
The Combination of Text Classifiers Using Reliability Indicators∗

Paul N. Bennett
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, PA 15213

pbennett+@cs.cmu.edu

Susan T. Dumais
Microsoft Research
One Microsoft Way

Redmond, WA 98052
sdumais@microsoft.com

Eric Horvitz
Microsoft Research
One Microsoft Way

Redmond, WA 98052
horvitz@microsoft.com

Abstract

The intuition that different text classifiers behave in qualitatively different ways has long motivated attempts to

build a better metaclassifier via some combination of classifiers. We introduce a probabilistic method for combining

classifiers that considers the context-sensitive reliabilities of contributing classifiers. The method harnesses reliability

indicators—variables that provide signals about the performance of classifiers in different situations. We provide

background, present procedures for building metaclassifiers that take into consideration both reliability indicators and

classifier outputs, and review a set of comparative studies undertaken to evaluate the methodology.

Keywords: Text classification, classifier combination, metaclassifiers, feature selection, reliability indicators

1 Introduction

Researchers have long pursued the promise of harnessing multiple text classifiers to synthesize a more accurate classi-
fication procedure via some combination of the outputs of the contributing classifiers. Studies of classifier combination
have been motivated primarily by the intuition that overlaying classifiers, that work in related but qualitatively different
ways, could leverage the distinct strengths of each method.

Classifiers can be combined in a variety of ways. In one approach, a text classifier is composed from multiple
distinct classifiers by selecting the best classifier to use in different situations or contexts. For example, we may
perform analytical or empirical studies to identify the most accurate text classifier in some setting, seeking to learn
about accuracy over output scores or some combination of output scores and features considered in the analysis.
Other procedures for combining classifiers consider inputs generated by the contributing classifiers. For example, in
a voting analysis, a combination function considers the final decisions made by each classifier as votes that influence
an overall decision about the best classification. In a finer-grained approach to combining multiple classifiers, the
scores generated by the contributing classifiers are taken as inputs to the combination function. Whichever approach
to combination employed, the creation of enhanced metaclassifiers from a set of text classifiers relies on developing
an understanding of how different classifiers perform in different informational contexts.
∗This paper revises and extends material originally presented by Bennett et al. (2002).

1

We have pursued the development of probabilistic combination procedures that hinge on learning and harnessing
the context-sensitive reliabilities of different classifiers. Rather than rely solely on output scores or on the set of
domain-level features employed in text-classification, we introduce the use of reliability-indicator variables—a set
of features that provide a low-dimensional abstraction on the discriminatory context for learning about reliability.
We borrow the reliability-indicator methodology from work presented initially by Toyama and Horvitz (2000) in the
context of automated vision. They introduced the reliability-indicator learning and inference framework and showed
how the approach could be applied in vision to integrate several distinct scene analyses into an overall higher-accuracy
composite visual analysis. We have found that the reliability-indicator methodology is useful in text classification for
providing context-sensitive signals about accuracy that can be used to weave together multiple classifiers in a coherent
probabilistic manner to boost overall accuracy.

We will first review related work on the combination of text-classification procedures. Then, we introduce the
use of reliability indicators in text classification, and show how we can employ these variables to learn about the
context-sensitive reliabilities of naı̈ve Bayes, unigram, support vector machine (SVM), and decision-tree classifiers.
We describe how we integrate the indicator variables with base-level features and scores output by classifiers to build
metaclassifiers that improve text classification performance. We highlight our methodology and results by reviewing
several sets of experiments. Finally, we summarize our contributions and discuss future directions.

2 Related Work

Appropriately combining information sources to form a more effective output than any of the individual sources is
a problem that has been investigated in many fields. The challenges of integrating information have gone under
the labels of diagnosis (Horvitz et al., 1988), pattern recognition (Duda et al., 2001), sensor fusion (Klein, 1999),
distributed data mining (Kargupta & Chan, 2000), and a variety of ensemble methods (Dietterich, 2000). Diagnosis
centers on identifying disorders from multiple pieces of evidence, such as reasoning about probability distributions
over a patient’s diseases from a set of symptoms and test results. Pattern recognition and sensor fusion typically
address challenges with integrating information from multiple modalities (e.g., auditory and visual) while distributed
data mining addresses how results retrieved from distinct training data sets can be unified to provide one coherent
view to the user. Ensemble methods first solve a classification or regression problem by creating multiple learners
that each attempt to solve the task independently, then use the procedure specified by the particular ensemble method
for selecting or weighting the individual learners. Ensemble methods include such techniques as Bayesian averaging,
bagging, boosting, stacking, cascade generalization, hierarchical mixture of experts, and the work presented in this
paper.

