, and runs the process(z) filter z=ht + h, tin (c(h) | 5(t)) which bindsh =
Viandr = Vo ... V,; & providedV = Vq Vo ... V,, e with m > 1, then outputd onc,
andt on the fresh channel The effect of this replication is to output each of the terms
Vi, ..., V, on the fresh channel. The procesg(x).P is the only listener ort; so the
outcomeisP{x = V;}foronei € 1...m.If, infact,Vis the empty list, the implementation
deadlocks.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 123

Whenp(x) - @1V --- Vv &, the implementatiofilter p(V) — 7 in P generates a
separate process_).filter @;{x = V} — ¥,7Z; in P for each clause € 1...m, wherez;
are the local variables for claus&Ve make an internal choice of which to run by arranging
all to listen on the fresh channglon which only a single message is sent. We are assuming
thaty < fv(V), which with the side-conditiofiv(®;) = ¥ W Z;, yields thatfv(®;{x =
V}) = fw(V) wz; for eachi. Therefore, the formula implementatidiier @;{x = V}
y,7Z; in P satisfies the well-formedness conditigrz; < fv(®;{x = V}). Moreover, the
side-conditiorfv(P) NZ; = & guarantees there is no confusion between the local variables
Z; and any variables iR.

The implementatiorilter @1, &, — y in P works by evaluatingp; then @, before
runningP.

As an example, we show an implementatiorhaéBodye, b):

filter hasBodye, b) — b in [-]
= vs.(5(e) | s(L).
filter e = <Envelope><Header> y1</> b</> + y1,bin
filter b = <Body y>>y3</> > yo, y3in[-])
= vs.(5(¢) | s(L).
let y; : items = Header .body(hd(Envelope .body(e))) in
letd : item = hd(tl(Envelope .body(e))) in
if e = <Envelope><Header> y;</> b ¢</> then
let yo : atts = Body .att(b) in
let y3 : items = Body .body(b) in
if b = <Body y2>y3</> then[-]).

To state the correctness of the embedding of our logic within the applied pi calculus, we
appeal to the following notion dhternal choice We write —* for a series of reduction
steps and- for strong bisimilarity, the strong form of observational equivalefideFor

any set of processes, we co-inductively define the set of procesépsX that are internal
choices ofX:

Internal choice: @ X

IA procesQ is an internal choice o, written Q0 € € X, if and only if

Q)if P € X thenQ —*~ P;

(2)if Q — Q’,theneithe)’ ~ P with P € X or Q' e Y with ¥ C X; and
I(3) Q does not communicate on free channel names.

Lemma 5. If filter @ — yin P is defined and closed then
filter ® > Fin P € @PIP{T =V} | (V) =T Ak &F =V}
The proof appears in Appendi
4.2. Safety properties, functional properties

To formalize the authenticity properties claimed in Section 3, we mark the progress of
the client and server processes with begin- and end-events, represented as message outputs
on the channelbeginandend respectively. Hence, our authenticity properties become

124 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

non-injective correspondence assertipa] between messages. We writefor (weak)
observational congruence in applied pi. Further, to capture the occurrence of events, we
define a derived notion of observation of messages on free channels

Event occurrence: A > a(V)

I
A outputs the ternv on channeh, written A >a(V), whenA ~ a(V) | A'.
L

Much as in Gordon and Jeffrey’s formulation of correspondence assef2@lsve define
safety and robust safety: a process is safe if every end-event has a matching begin-event,
and is robustly safe if it is safe in the presence of any opponent.

Safety and robust safety

I _ _ 1
Ais safeif and only if, wheneved —* B, B > end V) implies B >> begin V).
Alis robustly saféf and only if, for all evaluation contextg[-] where the channelsegin

Iandenddo not occurE[A] is safe. .

Intuitively, E[-] represents any active attacker (in the applied pi calculus) that controls both
the network and the client application behavia\is the initial configuration of the protocol
being consideredB represents any reachable state of the protocol, after interleaving any
number of sessions; and robust safety guarantees that, whenever a new end-event appears
in B, one can also observe a matching begin-eveBt in

(We formulate robust safety in terms of a reduction-based semdhtiend represent
events as ordinary message outputs. In contrast, others, such as Gordon and Jeffrey [22],
formulate robust safety in terms of traces of begin- and end-events. The different formula-
tions lead to slightly different properties. For instarloegin V) | endV) is robustly safe
in our setting but not in that of Gordon and Jeffrey, since we observe both messages simul-
taneously whereas they observe a trace with the end-event preceding the begin-event. These
appear to be superficial differences in formulating the same underlying intuition—that every
end-event is matched by a begin-event.)

In addition to security properties such as robust safety, one should check that the protocol
works as intended and may indeed succeed, at least in the absence of an attacker. The
following definition captures this intent for a procésthat begins the protocol fof:

Functional adequacy

I
Ais functionally adequate for WhenA —* B with B > endV) for someB.
| |

If a process is not functionally adequate for afythen robust safety may hold vacuously,
if for example no begin- or end-events are reachable. On the other hand, if a process is both
robustly safe and functionally adequate, there is at least one run in which an end-event is
reachable, with a matching begin-event.

The next lemma states that our main security properties can be established using the
theory of observational equivalence in the applied pi calculus.

Lemma 6. Supposel ~ B. If Ais robustly safe then so is B. Moreoy# is functionally
adequate for V then so is.B

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 125

Proof. For robust safety, assunig B] —* B’ > end V) for some evaluation conte[-]
that does not contaibeginor end We haveE[A] ~ E[B] (by context-closure o),
E[A]—* A’with A’ ~ B’ (by weak simulation)4’ > end V) (sincex~preserves- end V),
A’ >beginV) (by robust safety ofA), and thusB’>beginV) (since ~ preserves
> begin V).

For functional adequacy, assurie—* A’ >endV). FromA ~ B we getB —* B’
with A’ ~ B’ and thusB’ >end V). O

Moreover, logical equivalence, when lifted to processes, also preserves robust safety.

Loglcal equivalence of processes

Two processes are logically equivalent when they differ only in their choices of |mple-
mentable, logically equivalent formulas.
L

Lemma 7. Logical equivalence preserves robust safety

The proof appears in AppendB3.

4.3. Stating password-based authentication

We are now ready to formulate and prove Claim 2 of Section 3.3 for envelopes with
password-based signatures, with or without a password digest. For the sake of simplicity,
we focus on protocol configuration@ with a single useu, with initiator procesd, and
a single serves, that share a secret password with that user, represented as a restricted
names,,q. The two parts of the protocol also share a communication chamit@lSince
httpis not restricted, an environment that enclogesan also read, modify, and write any
SOAP message.

Protocol configurations: Q (parameterized by Envelopg
I 1

Q = Vspwd-({u = prinCipal(Spwd)} | 1y | Su)
I, = linit, (n, t, b).(beginu n t b) | http(Envelope)
S, = 'http(e).filter hasUserSignedBody, u’, s pua, 1, t, b)

— u',n,t,binendu’ ntb)
L]

The initiator, I,,, repeatedly receives high-level requests on a control chamityel Using
that control channel, the environment can thus initiate any number of requests on behalf of
u, for any termsV, TS B. These requests are deemed genuine: they are echoed on channel
begin The procesg, is also parameterized by a teemvelopethat determines the actual
SOAP envelopes constructed and sent by the initiator.

The server,S,, repeatedly receives low-level envelopes on chaimtigl filters them
using the top-level predicate defined in Sect®8 (one easily checks that this predicate
is implementable) and finally sends a message on chamaébr each accepted envelope.
(More generally, we would represent a server that accepts requests fronxysers u,,
as a parallel compositiof[; .1 ,, Su;)

126 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

The scope restriction an,,, models our secrecy assumption on the password, essentially
supposing that it is a strong secret shared between the initiator and the server and used only
in this kind of envelope.

The active substitutiofiu = principal(s,.¢)} binds the variables to the expression
principal(s,,q), and exportsi (but nots) to the environment.

Crucially, we do not want our robust safety result to depend on every detail of the enve-
lope. Instead, we express minimal requirements as follows:

Safe envelopes

A safe envelopés a term of the fornEnvelope= T ¢, for any termsT and Sl such that
spwd ¢ In(T, ST) andisSigInfaS7, hmac-shal , b) is valid, with the active substitution
¢ defined by:

@ = {d = shal(concat(n, concat(utf8(¢), utf8(s,wa)))),
sv= hmac-shal(p-shal(s,,q, concat(n, utf8(z))), c14n(S1))}

To elaborate, as regards safety propert@s/elopemay be any XML term, as long as the
password occurs at most in the digest and signature values. Similarly, most of the subterms
in the signature information are irrelevant for safety, even if they happen to be signed
in Sl.

Theorem 8. For any safe envelop¢he configurationQ is robustly safe

From this theorem and the definition &GetOrdertb, orderld), we easily derive the
more specific claim of Sectic®.3. We devote Section 4.4 to the proof of Theorem 8.

For functional adequacy, the structure of the envelope is more constrained. For example,
T andSl can be instantiated as follows:

T = <Envelope>
<Header>
<Security>
<UsernameToken ld="utoken">
<Username> u</>
<Password Type="PasswordDigest">
base64(d)
<Nonce>base64(n)</>
<Created> t</>
<Signature>
ST
<SignatureValue> base64(sv)</>
<KeylInfo>
<SecurityTokenReference>
<Reference URI="#utoken"></>

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 127

SI = <Signedinfo>
<CanonicalizationMethod Algorithm="c14n"></>
<SignatureMethod Algorithm="hmac-shal"></>
<Reference URI="#body">
<Transforms>
<Transform Algorithm="c14n"></>
<DigestMethod Algorithm="shal"></>
<DigestValue> base64(shal(cl4n(b)))</> .

Theorem 9. The envelop& ¢ with T and Sl defined above is safe afadt any ground terms
N : bytes, TS: string, B : item with B = <Body Id="body"> _</> , the configuration
init, (N, TS B) | Q with that envelope is functionally adequate for the tesriv TS B.

Proof. We easily check thaf ¢ is a safe envelope and that
F hasUserSignedBody ¢, principal(s,wq), Spwa, N, TS B)
Then we apply Lemma&. We obtain
init(N,TS B) | Q —— (—*~) beginu N TSB) | endu N TSB) | Q

with two communication steps (aimir, andhttp) followed by the reduction steps and
equivalence of condition (1) of internal choice (in some evaluation contekt).

Conversely, by Theorem, if we have bothiniz,(N, TS B) | Q—*A and also
Arendu’ N' T’ B'), thenA>beginu’ N’ T’ B’) and, since a single message is sent
onbegin we obtain that’, N, T’, B = u, N, TS B.

4.4. Proving password-based authentication

We now present a proof of Theorem 8. An intuition behind the proof is that the security
property relies only on a few elements in the envelope. For instance, the signature bytes are
sufficient for authentication, whereas the other elements in the envelope only provide the
server with (untrusted) hints to verify the signature. Hence, to establish robust safety, we
rely on a stronger, more specific lemma about a core protocol that explicitly deals only with
these bytes.

The proofis in two stages. First, we show how the password-based signature protocol can
be decomposed into a “core protocol” that deals with authentication and an XML wrapper.
The XML wrapper has no access to the password, and need not be trusted: formally, it
becomes part of the hostile environment. We show that it is enough to prove robust safety
for the core protocol (Lemma 11). In the second stage, we prove that the core protocol itself
is robustly safe (Lemma 15) by exhibiting an invariant on its reachable states (Lemma 14).

We decompose

hasUserSignedBody, u, pwd n, ¢, b) +— u,n,t, b

128 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

into two implementable formulas

hasUserSignatureEviden@g u, n, t, b, sv, si) — u, n, t, b, sv, si,
checkEvidenagv, si, u, pwd n, t, b) > &

hasUserSignatureEvidenparses the envelope and extracts the bits that are needed to verify
the signature; it has no access to the password. All the checks related to authentication are
contained ircheckEvidenceThese predicates are defined by

checkEvidendagv : bytes, si : item, u, pwd: string, n : bytes,
t:string, x1, ..., x, : item) :-
isSiginfdsi, hmac-shal | x1, ..., x,),
u = principal (pwd),
k = p-shal(pwd, concat(n, utf8(z))),
isSigValsv, si, k, hmac-shal).

isUserTokerrok : item, u, n : bytes, ¢ : string) :-
tok = <UsernameToken _>
<Username> u</> _
<Nonce>base64(n)</>
<Created> r</> .

hasUserSignatureEvidenge: item, u : string, n : bytes, ¢ : string,
b :item, sv : bytes, si : item) :-
hasBodye, b),
hasSecurityHeadé#, toks),
utok € toks,
isUserToketutok, u,n, t),
sig € toks,
sig = <Signature _>si <SignatureValue> base64(sv)</> _</>.

We verify the correctness of this decomposition in terms of logical equivalence:

Lemma 10. The two formulas

hasUserSignedBody, u, pwd n, t, b) and
hasUserSignatureEviden@eu, n, t, b, sv, si), checkEvidenagv, si, u, pwd n, ¢, b)

are logically equivalent

Proof. The two formulas are equal up to a permutation of conjunctive clauses with disjoint
variables. [J

Using this decomposition, we define the core protocol configur@igra counterpart of
Q for the simpler predicateheckEvidencthat binds no variables, and for replicated pro-
cessed,; andS; that communicate with the environment on chaneelads, respectively,
instead of channéittp.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 129

Core protocol configurations: Q° (parameterized by Sl)
I

Q°[-] % vspwd-({u = principal(s ,ua)} | 17 | S; | [-])
12 = linit, (n, 1, b).(beginu n t b) | c(d, sv, SI,u,n,t,b)p)
S = \s(sv, si, u’, n, t, b) filter checkEvidence

(sv,si,u’, Spwa,n,t,b) — Jinendu’ nt b)

We write Q° for Q°[0] (the initial state of the core protocol).
Lemmall shows that this core protocol is logically equivalent, under an evaluation
context, to the original protocol. This implies thatdf is robustly safe, so i©.

Lemma 11 (XML /core). For any safe envelopéhere exists an evaluation conte&p -]
where the names begiand do not occur and a proces¥ logically equivalent taQ such
that Q* ~ Eg[Q°].

Proof. For a given safe envelop&,p, with Sl replaced bysi, we let Q°® be Q up to the
logical equivalence of LemmD and letE g[-] be the evaluation context

[-]1
Eol] 2 ve.s le(d, sv, si,u,n, t,b).http(T @) |
el = Y6, Ihttp(e). filter hasUserSignatureEviden@eu’, n, t, b, sv, si)
—u',n,t,b,sv,siins(sv,si,u’,n,t,b)

for somec, s ¢ fn(T). Eg[Q°] differs from Q° in two ways
(1) Instead ofi,, there is an extra communication on channafter computingd andsi,
but before sending messagestmyinandhttp.
(2) Instead ofs,, there is an extra communication on chansefter checkinghasUser
SignatureEvidencbkut before checking predicatheckEvidence
Sincec ands are both restricted channels used only either for asynchronous outputs or as
a single replicated input, these extra communication steps do not &ffedt]

To prove robust safety for the core protocol, we first define the valid states of the core
protocol in an evaluation context. Valid states are our correctness invariant. They describe
protocol states reachable fro@f after unfoldingn sessions, in which no secrets have been
leaked and only messages sent by the client have been accepted by the server.

Valid states for the core protocol

I(1) @, is adapted fronp in the definition of safe envelopes with variabigssv;, n;, 1, b; '
and termS/; instead of/, sv, n, ¢, b andSl.
(2) A session states a process of the form

B; = beginu n; t; b;) | ¢; | Ji,

where J; is any parallel composition of processes froendu n; 1 b))} U
@Plendu n; t; b;)} U P{}. (C; has free variables, n;, 1;, b; and defined variables
d,’, SU,’.)

130 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

(3) Aninternal stateis a parallel composition of session states= [];_,, C;, for some
m=0.
(4) Avalid statds a closed process of the fouin= E[Q°[C]] whereE[-] is an evaluation

context wherdeginandenddo not occur and” is an internal state.
| |

i<m

For a given internal stat€, let o¢ be the (ordinary) substitution obtained by composing
{u = principal(s,,¢)} and eachp; for i < m. By definition, the frame obtained from
Q°[C], which represents the attacker’s knowledge aboul;, is ¢ = vspwq.oc. We
consider the effect of ¢ on the predicateheckEvidenca Lemmal3, to follow. First, we
develop some basic properties of our equational theory on terms.

Our equational theory is defined as the term-rewriting system obtained from the (oriented)
rewrite rules of Section 2. We give some basic definitions and results for this system.

Redex, normal form, selector

AtermTis aredexfor the (oriented) rewrite rulg = W whenTis V ¢ for some substitution

0. Then,Wa is the result of the rewriting.

A termT is in normal formwhen it contains no redex for any rule; it is a normal form of
VwhenV =T. ~

:A function symbolf is aselectorwhen there is a rewrite rule of the forftV) = W

Lemma 12. (1) Every term has a unique normal form
(2) Two terms are equal if and only if their normal forms are identical
(3) Suppos¢ is one of the function symbadéal, hmac-shal, p-shal, or principal. If
terms U andf(V) are in normal formand f(V) does not occur as a subterm of then
U{x = f(V)} is also in normal form
@ If f(U) g(V) then eitherfor gis a selectoyor f = gandU V.
(B)If f(U) = g(VJ Wh~ereU V are normal then either
(@ f=gand(U =V),or
(b) (V) is aredexor
(c) g(W)is aredex

Proof. Let U — V be the reduction relation obtained by orienting our equations on
terms from left to right, and closing under contexts. By standard rewriting technidjjes
our equational theory is the reflexive, transitive, symmetric closuté e$ V. Whenever
U — V thenV has fewer function symbols th&h so— is terminating. Our term rewriting
system has no critical pairs; each selector symbol appears only as the outermost symbol in a
rule, and no two rules directly overlap. Given that the reduction relation is terminating and
has no critical pairs, it follows that it is confluent. Sinee is terminating and confluent,
it follows that (1) every term has a unique normal form, and (2) two terms are equal if and
only if their normal forms are identical.

For (3), supposé&(V) is not a subterm ob), that both are normal, and thiat {shal,
hmac-shal, p-shal, principal}. Then substituting the terfi¢V’) for x in U cannot create
any redexes, sindedoes not occur in any rewrite rule, and moreover, siii€e does not
already occur iiJ, we cannot complete a redex for either of the seleatbexk-x509 and

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 131

check-rsa-shal guarded by an implicit term equality. Hendé{x = f(V)} is in normal
form.

For (4), supposé(U) = g(V) and that neithef norg is a selector. The normal forms of
f(U) andg(V) must take the forn‘l(U) andg(V), since neithef norg is a selector. These
two normal forms must be identical, so it follows that g andU’ = V', and hence that
U=V.

For (5), suppos&U) = g(V) whereU andV are normal. If eithef(U) or g(V) is a
redex we are done. If neither is aredex, they are two equal normal forms and théeefgre
and(V=Ww). O

The next lemma states that if a message is received in a valid state of the protocol, and it
satisfies the predicatheckEvidencehen it must have been sent by the client.

Lemma 13(checkEvidence is sgfeLet C be an internal state with: >0 sessionsLet s’
be a subst|tut|on that ranges over open terms where the ngmedoes not appear such
thats = ¢’ | oc is closed. If

F checkEvidenagv, si, u', spwa, n,t, b)o

then there exists < n such that(u’, sv, si, n,t,b = u, sv;, SI;, n;, t;, b;)o.