Text classification addresses the task of labeling a text document with one or more labels from a set of predefined
content-based categories. These categories may be primary document topics (e.g., Health & Fitness, Business &
Finance, etc.), hierarchical indices of technical content (e.g., medical hierarchies [Hersh et al., 1994]), genres (e.g.,
legal, fiction, etc. [Kessler et al., 1997]), or a variety of other distinctions (e.g., normal e-mail vs. junk e-mail, as
used by [Sahami et al., 1998], or urgent e-mail vs. non-urgent e-mail, as explored by [Horvitz et al., 1999]). Text
classification methods can thus provide a backend for many information retrieval tasks, e.g., routing, tagging and
filtering. The interested reader should see Sebastiani (2002) for a broad survey of recent applications of machine
learning to text classification.

The overlaying of multiple methodologies or representations has been employed in several areas of information
retrieval. For example, previous research in information retrieval has demonstrated that retrieval effectiveness can be
improved by using multiple, distinct representations (Bartell et al., 1994; Katzer et al., 1982; Rajashekar & Croft,

2

1995), or by using multiple queries or search strategies (Belkin et al., 1993; Shaw & Fox, 1995). In the realm of
text classification, several researchers have achieved improvements in classification accuracy by combining different
classifiers (Al-Kofahi et al., 2001; Hull et al., 1996; Larkey & Croft, 1996; Li & Jain, 1998; Yang et al., 2000).
Similarly, several investigators have enhanced classification performance by applying many instances of the same
classifier, such as boosting procedures (Schapire & Singer, 2000; Weiss et al., 1999).

Much of the previous work on combining text classifiers has centered on the use of basic policies for selecting the
best classifier or for combining the output of multiple classifiers. As some examples, Larkey and Croft (1996) used
weighted linear combinations of system ranks or scores; Hull et al. (1996) used linear combinations of probabilities
or log odds scores; Yang et al. (2000) used a linear combination of normalized scores; Li and Jain (1998) used voting
and classifier selection techniques; and Lam and Lai (2001) used category-averaged features to pick a (potentially
different) classifier to use for each category.

Larkey and Croft (1996) used rank-based measures of performance because they were interested in interactive
systems in which a rank list of codes for each document would be displayed to users. Many other applications such
as automatic routing or tagging require that binary class membership decisions be made for each document as it is
processed. We focus on classifier combination to enhance such classification decisions. This goal is more challenging
than the use of classifiers for document ranking. As an example, Hull et al. (1996) found that, although combination
techniques were able to improve document ranking, they did considerably less well at estimating probabilities required
for online classification decisions.

As we shall highlight below, in contrast to prior research on classifier combination, our work centers on the use
of a richer probabilistic combination of inputs, using combination functions learned with Bayesian and SVM learning
methods. In this respect, our approach is similar to work by Ting and Witten (1999) in stacked generalization and
Gama (1998a; 1998b) in cascade generalization, although they did not apply their approach to text problems. We also
report baseline comparisons with voting and classifier-selection techniques.

3 Problem Approach

Our work is distinguished from earlier combination approaches for text classification by (1) the use of expressive
probabilistic dependency models to combine lower-level classifiers, leveraging special signaling variables, referred
to as reliability indicators, and (2) a focus on measures of classification performance rather than the more common
consideration of ranking.

3.1 Reliability Indicators

Previous approaches to classifier combination have typically limited the information considered at the metalevel to
the output of the classifiers (Ting & Witten, 1999) and/or the original feature space (Gama, 1998a). Since a classifier
rarely is the best choice across a whole domain, an intuitive alternative is to identify the document-specific context
that differentiates between regions where a base classifier has higher or lower reliability.