Proof. Assumer= checkEvidenagv, si, u’, spwa. 1, t, b)o, and letey. be such that =
¢’ | ¢ anday. ranges over closed terms in normal forms. (Hedeey(o(.) = dom(oc) =
{u} U {sv;,d;|j < m}and,forallx € domoc), xop = x0.)

By definition, = checkEvidenagv, si, u’, s,uwa. n, t, b)a implies there existg” with
dom(e”) = {k, c, r1, uri, talg, dalg, rest} such that:

F (u’ = principal(suwq))oa”, (1)
F (k = p-shal(s,uq, concat(n, utf8(r))))oa”, 2)
F (sv = hmac-shal(k, cl4n(si)))oa”, (3)
F (si = <Signedinfo> 4)
¢ <SignatureMethod Algorithm="hmac-shal"></>
rirest)aa”,
E (r1 = <Reference uri> (5)
talg dalg

<DigestValue> base64(shal(cl4n(b)))</>)oc”.

In (1), we use the definition af¢ to introduceu and obtain(u’ = u)o.
Using (2) to eliminate in (3), we obtain

sv ¢ = hmac-shal(p-shal(s,,q, concat(n ¢, utf8(t 0))), cl4n(si o)). (6)

LetT = sv ¢’ innormal form. We havev ¢ = T'¢{. and, by Lemmd2(3) and definition of
o, Tag is also in normal form. By plain structural matching on normal forms, we obtain
four cases fofl :
e T = x for somex € dom(oy) such thatxgy, = hmac-shal(_,), where_ stands

for any subterm. By definition of?., this impliesx = sv; for somei < k, and thus

(sv = svj)o.

132 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

e T = hmac-shal(x, -) for somex € dom(sy.) such thatcog, = p-shal(_,). Thisis
excluded by definition o&?..

e T =hmac-shal(p-shal(x, _),) for somex € dom(sy.) such thatroy. = s,u4. This
is excluded by definition of..

e 7 = hmac-shal(p-shal(s,uq,—), -). This is excluded by hypothesis ari: since
T =svad', we haves,, ¢ fn(T).

Using the definition ofv; in o¢, Eq. €) becomes

hmac-shal(p-shal(s,wq, cOncat(n;, utf8(s;))), c14n(SI; o))
= hmac-shal(p-shal(s,wq, concat(na, utf8(zc))), cl4n(si o))

and thus Lemma2(4) yields(si, n, t = SI;, n;, t;)a. Similarly, using Eqgs. (4) and (5) to
eliminatesi thenry in (si = SI;)a, we obtain an equation of the form

(V{X = b, uri, talg, dalg, rest = V{X = b;, uri;, talg;, dalg;, rest })a

for a termV built only from constructors, we obtai® = b;)c via Lemmal2(4). [

Using this lemma, we can show that all reachable configurations of the core protocol are
valid states.

Lemma 14 (Invariant lemma. If Ais avalid state andt — T thenT ~ A’ for some valid
stateA’.

Proof. Our lemma is stated for a particular definition @f; however, its proof relies on
the process structure ¢f°, and is almost parametric in the definitionsgitheckEvidence
and the message content imit,,, c, s, begin end (as long as Lemma3 validates these
definitions).

Let A = E[Q°[C]] be a valid core protocol state, with internal state= [];_, C:.

We perform a case analysis on the reduction step- A’. By definition of reduction in
applied pi, this step is either a communication or a term comparison. For communication,
we must haved = E’[a(X).P | a(X).Q] andA’ = E’[P | Q] for some channel name

a, variablesx, processe® andQ, and evaluation context’[-]. By definition of A and
structural equivalence, this implies one of the following cases:

(1) Both the send and receive occufi[C]: we haved’ = E[F[P | Q]] with Q°[C] =
Fla(x).P | a(x).Q]. By definition of core configurations, the channels used for com-
munications in evaluation context @°[C] arebegin end—only used for sending—and
init,,, s—only used for receiving—plus channel names appearing in internal choices.

By property (3) of internal choices, is thus a local channel in an internal choRén
some parallel compositiosi within C. For someC’ and process’, we have, for some
internal statd:

c=Cc'|P P—>P A =E[QIC|PI].
By definition of J;, we haveP € @{endu n; 1; b;)} U {}. By property (2) of internal
choices, we have eithe?’ ~ endu n; ; b;) (and we letP” = endu n; t; b;)) or P’ €

@endu n; t; b;)} U @P{} (and we letP” = P’). In both subcases;’ | P” is also an
internal state, and we have = E[Q°[C’ | P']] ~ E[Q°[C’ | P"]], whichis a valid state.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 133

(2) Q°[C] sends a message on a free channel: we B€] = F[a(X).P] wherea is
free in F[-] and E[Q°[C]] = E'[a(X).P | Q°[C]]. By definition of core configurations,
a € {begin end, so this case is excluded by hypothesiskin].

(3) Q°[C] receives a message on chanmel fn(Q°[C]). Using structural equivalence,
we can assume that the message output occurs in paralle]-withE[-], and conveys a
tuple of any variables that do not occur@?[C]. By definition of core configurations, we
have either: = init, using the replicated input iff (case 3a) on = s using the replicated
inputin S; (case 3b):

(a) We have a valid state such that

(b)

A = E'[init, (ug, ng, tx, bp). P | Q°[C1],
Q = beginu ny t by) | c(dk, svi, STk, u, ni, t, br) @y,
A" = E'[P|Q°[C| Q]I

Let Jx = 0andCx = beginu ni tx bx) | ¢ | Jk. By construction(| Cy is an internal
state with an additional session at indexet

FI-1 = vdi, so.(S{dk, sk, ST, u, ng, i, bi) | [-]) .

Using structural equivalences, we obtgin= F[Ci], Q°[C | Q] = F[Q°[C | Ck]l,
and finallyA’ = E'[P | F[Q°[C | Ci]11, which is a valid state.

We have a valid staté such that
A = E'[s(sv,si,u’,n,t,b).P| Q°[C]], L
Q = filter checkEvidend@v, si, u’, spua, n, t, b) — Jinendu’ nt b),
A’ = E'[P | Q°[C | O]l

We first use structural equivalence to close the pro€gswe haveA’ = E"[o |
Q°[C | Q1] valid state, for some evaluation contaxf[-] that does not contain any
active substitution, and thus' = E”[¢’ | Q°[C | Qo]]. for somes = ¢’ | oc.
Applying Lemmab, we obtain

Qg € @{endu’ ntb)o | F checkEvidenagv, si, u', spya, 1, t, b)a}.

Applying Lemmal3, either there exisis< n suchthatu’, sv, si, n, t, b = u, sv;, S1;,
n;, t;, b;)o, and thenQo € @{e_nd(u n; t; b;)a}, or the predicate is never satisfied, and
Qo € B}).

In the first subcase (the message may be accepted), @edetC | Q, check that’
is an internal state obtained frotby usingJ;/ = J; | Q instead ofJ;, and conclude
with A’ = E”[¢’ | Q°[C | Qa]], which is a valid state.

In the second subcaseheckEvidencéails), let 0’ € @f} with Q¢ ~ Q' and
spwa ¢ TN(Q’) (obtained for instance by substituting a fresh namefo in Q). We
haveA’ ~ E"[¢’ | Q' | Q°[C]], which is a valid state with the same internal state.

134 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

(4) The communication entirely occurs H{-]: we have a valid stata such that
A= E'[A1]| Q°[C]], A1|oc — Al lac, A" = E'[A] | Q°[C]L.

Moreover,s,,q ¢ A1 by hypothesis oi’, so we can pick7 suchthatd) | o¢c = A] | o¢
ands,.q ¢ A]. We conclude witiA” = E'[A] | Q°[C]] valid state.

Next, we consider comparison steps. Two cases are enabled, depending on the location
of the conditional:
e Thetestoccursi@®[C], necessarily in one of the internal choices: this is another instance

of case 1.
e The test occurs itk [-]: this is another instance of case 4[]

As a corollary, we can show robust safety for the core protocol.
Lemma 15(Core robust safely Q° is robustly safe

Proof. We first show that, ifA > a (V) anda is used only for asynchronous outputsiin

thenA —* a(V) | A” ~ A for someA”. By definition,A >a(V) meansA ~ a(V) | A’

for someA’. Let C = 7() | a(x).if x = V thenz() for some fresh namé We have

C | a(V) | A =3 A’ and thus, by context closure and simulationfarC | A —*

A" ~ A’ for someA”. By definition of C and case analysis on reductions, we obtain

A —=*a(V) | A”. By context closure fori(V), A” ~ A" impliesa(V) | A” ~ A.
AssumeE[Q°] —* A > end V) for some contexE -] wherebeginandenddo not occur.

Using the remark above, we ha##Q°] —* A —* B ~ A for someB = end V) | A”.

By Lemmal4 and induction on the number of reduction steps, there exists a valid state

B’ ~ B. In particular, B’ contains a messagd V). By definition of valid states, this

message may occur only within some session gdtatkeat also containbegin(V). Thus,

B’ >beginV) and, sinceB’ ~ B ~ A, we obtainA > beginv). O

Theorem 8 follows as a corollary. More generally, we could derive robust safety for
configurations that may use several kinds of safe envelopes.

Restatement of Theorem8. Forany safe envelope, the configuratignis robustly safe.

Proof. By Lemma 15,0° is robustly safe (RS). By Lemma 19° ~ Eg[Q°] and, by
hypothesisotE g, Eg[Q°]isRS. By Lemma 6Q°* is RS. Finally,Q* is logically equivalent
to @, and thus, by Lemma Q is RS. [

4.5. Extended configurations

In the proofs above, we focused on a simple situation with a single user and a single
server dedicated to that user. Next, we illustrate how this basic result can be easily extended
to configurations with multiple users and servers.

We first state a lemma to compose robust safety properties.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 135

Lemma 16. (1) If Ais robustly safe and[-] is an evaluation context where begin and end
do not occurthenE[A] is robustly safe
(2) Let A be a process where begin and end do not accur
If ve.A{a, b =Dbeginend and va.A{b,c = begin end are robustly safethen vb.A
{a, ¢ = begin end is robustly safe

Proof. (1) By definition and composition of evaluation contexts.

(2) AssumeE[vb.A{a, ¢ = begin end] —* B >end V), andbegin end a, b, ¢ do not
occur inE[-] or V (up to a renaming o, b, ¢ in A). We also haveE[A] —* B’ >¢(V)
with B = vb.B'{a, c = begin end. Using the second, then the first hypothesis, we also
haveB’ > b(V) andB’ >a(V), and finallyB > begin V). O

Theorem 17. Letl be a set of variables and Envelope be a family of safe envelopes indexed
byu. The configuratiord,, =[], Q is robustly safe

Proof. AssumeE[Q,,] —* B > end V) for some evaluation contex[-] that does not
containbegin end Let {begin,, end, | u € U} be distinct channel names that do not occur
in E[-]. We define renamings, = {begin,, end, = begin end andp = [1,cus P @ndlet
Q' be the configuratiofi],,;,(Qp; 1). By definition,Q,, is obtained fromQ’ by identifying
event channels for all users, and we h@e = Q’'p.

Event channels appear@), only for sending messages, and do not appeaAfiii hence
every reduction step if[Q,,] —* B commutes with our renamings. We obt#fQ’'] —*
B’'r>end, (V) for someu € U and B’ such thatB = B’'p, and finally E[Q'p,] —*
B'p,>endV).

By Theorem8 and Lemma 16(1), the configuratidiiQ'p,] is robustly safe, hence
B'p, >>end V) implies B p, > begin V) and, sinceB = B'p, B> beginV). O

To see that this indeed allows us to consider systems with multiple users, using structural
equivalence, we hav@,, = v(s,)yes.(I | S) wherel = [Tuczs({u = principal(s,)} |
I,) implements a parallel composition of initiators for the user#{/ifall using distinct
passwords) anfl 2 [1,cs S« implements a server that accepts requests from any of these
users (with an internal choice efe U/ as each envelope is received). Similarly, we could
extend our result to initiators using multiple safe envelope formats for a given user.

In our configurations so far, whenever the server accepts a message, it only sends an end-
event. The next lemma extends robust safety in case the server performs some additional
processing on accepted messages. (This lemma can be used as a preliminary step before
chaining sub-protocols using Lemma 16; see also Section 4.7 for an application.)

Lemma 18. The configurationQ’ obtained fromQ by substitutingQlendu’ n 1 b) |
acceptu’, n, t, b)] for Q[endu’ n ¢ b)] is robustly safe

Proof. Using robust safety fo@ (TheorenB), whenever a message is sentond we have
u = u’ and the values, r, b are those received from the environmenirit),. By mapping
reductionst[Q'] —* A to those ofE’[Q] whereE’ is E[-] plus messages accept we
easily establish that[Q'] is also safe. []

136 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153
4.6. Stating and proving X.509-based authentication

For expressing X.509 configurations, we model the certifier as a prdgesgst exports
its own public keyk, plus a collection of certificates for the pairs of users and public keys
(V, K) € Z, signed with the certifying private key,. The configuration also includes client
and server processes for a particular usevith public keyk, .

X.509 Signing Protocol Configurations:Q (parameterized by Envelopg Z)
I

QéAI|Ku|Su
Ap & vs,.({k, — pk(s)} | Ty, gyerlxv = X509(s,, V, rsa-shal K)})
Ku = vsy.({u = principal(s,)} | tke = pK(si)} | 1)

I, = linit, (b, ea, et, ei).(beginu b ea et ei) | http(Envelope)

S, = lhttp(e).

filter hasX509SignedBoty, k-, u, W, S, id, b, ea, et, ei)
— id, b, ea,et,eiin

endu b ea et ei)
L]

Asin Sectiord, the configuration illustrates a simple protocol configuration. Its definition
can easily be adapted to deal with more general configurations. We make the following
assumptions on the contents of certificates and envelopes:

Safe collections of certificatesZ

II is a finite set of pairs of terms such that, whenaWerk) € Z, either(V, K) = (u, ku),I
orfv(V, K) = Jands, ¢ fn(V, K).
L

These conditions guarantee that there is a unique certificatedodk,, and that the
certifying key is used exclusively for signing these certificates.

Safe envelopes with X.509 signing

A safe envelopés a term of the formEnvelope= T ¢ for any termsT and Sl such that
sr, sy ¢ (T) U fn(ST) andisSigInfqS1, rsa-shal , b, ea, et, ei) is valid, with the
active substitutior defined by:

@ = {sv=rsa-shal(c14n(SI),s,)}

The structure of the proof is similar to the one detailed in SectidnWe first decompose
hasX509SignedBo¥ &, u, ac, to, id, b, ea, et, ei) — id, b, ea, et, ei into the conjunc-
tion

hasX509SignatureEvideneeid, x, sv, si, b, ea, et, ei) +— id, x, sv, si, b, ea, et, ei,
checkX509Eviden¢k., u, ac, to, id, x, sv, si, b, ea, et, ei) — .

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 137

Here,checkX509Evidenamntains all the cryptographic tests to check the certificate and
the signature:

checkX509Evidenck. : bytes, u, ac, to, id : string, x, sv : bytes,
si, b, ea,et,ei :item) :-
isX509Certx, k,, u, rsa-shal | k),
isSigValsv, si, k, rsa-shal),
isSigInfdsi, rsa-shal |, b, ea, et, ei),
ea = <action _>ac</>,
et = <to _>to</>,
ei =<id _>id</> .

isX509Certx, k, : bytes, u, a : string, k : bytes) :-
check-x509(x, k) = k.,
u = x509-user(x),
a = x509-alg(x),
k = x509-key(x).

Next, we define core protocol configurations and their valid states.

X.509 signing core protocol configurations:Q° (parameterized by Sl, 7)
I

Q°[1 = Az | K2 | S []
K¢ = vsu.({u = principal(s.)} | {ka = pk(su)} | 1)
12 = linit, (b, ea, et, ei).(b€giNu b ea et ei) |
c(id .Body (ei), x,, sv, SI, b, ea, et, ei))
S, = !s(id, x, sv, si, b, ea, et, ei).

filter checkX509Eviden¢k, u, W. S, id, x, SV, si, b, ea, et, ei) — Jin

endu b ea et ei)
L 1

Valid states for the X.509 signing protocol

I(1) @; is adapted from¢ in the definition of safe envelopes with variables
sv;, bi, ea;, et;, ei; and termS/; instead ofsv, b, ea, et, ei andSl.

(2) A session states a process of the form

C; = beglr‘(u b; ea; et; ei;) | ®; | Ji,

where J; is any parallel composition of processes frégemdu b; ea; et; ei;)} U
@{mu b ea; et; ei;)} U @P{}. (C; has free variables;, eq;, et;, ei; and defined
variablesv;.)

(3) Aninternal stateis a parallel composition of session states= []
m=0.

(4) Avalid statds a closed process of the fouin= E[Q°[C]] whereE[-] is an evaluation
context wherdeginandenddo not occur and” is an internal state.

C;, for some

i<m

138 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

For a given internal stat€, let aé be the (ordinary) substitution obtained by composing
{k, = pk(s,)} and eachxy = x509(s,, V, rsa-shal ,K)} for (V,K) € T; let 62 be
obtained by composingu = principal(s,)}, {k, = pk(s,)} and eachp; for i < m. Let

oc = o—é | o%. By definition, the frame obtained fro@°[C], which represents the
attacker’s knowledge abost, is ¢ = vs,.o% | vsu.o%.

We prove the safety atheckX509Evidendr two steps: first we show that the certificate
scheme is safe, Lemn2®, and then we show that the signature scheme is safe, Lemma 21.
Both proofs are reminiscent of the proof of Lemma 13. The first lemma in our development
states some facts about our equational theory.

Lemma 19 (Normal forms with certificatgs (1) Let ¢ be a substitution ranging over two
forms of termseitherpk(s,), or x509(s,, V1, Vo2, V3) withs, ¢ fn(Vy, Vo, V3) and donio)N
(fv(V1, V2, V3)) = .

For each U in normal form with, ¢ fn(U), there existd/’ withs, ¢ fn(U’), U'c = U,
andU’¢ in normal form.

(2) Leto be a substitution ranging over two forms of terragher pk(s,), or rsa-shal
V,sy) with s, ¢ fn(V).

For each U in normal form with,, ¢ fn(U), there existd/’ withs, ¢ fn(U’), U’c = U,
andU’c in normal form

Proof. We prove the two parts in a similar fashion. As before, we wiite> V for the
reduction relation obtained by orienting our equations on terms from left to right, and closing
under contexts.

(1) Supposé/a reduces by a sequence of rewrite step¥g.td/e write— for a rewrite
step; solUo —" V. We prove, by induction on the number of rewrite stapthatV is of
the formU’o such thak, ¢ fn(U’). As a corollary, itV is the normal form ot/ g, then there
existsU’ in normal form,s,. ¢ fn(U’), such that/’c is V.