Figure 1 shows an example using four base classifiers: decision tree, SVM, naı̈ve Bayes, and unigram. When given
a test document as input, each of the four base classifiers outputs a probability distribution over possible class labels
(depicted graphically as a histogram in the figure). The metaclassifier uses this information along with document
context (to be described in more detail) to produce a final classification of the document.

We address the challenge of learning about the reliability of different classifiers in different neighborhoods of
the classification domain by introducing variables referred to as reliability indicators which represent the analytic

3

����

Metaclassifier

Document−Specific
Context

SVM

���
�

���
�

���
�

		
		

Decision Tree

Naive Bayes

Unigram

PSfrag replacements

w1

w2

w3

wn

· · ·
r1

r2

r3

rn

Figure 1: Schematic characterization of reliability-indicator methodology. The methodology formalizes the intuition
shown here that document-specific context can be used to improve the performance of a set of base classifiers. The
output of the classifiers is a graphical representation of a distribution over possible class labels.

“context” of a specific document. A reliability indicator is an evidential distinction with states that are linked proba-
bilistically to regions of a classification problem where a classifier performs relatively strongly or poorly.

The reliability-indicator methodology was introduced by Toyama and Horvitz (2000) and applied initially to the
task of combining, in a probabilistically coherent manner, several distinct machine-vision analyses in a system for
tracking the head and pose of computer users. The researchers found that different visual processing modalities had
distinct context-sensitive reliabilities that depended on dynamically changing details of lighting, color, and the overall
configuration of the visual scene. The authors introduced reliability indicators to capture properties of the vision
analyses, and of the scenes being analyzed, that provided probabilistic indications of the reliability of the output of
each of the modalities. To learn probabilistic models for combining the multiple modalities, data was collected about
ground truth, the observed states of indicator variables, and the outputs from the concurrent vision analyses. The data
was used to construct a Bayesian network model with the ability to appropriately integrate the outputs from each of
the visual modalities in real time, providing an overall higher-accuracy composite visual analysis.

The value of the indicator-variable methodology in machine vision stimulated us to explore the approach for rep-
resenting and learning about reliability-dependent contexts in text classification problems. For the task of combining
classifiers, we formulate and include sets of variables that hold promise as being related to the performance of the
underlying classifiers. We consider the states of reliability indicators and the scores of classifiers directly, and, thus,
bypass the need to make ad hoc modifications to the base classifiers. This allows the metaclassifier to harness the
reliability variables if they contain useful discriminatory information, and, if they do not, to fall back in a graceful
manner to using the output of the base classifiers.

As an example, consider three types of documents where: (1) the words in the document are either uninformative or
strongly associated with one class; (2) the words in the document are weakly associated with several disjoint classes; or
(3) the words in the document are strongly associated with several disjoint classes. Classifiers (e.g., a unigram model)
will sometimes demonstrate different patterns of error on these different document types. If we can characterize a
document as belonging to one of these model-specific failure types, then we can assign the appropriate weight to the
classifier’s output for this kind of document. We have pursued the formulation of reliability indicators that capture
different association patterns among words in documents and the structure of classes under consideration. We seek
indicator variables that would allow us to learn context-sensitive reliabilities of classifiers, conditioned on the observed

4

Not < 0.0551 (205)

Not < 0.113 (427) < 0.0551 (222) Not < −0.61 (203)

< −0.61 (19)

< 1(167)

< 0.113 (187)

Not < 1 (36)

OutputOfUnigram

OutputOfSmox

UnigramVariance

%FavoringInClassAfterFS

PSfrag replacements

w1

w2

w3

wn

· · ·
r1

r2

r3

rn

Figure 2: Portion of decision tree, learned by STRIVE-D (norm) for the Business & Finance class in the MSN Web
Directory corpus, representing a combination policy at the metalevel that considers scores output by classifiers (dark
nodes) and values of indicator variables (lighter nodes).