Base caseUg isV, so, letU’ beU.
Inductive hypothesid/a —* Uya, s, ¢ fn(Uy), andUo +— V. Then,Uya is C[L1]
andV is C[Rzt] whereL — R is a rewrite rule. SolJ; is C’[L’], such thatC is C’¢ and
L'ois Lt. If L' matched. (L' is L), then the redex occurs i itself andV is Ug410,
whereUy, — Uygy1; SO, letU’ be Uy 1. Otherwise L’s matched. but L’ does not. By case
analysis on rewrite ruled,(— 5 R), we find all suchL’:
e L' isx509-user(x) anda(x) is X509(s,, V1, Vo, V3), s, ¢ fn(V1, Vo, V3), x ¢ fv(V1,
Va2, V3). ThenC[L'o] — C[V1], thatisC’a[V1], that is(C’[V1])o (sincex ¢ fv(Vy).
So, letU’ beC'[V1].

e L'isx509-alg(x) anda(x) isx509(s,, V1, Va2, V3),s, ¢ Tn(V1, Vo, V3),x ¢ fv(V1, V>,
V3). Same as previous case, with instead ofV;. So, letU’ be C'[V>].

e L'isx509-key(x)andas(x)isx509(s,, V1, V2, Va),s, ¢ fn(V1, Vo, Va),x ¢ fv(V1, Vs,
V3). Same as previous case, wit instead ofV,. So, letU’ be C'[V3].

e L' ischeck-x509(_, y), a(y) is pk(s;). ThenC[L'c] — C[pk(s;)], thatis(C'[y])o.
So, letU’ be C'[y].

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 139

e L' is check-rsa-shal(_, _, y), a(y) is pk(s,). ThenC[L'c] — C[pk(s,)], that is
(C’'[y])a. So, letU’ beC'[y].

e In all other cases, it.’¢ matched., so doed.’.

(2) Supposd/g —" V. Again, we prove, by induction on the number of rewrite steps
thatV is of the formU’s such thats, ¢ fn(U’). As a corollary, ifV is the normal form of
U, then there exist&/’ in normal form,s, ¢ fn(U’), such that/’¢ is V.
Base caselUgis V, so, letU’ beU.
Inductive hypothesid/o —* Uya, s, ¢ fn(Ux), andUyo +— V. Then,Uya is C[L1]
andV is C[Rt] whereL — R is a rewrite rule. SolJ; is C'[L’], such thatC is C'¢ and
L'ois Lz. If L' matchesL (L' is Lu), then the redex occurs iy itself andV is Ug410,
whereUy, — U1, S0, letU’ beU41. Otherwise L’ matched. but L” does not. By case
analysis on rewrite ruled,(— R), we find all suchL’:
e L' ischeck-x509(_, y), a(y) is pk(s,). ThenC[L'c] — C[pk(s,)], thatis(C'[y])o.
So, letU’ be C'[y].

e L' is check-rsa-shal(_, _, y), a(y) is pk(s,). ThenC[L'c] + C[pk(s,)], that is
(C'[yDo. So, letU’ beC'[y].

¢ In all other cases, it.’ ¢ matched., so doed.’. [

Lemma 20(isX509Cert is safe Let C be an internal state witim >0 sessions. Let’ be
a substitution that ranges over open terms where the ngni@es not appear such that
c=d | aé is closed. Lef be a safe collection of certificates. If

F isX509Certx, k,, w, rsa-shal, k)o
then there existéV, K) € Z such that(x, w, k = x,, V, K)o.

Proof. Assumer= isX509Certx, k,, w, rsa-shal, k) and letsg. be such that = ¢’ |
o ando. ranges over closed terms in normal forms. Herm@n(o) = dorr(oé) =
{k,} U{xy | (V,K) € T} and, for allx € dom(o¢), xa% = xot..
From the definition ofsX509Certand rewriting fork,, we get

E (check-x509(x, pk(s,)) = pk(s,))a, @)
E (w = x509-user(x))o, (8)
E (k = x509-key(x))o.)

Let N be the normal form of ¢. From (7), we gettheck-x509(N, pk(s,)) = pK(s,), with
both terms in normal form. Using Lemma 12(5), cases (a) and (c) can be eliminated, since
check-x509 # pkandpkis a constructor. So only case (b) appligseck-x509(N, pk(s,))
is a redex, and must match the (only) rule éieck-x509: N = x509(s,, u’, a’, k'), that
isx o = x509(s,, u',a’, k).
LetT = x ¢’innormalform; sos, ¢ fn(T) andx ¢ = T o¢.. From the assumptions @i
we have that the range af. consists ofpk(s,) and terms of the forrr509¢(s,, V1, V2, V3),
such thats, ¢ fn(V1, V2, V3) anddom(ag) N fv(Va, Vo, V3) = . Using Lemma 19(1)
and the definition ob., there existg” in normal form, such thaf’ does not contais,,
T' oy =T o, andT’ ¢¢. is also in normal form.

140 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

So,T' 0. = xo = x509(s,,u’,a’, k'), and by plain structural matching on normal
forms, we obtain three cases for
e T =y for somey € dom(s.) such thaty gz, = x509¢(s,, _, —,), where_ stands for
any subterm.
By definition ofa¢., this impliesy = xy for some(V, K) € Z, and thusx = xy)o.
o T =x509(y,) for somey € dom(ag.) such thaty o¢. = .
This is excluded by definition of¢..
e T =x509(s,, _).
This is excluded by hypothesis eft sinceT = x ¢/, we haves, ¢ fn(T).
So(x = xy)a, for (V, K) € Z. Using @), 9, and the definition afy in o(., we obtain
(w,k=V,K)o. O

Lemma 21 (checkX509Evidence is safd_et C be an internal state witln >0 sessions.
Leto’ be a substitution that ranges over open terms where the ngmgsdo not appear
such thats = ¢’ | aé | 0% is closed. Lef be a safe collection of certificates. If

F checkX509Eviden¢k., u, W, S, x, sv, si, b, ea, et, ei)o

then there exists < n such that(sv, si, b, ea, et, ei = sv;, SI;, b;, ea;, et;, ei;)o.

Proof. Assumer= checkX509Evidenck., u, W, S, x, sv, si, b, ea, et, ei)a and letay. be
such that = ¢’ | 0% | o andog. ranges over closed terms in normal forms.
Then, by definition ofs, there exists” with dom(¢”) = {k, auri, turi} such that

E isX509Certx, k,, u, rsa-shal, k)oo”, (10)
E (sv = rsa-shal(k, c14n(si)))oc”, (11)
F isSigInfdsi, rsa-shal b, ea, et, ei)oc”, (12)
F (ea = <action auri>S</>)oo”, (13)
F (et =<to turi>W</>)oo”. (14)

Using Lemma20 and (10), we getx, u, k = xy, V, K)aad” for some(V, K) € Z. Using
the assumption off, we get(K = k,)o.

In (11), using the definition ok, in a%, and normalizing both sides of the equa-
tion, we getcheck-rsa-shal(cl4n(si’), sv’, pk(s,)) = pk(s,), wheresi’, sv’ are nor-
mal forms ofsi ¢, sv o. Using Lemma 12(5), cases (a) and (c) can be eliminated, since
check-rsa-shal # pk andpk is a constructor. So from case (lBjjeck-rsa-shal(cl4n
(si’), sv’, pk(s,)) must match the (only) rule fawheck-rsa-shal: sv’ = rsa-shal(cl4n
(si’), su), that issv o = rsa-shal(cl4n(si’), s,).

LetT =svo’ oé in normal form; sos, ¢ fn(T) andsve =T a}..

Using Lemma 19(2) and the definition e}, T . = T’ 6., for 7" andT’ ¢¢. in normal
form. So,T’ 6% = rsa-shal(cl4n(si’), s,), with both terms in normal form, and by plain
structural matching on normal forms, we obtain three caseg.for
e T =y for somey € dom(gy.) such thaty o;. = rsa-shal(_,s,), where_ stands for

any subterm.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 141

By definition of gy, this impliesy = sv; for somei < n, and thugsv = sv;)o.
e T =rsa-shal(_, y) for somey e dom(sy.) such thaty 6. = s,,.
This is excluded by definition af(..
e T =rsa-shal(_,s,).
This is excluded by hypothesis eft sinceT = x ¢/, we haves, ¢ fn(T).
Using the definition ofv; in o¢, EQ. 6) becomes

rsa-shal(cl4n(si o), s,) = rsa-shal(cl4n(SI; o), s,)
and thus Lemmaz2(4) yields(si = SI;)o.
Similarly, expanding the definition a§Siginfoin (12) and inS7;, we obtain an equation

of the form:

Wi{x =b}{y = eal{z = et}{w = ei}o
= W{x =biHy = eai}{z = eti{w = eii}o

for atermwbuilt only from constructors, and obtaih, ea, et, ei = b;, ea;, et;, ei;)o from
Lemmal2(4). O

Theorem 22. For any safe Envelope and any safe collection of certificateke configu-
ration Q is robustly safe

Proof. The proof has the same structure as in Sectigh We rely here on a different
definition of ¢; andcheckEvidencewhose correctness is established in Lemma 21. We
easily establish the counterpart of Lemma 10

We check that the proofs of Lemmas 14, 15, 11 and the main proof of Theorem 8 apply
unchanged to our modified definitions]
4.7. Stating and proving firewall-based authentication

For the firewall-based protocol, we define the full protocol configurations as follows.

Firewall protocol configurations: Q (param. by Envelopg,, Envelope;,)
I

0L Ag| vinitf.<VSM.<{u — principal(su)) | Ly | s{) | K;) 1S,
Ap & vs,.({k, = pk(s)} | Ty xyertrv = X509(s;., V, rsa-shal ,K)})

1, = linit, (n, 1, b).(beginu n ¢ b) | http, (Envelope))

SL{ = thttp, (e). filter hasUserSignedBo@, u, s,, n, t, b) — n,t, bin

. end,(untb)|inity(u,n,t, b)

K% = vsy.({f = principal(s)} | {kg = pk(s)} | I7)

Iy = linit (u, n, 2, b).(begin (u n ¢ b) | http (Envelopg))

Sy = Ihttp;(e). filter hasX509SignedBodyRw &, f, u’, n, 1, b) > ', n, 1, bin

endu’ ntb)
L 1

142 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

This configuration is obtained by merging those of Sectbi3sand 4.6: up to indexing,

I, and S;‘c are the same as for password-based signature (Section44.33. defined as

in Section 4.6K“ andI“ are similar tok, andl, in that section: the main difference is
that the originator) received orinit s is used instead of the immediate sendgrg; is
similar to S, in Section 4.6: they differ mostly in the content of the signature. We adapt the
definition of safe X.509-signed envelopes accordingly:

Safe envelopes with X.509 signing (adapted for Firewall)

A safe envelopeis a term of the formEnvelopg = T¢ for some termsT,I
Sl, and FW such thats,, sy ¢ fn(T) U fn(S1), isSiginfa S, rsa-shal ,b, FW) and
isFirewallHeadet FW, u, n, t) are valid, with the active substitutian defined by:

@ = {sv = rsa-shal(cl4n(SI), s,)}

We also adapt the definition of safe collections of certificates to guarantee a unique certificate
for (f, ky) instead of(u, k).