states of the variable in different settings.
To highlight the approach with a concrete example, Figure 2 shows a portion of the type of combination func-

tion we can capture with the reliability-indicator methodology. The nodes on different branches of a decision tree
include the values output by base classifiers, as well as the values of reliability indicators for the document being
classified. The decision tree provides a probabilistic, context-sensitive combination rule indicated by the particular
relevant branching of values of classifier scores and indicator variables. In this case, the portion of the tree displayed
shows a classifier-combination function that considers thresholds on scores provided by a base-level linear SVM (Out-
putOfSmox) classifier and a base-level unigram classifier (OutputOfUnigram), and then uses the context established
by reliability-indicator variables (UnigramVariance and %FavoringInClassAfterFS) to make a final decision about a
classification. The annotations in the figure show the threshold tests that are being performed, the number of examples
in the training set that satisfy the test, and a graphical representation of the probability distribution at the leaves. The
likelihood of class membership is indicated by the length of the bars at the leaves of the tree.

The variable UnigramVariance represents the variance of unigram weights for words present in the current doc-
ument. The intuition behind the formulation of this reliability-indicator variable is that the unigram classifier would
show a tendency toward higher accuracies when there is low variance in weights. The variable %FavoringInClass-
AfterFS is the percentage of words (after feature selection) that occur more often in documents within a target class
than in other classes. Classifiers that weight positive and negative evidence differently should be distinguished by this
variable. Appendix A gives further details about the reliability indicators used in these experiments.

The indicator variables used in our studies represent an attempt to formulate states that capture influential contexts.
We constructed variables to represent a variety of contexts that held promise as being predictive of accuracy. These in-
clude such variables as the number of features present in a document before and after feature selection, the distribution
of features across the positive vs. negative classes, and the mean and variance of classifier-specific weights.

We can broadly group reliability-indicator variables into one of four types, including variables that measure (1) the
amount of information present in the original document, (2) the information loss or mismatch between the representa-
tion used by a classifier and the original document, (3) the sensitivity of the decision to evidence shift, and (4) some
basic voting statistics.

DocumentLength is an example of a reliability-indicator variable of type 1. The performance of classifiers is
sometimes correlated with document length, because longer documents give more information to use in making a

5

classification. DocumentLength can also be informative because some classifiers will perform poorly over longer
documents as they do not model the influence of document length on classification performance (e.g., they double
count evidence and longer documents are more likely to deviate from a correct determination).

PercentRemoved serves as an example of type 2. This variable represents the percent of features removed in the
process of feature selection. If most of the document was not represented by the feature set employed by a classifier,
then some classifiers may be unreliable. Others classifiers (e.g., decision trees that model missing attributes) may
continue to be reliable. When the base classifiers are allowed to use different representations, type 2 features can play
an even more important role.

An example of type 3 is the UnigramVariance variable. Low variance means the decision of the classifier is
unlikely to change with a small change in the document content; high variance increases the chances that the decision
would change with only a small change in the document.

Finally, NumVotingForClass or PercentAgreement are examples of type 4 reliability indicators. These simple
voting statistics improve the metaclassifier search space (since the metaclassifier is given the base classifier decisions as
input as well). For a two-class case the PercentAgreement variable may provide little extra information but for greater
number of classes it can be used to determine if the base classifiers have fractured their votes among a small number
of classes or across a wide array. We found all four types of reliability indicators to be useful in the final combination
scheme, and preliminary analyses did not indicate that any one type dominates in the combination models.

Beyond the key difference in the semantics of their usage, reliability-indicator variables differ qualitatively from
variables representing the output of classifiers in several ways. For one, we do not assume that the reliability indicators
have some threshold point that classifies the examples better than random. We also do not assume that classification
confidence shows monotonicity trends as in classifiers.

3.2 STRIVE: Metaclassifier with Reliability Indicators

We refer to our classifier combination learning and inference framework as STRIVE for Stacked Reliability Indicator
Variable Ensemble. We select this name because the approach can be viewed as essentially extending the stacking
framework by introducing reliability indicators at the metalevel. The STRIVE architecture is depicted graphically in
Figure 4.

Our methodology maps the original classification task into a new learning problem. In the original learning prob-
lem (Figure 3), the base classifiers simply predict the class from a word-based representation of the document, or more
generally, each base classifier outputs a distribution (possibly unnormalized) over class labels. STRIVE adds another
layer of learning to the base problem. A set of reliability-indicator functions use the words in the document and the
classifier outputs to generate the reliability indicator values, ri, for a particular document. This process can be viewed
as yielding a new representation of the document that consists of the values of the reliability indicators, as well as the
outputs of the base classifiers. The metaclassifier uses this new representation for learning and classification. This en-
ables the metaclassifier to employ a model that uses the output of the base classifiers as well as the context established
by the reliability indicators to make a final classification.