Lemma 23. For any safe envelope and any safe collection of certificatabe adapted
X.509 protocol configuratian®’ Z A7 | KL;.{beginf = begir} | Sy is robustly safe

Proof. The proof is almost identical to the main proof of SectB; we use variables
u,n,t,binstead o, ea, et, ei to represent arbitrary terms receivedinit ; then signed.
The main difference is in showing that if

e FisSigInfqS1, rsa-shal |, b1, FW1)o, E isFirewallHeadetF W1, u1, n1, 1),

e FisSigInfaSI, rsa-shal , by, FW>)o, E isFirewallHeade(F W2, uz, no, 1),

then(by, u1, n1, 11 = bo, uz, no, t2)o. 0

Lemma 24. Let p be the event renaminiiegin end,, begin;, end= begin,, begin end
end;}. The configuratiorQp is robustly safe

Proof. Let Q° be Q with inits(u, n, 7, b) replaced by the messagbegin (u n t b) |

W(Envelopg) in SJ. Since messages sent ioiit ; are exclusively received by, we
obtainQ° ~ Q using a standard observational equivalence in the pi calculus.

We remark tha°p = Clendu, n, t, b) | beginu, n, t, b)] for some contex€[-] where
the channelbeginandenddo not occur, and easily establish that any configuration with
this structural property is robustly safel]

Theorem 25. For any safe envelope&nvelopg, Envelopg) for password-based signing
and adapted X.509 signingespectivelyand for any certificates safe collection of certifi-
catesZ, the configuratiorvend,, begin,.Q is robustly safe

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 143

Proof. Relying on Lemmad.6, we compose Lemma 18 with the renamfagcept= inity}
in evaluation context, Lemmas 24 and 23 in evaluation context.

5. Conclusions and future work

In this paper, we introduced a framework for reasoning about the security of SOAP proto-
cols and their cryptographic implementations in terms of WS-Security tokens. We illustrated
our framework using a series of simple authentication protocols. Surprisingly, perhaps, these
XML-based protocols can be studied at the same (syntactic) level of abstraction:

o formally, using a faithful, predicate-based implementation in the applied pi calculus with
proofs of correspondence properties against a Dolev—Yao adversary;

e experimentally, using sample programs and SOAP traces on top of the WSE [@@)kit

This should provide a principled basis for testing compliant implementations, and also

reduce the risk of attacks in concrete refinements of correct, abstract protocols.

As can be expected, this also complicates the formal model, with for example a large
syntax and equational theory for terms in the applied pi calculus. However, our experi-
ence suggests that a modular definition of predicates, together with standard compositional
techniques in the pi calculus, should enable a good reuse of the proof effort for numerous
WS-Security protocols.

Our choice of authentication protocols stresses that small variations in WS-Security en-
velope formats may lead to much weaker correspondence properties. Each service should
therefore clearly prescribe (and enforce) the intended property. Specifically, a prudent prac-
tice in the selection of XML signatures is to request that all potentially relevant headers be
jointly authenticated—not just the message identifier or its body. In the case authentication
relies on username tokens, this strongly suggests the use of a signature instead of a digest.
Moreover, XML signatures have a complex structure, which should be used with caution.
Specifically, authentication should not rely on signed elements whose interpretation depends
on an unsigned context.

5.1. Related work

There have been many formal studies of remote procedure call (RPC) security mecha-
nisms. The earliest we are aware of is the formalization within the BAN logic [12] of Secure
RPC [37] in the Andrew distributed computing environment. More recently, process calculi
[3] have been used to formalize the secure implementation of programming abstractions
such as communication channels and network objects [40].

We are aware of very little prior formal work on XML security protocols. Gordon and
Pucella [23] implement and verify attribute-driven SOAP-level security protocols, but do
not use the WS-Security syntax. Their representation of SOAP messages abstracts many
details of the XML wire format, and hence would be blind to any errors in the detailed
structure of names or signatures. Damiani et al. [15] describe an access control model
for SOAP messages, but rely on a secure transport rather than WS-Security; a subsequent
paper [16] discusses connections between SOAP security and authorization languages such
as SAML and XACML.

144 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153
5.2. Future work

Our approach to authenticity properties should extend to complementary security proper-
ties, such as secrecy and anonymity. Similarly, we should be able to deal with more complex
protocols (with series of related messages) and configurations (with more principals and
roles). Our predicate structure is quite modular, with predicates being re-used in different
protocols. Hence, we are hopeful that the method will scale up. Moreover, our seman-
tics is suitable for automation, and we have recently built a tool TulaFalgnat allows
us to construct authentication and secrecy proofs automatically using Blanchet’s Proverif
tool [8].

At this stage, we are exploring the range of WS-Security protocols, rather than attempting
its thorough description. Our fragment of WS-Security omits certain features and options
such as encryption, Kerberos tokens, and XPath transforms, but we see no fundamental
barrier to modelling all of the specification.

Finally, although all the protocols are implemented using WSE, our goal has not been to
verify the WSE implementation itself. There is an informal gap between our formal model
and the actual implementation: we have not mechanically checked that our predicates cor-
respond correctly to the checks made by WSE. Still, we are investigating ways of verifying
at least parts of the implementation by relating it to our semantics.

Acknowledgements

We thank Tony Hoare, Riccardo Pucella, and the anonymous reviewers for their com-
ments.

Appendix A. The applied pi calculus (overview)

The applied pi calculus is a simple, general extension of the pi calculus with value
passing, primitive function symbols, and equations between terms. Abadi and Fournet [1],
introduce this calculus, develop semantics and proof techniques, and apply those techniques
in reasoning about some security protocols. This appendix gives only a brief overview
derived from [2].

In the applied pi calculus, the constructs of the classic pi calculus can be used to represent
concurrent systems that communicate on channels, and function symbols can be used to
represent cryptographic operations and other operations on data. Large classes of important
attacks can also be expressed in the applied pi calculus, as contexts. These include the typical
attacks for which a symbolic, mostly “black-box” view of cryptography suffices (but not for
example some lower-level attacks that depend on timing behaviour or dictionary attacks).
Some of the properties of the protocol can be nicely captured in the form of equivalences
between processes. Moreover, some of the properties are sensitive to the equations satisfied
by the cryptographic functions upon which the protocol relies. The applied pi calculus is
well-suited for expressing those equivalences and those equations.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 145
Abstractly, asignatureX consists of a finite set of function symbols, suchcascat
andshal, each with an integer arity. Given a signaturean infinite set of names, and an
infinite set of variables, the set tdrmsis defined by the grammar

Grammar for terms

I

T,U,V,SI, Envelope:= terms
begin end http, init, ¢, s name (for communication channels)
Spwds Sry Su name (for cryptographic secrets)
b,e,n,x,y,t,u variable
f(Ty, ..., Ty) function application

wheref ranges over the function symbolsDbfindl matches the arity df We use metavari-
ablesv andw to range over both names and variables.

The grammar foprocessess similar to the one in the pi calculus, except that messages
can contain terms (rather than only names) and that names need not be just channel names:

Grammar for processes

I
P,O,R = processes (or plain processes)
0 null process
P|O parallel composition
'P replication
vs.P name restriction (“new”
if U =V thenP elseQ conditional
v(x).P message input
v(T).P message output

The null proces8does nothingP | Q is the parallel composition & andQ; the replication
! P behaves as an infinite number of copieBafinning in parallel. The process. P makes a
new namesthen behaves a&% The conditional construdtU = V thenP elseQ is standard,
but we should stress that = V represents equality in the equational theory, rather than
strict syntactic identity. We abbreviateiitU = V then P whenQ is 0. Finally, the input
processv(x).P is ready to input from channel, then to runP with the actual message
replaced for the formal parameterwhile the output process(T').P is ready to output
messagd on channel, then to runP. In both of these, we may omR when it isO.
When(P));<; is a finite set of processes indexed by= 1...m, we write[[,., P; as an
abbreviation forPy | ... | P, (With ;. Pi = 0).

Further, we extend processes witttive substitutions

iel

Grammar for extended processes

I

A,B,C,I,LK,S := extended processes
P plain process
A|B parallel composition

146 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

vn.A name restriction
vs.A variable restriction
{x =T} active substitution

We write {x = T} for the substitution that replaces the variaklwith the termT. The
substitution{x = T} typically appears when the teriihhas been sent to the environ-
ment, but the environment may not have the atomic names that appeah@variablex

is just a way to refer tdl in this situation. The substitutiofixr = T} is active in the
sense that it “floats” and applies to any process that comes into contact with it. In order
to control this contact, we may add a variable restriction({x = T} | P) corresponds
exactly tolet x = T in P. Although the substitutiofx = 7'} concerns only one vari-
able, we can build bigger substitutions by parallel composition. We always assume that
our substitutions are cycle-free. We also assume that, in an extended process, there is
at most one substitution for each variable, and there is exactly one when the variable is
restricted.

A frameis an extended process built up from active substitutions by parallel compo-
sition and restriction. Informally, frames represent the static knowledge gathered by the
environment after communications with an extended procesgvaluation context|[-]
is an extended process with a hole in the place of an extended process. As usual, names
and variables have scopes, which are delimited by restrictions and by inputs. XVhen
is any expressionfv(X) andfn(X) are the sets of free variables and free nameX, of
respectively.

We rely on a sort system for terms and extended procdis&ection 2]. We always
assume that terms and extended processes are well-sorted and that substitutions and context
applications preserve sorts.

Given a signature, we equip it with an equational theory (that is, with an equivalence
relation on terms with certain closure properties). We write sinfply= V to mean the
termsU andV are related by the equational theory associated With

Structural equivalencesvritten A = B, relate extended processes that are equal by any
capture-avoiding rearrangements of parallel compositions, restrictions, and active substitu-
tions, and by equational rewriting of any terms in processes.

Reductionswritten A — B, represent steps of computation (in particular, internal mes-
sage transmissions and branching on conditionals). Reductions are closed by structural
equivalence, hence by equational rewriting on terms.

Observational equivalencewritten A ~ B, relate extended processes that cannot be
distinguished by any evaluation context in the applied pi calculus, with any combination
of messaging and term comparisons. (WeAebe the largest weak bisimulation on ex-
tended processes for reductions that preserves all potential observation of input or out-
put on free names and that is closed by application of evaluation contextsSfidng
equivalencewritten A ~ B, is a finer, auxiliary equivalence similarly defined by con-
sidering strong bisimulation and immediate observations. The applied pi calculus has a
useful, general theory of observational equivalence, parameterizEdbd its equational
theory [1].

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 147
Appendix B. Additional proofs

We gather here proofs and additional lemmas that deal with internal choices, formula
implementations, and logical equivalence in applied pi. These developments are not specific
to the protocols considered in the paper.

B.1. Properties of internal choice

We begin by elaborating the co-inductive definition of internal choice given in the body
of the paper. Let a binary relatia$ between processes and sets of processesheiee-
relationif and only if P S X implies (1) if 0 € X thenP —*~ Q; (2) if P — P/, then
either ()P’ ~ Q for someQ € X or (b) P’ S X’ for someX’ C X; and (3)P does not
communicate on free channel names.

Let Sg be the union of all choice-relations. In effect, Sectbt takesp X to be the
greatest choice-relation. By standard, simple arguments, the union of all choice-relations is
in fact the greatest choice-relation. Hence, we haverfhatP X if and only if P Sg X.

Next, we present some useful lemmas concerning internal choice.

Lemma 26. If P ~ Q andQ € € X thenP € (P X.
Proof. This follows easily by definition of bisimilarity;-, and internal choice. [J

In our implementations, it is convenient to identify reduction steps that are deterministic,
such as term comparisons; we introduce the relatignfor these reduction steps. For the
next lemma, we only need to assume thatand —, commute, that isPp —,; Q and
P — P’ implies eitherP’ = Q or the existence of’ with P’ —,; Q’andQ — Q’.

Lemma 27.1f P -, QandQ € p X thenP € P X.
Proof. This follows easily by definition o —,; Q and internal choice. [J
Lemma28.If P, e P X; foralli e I 'then@{P; |i e I} CPU{Xi|i e}

Proof. AssumeP; € P X, foralli € I.

LetP S X justif P e @{P; | j € J}andX = J{X, | j € J} forsomeJ C I.

The lemma follows if the relatiols U Sg is a choice-relation, for then we have that
S C Sg, and therefore thaP Sg (J{X; | i € I} forall P € @{P; | i € I}, that is,
DirlielycPBUX: |iel).

To see thal U Sg is a choice-relation it suffices to consider ahye H{P; | j € J}and
X =U{X; | j e J}forsomeJ C I, and to establish the three conditions in the definition
of a choice-relation.

(1) Consider anyQ € X sothatQ € X; for somej € J. By assumptionpP; € X,
and therefore?; —*~ Q. SinceP € @{P; | j € J}, we haveP —*~ P;, and therefore,
by bisimilarity, P —*~ Q.

148 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

(2) Suppose? — P’. SinceP € D{P; | j € J}, either (a)P’ ~ P; for some;j € J or
(b) P e P{P; | j € J'}forsomeJ' C J.Incase (a)P' ~ P e PX;soP' e PX;
by Lemma26, and hence we have case (B),Sg X; with X; € X. In case (b), we have
case (b)P' SU{X;|jeJ} S XsinceJ' CJCI.

(3) FromP € @{P; | j € J} it follows thatP does not communicate on free channel
names.

Hence S U Sg is a choice-relation, and the lemma follows[]

B.2. Properties of formula implementation

We state some basic facts concerning the implementation of a predicat¢h bound
variablesy, as a procedfilter @ — 7y in P. The following may be proved by inductions on
the definitions of the filters.

Lemma 29. (1) fv(filter @ — yin P) € (fv(®) U fv(P)) \ {¥}.
(2) fn(filter @ — y'in P) C fn(®) U fn(P).
(3) (filter ® — ¥ in Q)o = filter o — Y in Qo wheny do not occur ino.

Next, the main property of formula implementation to be proved here is Lefama

Restatement of Lemmab. If filter @ — yin P is defined and closed then:
filter ® > Fin P € @IP{T =V} | fo(V) =D Ak &F =V}

Proof. The proof is by induction on the definition Gfter @ — 7 in P. Sincefilter @ —
yin P is defined and closed, Lemn28 implies we may assume thfat P) C y and that
fv(®) = y. We proceed by cases on the structuréof

e Incased = (V =T), we are to show) € & X, where

Q = lety = S{x = V}inif V=T thenp, ~
X =@PET =V} fo(V)=DAV =T){F=V}},

whenfu(T) =75, fu(V) =@, fv(P) Cy,andV =T y with inverse terms.

We consider two cases: either there &rguch thatT{y = V} = V, or not. In the first
case, by clause (2) of the definition ¥f = 7~ y, we haveV = S{x = V}, and
therefore the vectoY is unique. We have:

0 = ifv=T{y= S{x =V} thenP{y = S{x =V}
= ifv= T{y = V} thenP{y = V}

—q P{y—VN} ~ ~
X = (PF=V)| fo(V)=@ATF =V} =V)
= {P{y=V}}.

In the second case, when there aréhsuch that' {y = V} = V, we have

Q »*ifV=T{y="S{x=V}thenP(F = S{x = V}} ~ 0
X = J.

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 149

Using Lemma®6 and 27, we can establighe € X in both cases.
In case® = (x € V) andy = {x}, we are to show) € X where

Q =filterxe Vi xinP,
X ={Plx=U}|(V=Uy...U; UV forsomeUs, ...,U;,U, V' i >0},

when fv(V) = @ and fv(P) C {x}. Now, by appeal to Lemm&2, the normal form of
the closed ternv must take the fornvV = Vy ... V,, W wherem >0 andVx, ..., V,,,
W are closed, normal terms, amid = W1 W for any Wy, W». We calculate as follows,
whereR = s(z) filterz=ht — h,tin (c{h) | 5(t)).

Q0 = fiterxeVy---V, Wi>xinP
= vs,c(c(x).P|5(V1---V,;, W)|'R)
— 2 vs,c(c(x).P | E(V1) | ... | E(Vin) | S(W) | IR)
—>021 ~ve.(c(x).Plc(Vi) ... | (Vi)
e P{Px=Vi}liel...m}
= X

By Lemmas26 and 270 € X follows.
In case® = p(W), we are to show) € P UJ(X; | i € 1...m} where

0 = vs.(s(e |]_[l61 s()fllterQ{x—W}Hyz,lnP)
Xi={P{y—V}|fV(U V) =D AE T =Wz = Uy =V}

Whenfv(ﬁ/) =Y, fv(P) C y,andp(x) :- PV ---Vv &, and, foralli e 1...m
fu(®@) = X Wz and(fv(W) U fv(P)) N7Z; = . By examining them possible
transitions ofQ, we clearly have) € @{P; | i € 1...m}, where:

P; = filter ®;{X = W} — 7,%; in P.

By induction hypothesis, foreachke 1...m, P, € @ X;.HenceP{P; |i € 1...m} C
PUXi |i €l...m}, by Lemma28, and henc® € P J{X; |i €1...m}.
In case® = @1, P,, we are to show) € p X where

Q = filter &1 — ﬁ inN(fiIter @y — yoin P)
X = {P{y1,52 =V, Va} | o o
F ®1{y1 = Vi) AE @o{y1, Y2 = V1, Va} A fo(V, Vo) =T},

when fu(P) C Y, fu(®@1, P2) =5, y1 =Y N fu(Py), andyz = ¥ \ fv(P1), so that
¥ = y1 ¥ y2. By induction hypothesisQ € B{Py;, | V1 € I} where

Py, = filter @2{y1 = Vi) > J2in (P{yL= 2))
I = {V1] fo(V1) =D AE &1{51 = V1}}.

By induction hypothesisiy, € &P Xy, for eachVy € I, where

= {P{J1,y2 = V1, Vo) | Vz € Tod
Jvl = {Va| fo(Vo) = D AE D31, Y2 = V1. Val).

150 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153
Hence, with Lemm&8, we have

0 € Diry, I V1el)
QUG I ien
DIPL Y2 = V1, Vo) [Vie L, V2 € Jy,)

D X.

This completes all the cases of the inductiofn

I IN m

B.3. Properties of logical equivalence

We extend our definition of occurrence from events to sets of events as follows: we
write A>> L whenL = {a(V) | A>a(V)}. We can formulate robust safety (and other
safety properties) using these observable gets:robustly safe if and only if, whenever
E[A] —*1> L, E[-] does not bind the channelslgfandend V) € L, then alsdeginV) €
L.

For a given set of process&s the processes i@ X are not necessarily observationally
equivalent (as they may commit to different subset& pfStill, we can substitut® for P
with P, O € €@ X without changing global set observations:

Lemma 30. Internal choice implementations do not affect observatiéns * > L.

Proof. In this proof, we say that two processes estated when they differ only on their
implementation of internal choiced:andB are related whed = F[S], B = F[S’] for
somem-ary contextF'[-] and there existX; with S;, S! € @ X; foreachi € 1...m.(More
general forms with nested internal choices are handled by transitivity.)

For any reduction steg — A’, one of the following holds:
(1) A = E[S] for someX andS € p X, and

(@) A’ ~ E[P]for someP e X (completion step); or

(b) A’ = E[S’] forsomeY C X andS’ € Y (internal step).
(2) A — A’ does not depend on internal choice implementations (external step).
Internal and completion steps for different internal choices commute with one another, and
internal steps commute with any external steps. Besides, condition (3) on internal choices
implies that internal choices (and thus internal steps) never directly affect observations
AD> L.

AssumeA andB are related. For any given, we show that, if there exist$’ such that
A —* A’> L, then there exist8’ such thatB —* B’ > L, by induction on the number of
completion steps i —* A’.

Base cas€No completion stép By reordering reductiond —* A’, we obtain some
A1 with external stepgl —* A1 and internal stepd1 —* A’. There exist external steps
B —* B in direct correspondence with —* Aj for someB; related toA;. Finally,
A’ > L implies A1 > L, and we can conclude usir®R)—* By > L.

Inductive caseBy reordering reductiond —* A’, we obtain

A =¥ = EA[Sa] =¥ — EA[P'] >*= A/,

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 151

where E4[-] is an evaluation contexf is a set of processes, asd € P X, P € X,
and P’ ~ P are processes with external steps—* E4[Sa], internal steps and a first
completion ste 4 —*— P’, and any step&[P'] —*= A’.

By definition of external step, we also have external stBps>* Ep[Sp] such that
EAlSalandEg[Sg] are related, for som&p € € X and evaluation contex [-].

By condition (1) on internal choic8g, there existP” ~ P with reductionsSg —* P”,
and thustg[Sp] —* Eg[P"]with Eg[P"] ~ Eg[P’]. The processeBg[P'l andE [P’]
are related, hence, by induction hypothesgig[P'] —* A’ > L implies Eg[P'] —* > L
and finallyB —* > L. O

Next, we show that one can replace a formula by another (implementable) equivalent
one without affecting set observations. This is useful to decompose message processing, as
detailed in Sectiod.4.

Lemma 31. If A and B are logically equivalent and —*> L,thenB —*> L.
Proof. This is Lemma30 applied to the internal choices obtained by Lemmals.
Given the definition of robust safety, Lemma 7 now follows as a corollary.

Restatement of Lemma7. Logical equivalence preserves robust safety.

References

[1] M. Abadi, C. Fournet, Mobile values, new names, and secure communication, in: 28th ACM Symp. on
Principles of Programming Languages (POPL01), 2001, pp. 104-115.

[2] M. Abadi, C. Fournet, Private authentication, Theoret. Comput. Sci. 322 (3) (2004) 427-476.

[3] M. Abadi, C. Fournet, G. Gonthier, Authentication primitives and their compilation, in: 27th ACM Symp. on
Principles of Programming Languages (POPL00), 2000, pp. 302—-315.

[4] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, 1998.

[5] K. Bhargavan, C. Fournet, A.D. Gordon, A semantics for web services authentication, in: 31st ACM Symp.
on Principles of Programming Languages (POPL'04), 2004, pp. 198-209.

[6] K. Bhargavan, C. Fournet, A.D. Gordon, A semantics for web services authentication, Technical Report
MSR-TR-2003-83, Microsoft Research, 2004.

[7] K. Bhargavan, C. Fournet, A.D. Gordon, R. Pucella, TulaFale: a security tool for web services, in: Formal
Methods for Components and Objects (FMCO'03), Lecture Notes in Computer Science, vol. 3188, Springer,
Berlin, 2004.

[8] B. Blanchet, An efficient cryptographic protocol verifier based on prolog rules, in: 14th IEEE Comput.
Security Found. Workshop (CSFW-14), IEEE Computer Society, Silver Spring, MD, 2001, pp. 82-96.

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte, D.
Winer, Simple Object Access Protocol (SOAP) 1.1, 2000, W3C Notehtigt//www.w3.org/
TR/2000/NOTE-SOAP-20000508/

[10] J. Boyer, Canonical XML, 2001, W3C Recommendation, htp://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315/

[11] J. Boyer, D.E. Eastlake, J. Reagle, Exclusive XML Canonicalization, 2002. W3C Recommendation, at
http://www.w3.0rg/TR/2002/REC-xml-exc-c14n-20020718/

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

152 K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153

[12] M. Burrows, M. Abadi, R.M. Needham, A logic of authentication, Proc. Roy. Soc. London A 426 (1989)
233-271.

[13] E. Cohen, TAPS: a first-order verifier for cryptographic protocols, in: 13th IEEE Comput. Security Found.
Workshop; IEEE Computer Society Press, Silver Spring, MD, 2000, pp. 144-158.

[14] J. Cowan, R. Tobin, XML Information Set, 2001, W3C Recommendatidmttpt//www.w3.org/TR/
2001/REC-xml-infoset-20011024/

[15] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, Securing SOAP e-services, Internat. J.
Inform. Security 1 (2) (2002) 100-115.

[16] E. Damiani, S. De Capitani di Vimercati, P. Samarati, Towards securing XML web services, in: ACM
Workshop on XML Security 2002, 2003, pp. 90-96.

[17] T. Dierks, C. Allen, The TLS protocol: Version 1.0, 1999, RFC 2246.

[18] D. Dolev, A.C. Yao, On the security of public key protocols, IEEE Trans. Inform. Theory IT-29 (2) (1983)
198-208.

[19] D. Eastlake, P. Jones, US Secure Hash Algorithm 1 (SHA1), 2001, RFC 3174.

[20] D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMacchia, E. Simon,
XML-Signature Syntax and Processing, 2002, W3C Recommendatiorhttpt//www.w3.0org
ITR/2002/REC-xmldsig-core-20020212/

[21] R. Focardi, R. Gorrieri, F. Martinelli, A comparison of three authentication properties, Theoret. Comput. Sci.
291 (3) (2003) 285-327.

[22] A.D. Gordon, A. Jeffrey, Authenticity by typing for security protocols, J. Comput. Security 11 (4) (2003)
451-521.

[23] A.D. Gordon, R. Pucella, Validating a web service security abstraction by typing, in: ACM Workshop on
XML Security 2002, 2003, pp. 18-29.

[24] J. Jonsson, B. Kaliski, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1, 2003, RFC 3447.

[25] R. Kemmerer, C. Meadows, J. Millen, Three systems for cryptographic protocol analysis, J. Cryptol. 7 (2)
(1994) 79-130.

[26] H. Krawczyk, M. Bellare, R. Canetti, HMAC: keyed-hashing for message authentication, 1997, RFC 2104.

[27] G. Lowe, Breaking and fixing the Needham—Schroeder public-key protocol using CSP and FDR, in: Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science, Vol. 1055,
Springer, Berlin, 1996, pp. 147-166.

[28] G. Lowe, A hierarchy of authentication specifications, in: Proc. 10th IEEE Comput. Security Found.
Workshop, 1997, IEEE Computer Society Press, Silver Spring, MD, 1997, pp. 31-44.

[29] Microsoft Corporation, Microsoft .NET Pet Shop, 2002, attp://www.gotdotnet.com
/team/compare/petshop.aspx .

[30] Microsoft Corporation, Web Services Enhancements for Microsoft .NET, December 2002, at
http://msdn.microsoft.com/webservices/building/wse/default.aspx

[31] R. Milner, Communicating and Mobile Systems: tiréCalculus, Cambridge University Press Cambridge,
1999.

[32] A. Nadalin, C. Kaler, P. Hallam-Baker, R. Monzillo, OASIS Web Services Security: SOAP Message
Security 1.0 (WS-Security 2004), March 2004tstp://www.oasis-open.org/committees/
download.php/5941/0asis-200401-wss-soap-message-security-1.0.pdf

[33] R.M. Needham, M.D. Schroeder, Using encryption for authentication in large networks of computers, Comm.
Assoc. Comput. Mach. 21 (12) (1978) 993-999.

[34] H.F. Nielsen, S. Thatte, Web services routing protocol (WS-Routind)ttat//msdn.microsoft.
com/library/en-us/dnglobspec/html/ws-routing.asp , October 2001.

[35] L.C. Paulson, The inductive approach to verifying cryptographic protocols, J. Comput. Security 6 (1998)
85-128.

[36] J.H. Saltzer, D.P. Reed, D.D. Clark, End-to-end arguments in system design, ACM Trans. Comput. Systems
2 (4) (1984) 277-288.

[37] M. Satyanarayanan, Integrating security in a large distributed system, ACM Trans. Comput. Systems 7 (3)
(1989) 247-280.

[38] J. Siméon, P. Wadler, The essence of XML, in: 30th ACM Symp. on Principles of Programming Languages
(POPL03), 2003, pp. 1-13.

http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.gotdotnet.com/team/compare/petshop.aspx
http://www.gotdotnet.com/team/compare/petshop.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://www.oasis-open.org/committees/download.php/5941/oasis-200401-wss-
http://www.oasis-open.org/committees/download.php/5941/oasis-200401-wss-
http://soap-message-security-1.0.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp

K. Bhargavan et al. / Theoretical Computer Science 340 (2005) 102-153 153

[39] F.J. Thayer Fabrega, J.C. Herzog, J.D. Guttman, Strand spaces: proving security protocols correct, J. Comput.
Security 7 (1999) 191-230.

[40] L. van Doorn, M. Abadi, M. Burrows, E. Wobber, Secure network objects, in: IEEE Comput. Soc. Symp. on
Research in Security and Privacy, 1996, pp. 211-221.

[41] W. Vogels, Web services are not distributed objects, IEEE Internet Comput. 7 (6) (2003) 59-66.

[42] T.Y.C. Woo, S.S. Lam, A semantic model for authentication protocols, in: IEEE Comput. Soc. Symp. on
Research in Security and Privacy, 1993, pp. 178-194.