We require the outputs of the base classifiers to train the metaclassifier. Thus, we perform cross-validation over the
training data and use the resulting base classifier predictions, obtained when an example serves as a validation item,
as training inputs for the metaclassifier. We note that in the case where the set of reliability indicators are restricted
to be the identity function over the original data, then the resulting scheme can be viewed as a variant of cascade
generalization (Gama, 1998a).

6

class

Unigram

SVM
���
���

�

�

���
���
���
���

PSfrag replacements

w1

w2

w3

wn

· · ·r1

r2

r3

rn

Figure 3: Typical application of a classifier to a text problem. In traditional text classification, a word-based repre-
sentation of a document is extracted (along with the class label during the learning phase), and the classifiers (here
an SVM and Unigram classifier) learn to output scores for the possible class labels. The shaded boxes represent a
distribution over class labels.

class class

�������
�

�������
�

����

Metaclassifier

Reliability
Indicators

SVM

Unigram
���
�
���
�

PSfrag replacements

w1

w2

w3

wn

· · · · · ·

r1

r2

r3

rn

Figure 4: Architecture of STRIVE. In STRIVE, an additional layer of learning is added where the metaclassifier can use
the context established by the reliability indicators and the output of the base classifiers to make an improved decision.
The reliability indicators are functions of the document and/or the output of the base classifiers.

7

4 Experimental Analysis

We performed a large number of experiments to test the value of probabilistic classifier combination with reliability-
indicator variables. We now describe the corpora, methodology, and results.

4.1 Data

We examined several corpora, including the MSN Web Directory, Reuters, and TREC-AP.

4.1.1 MSN Web Directory

The MSN Web Directory is a large collection of heterogeneous web pages (from a May 1999 web snapshot) that have
been hierarchically classified. We used the same train/test split of 50078/10024 documents as that reported by Dumais
and Chen (2000).

The MSN Web hierarchy is a seven-level hierarchy; we used all 13 of the top-level categories. The class proportions
in the training set vary from 1.15% to 22.29%. In the testing set, they range from 1.14% to 21.54%. The classes
are general subject categories such as Health & Fitness and Travel & Vacation. Human indexers have assigned the
documents to zero or more categories.

For the experiments below, we used only the top 1000 words with highest mutual information for each class;
approximately 195K words appear in at least three training documents.

4.1.2 Reuters

The Reuters 21578 corpus (Lewis, 1997) contains Reuters news articles from 1987. For this data set, we used the
ModApte standard train/ test split of 9603/3299 documents (8676 unused documents). The classes are economic
subjects (e.g., “acq” for acquisitions, “earn” for earnings, etc.) that human taggers applied to the document; a document
may have multiple subjects. There are actually 135 classes in this domain (only 90 of which occur in the training and
testing set); however, we only examined the ten most frequent classes since small numbers of testing examples makes
estimating some performance measures unreliable due to high variance. Limiting to the ten largest classes allows us
to compare our results to previously published results (Zhang & Oles, 2001; Dumais et al., 1998; Joachims, 1998;
McCallum & Nigam, 1998; Platt, 1999b). The class proportions in the training set vary from 1.88% to 29.96%. In the
testing set, they range from 1.7% to 32.95%.

For the experiments below we used only the top 300 words with highest mutual information for each class; ap-
proximately 15K words appear in at least three training documents.

4.1.3 TREC-AP

The TREC-AP corpus is a collection of AP news stories from 1988 to 1990. We used the same train/test split of
142791/66992 documents that was used by Lewis et al. (1996). As described by Lewis and Gale (1994) (see also
[Lewis, 1995]), the categories are defined by keywords in a keyword field. The title and body fields are used in the
experiments below. There are twenty categories in total.

The frequencies of the twenty classes are the same as those reported by Lewis et al. (1996). The class proportions
in the training set vary from 0.06% to 2.03%. In the testing set, they range from 0.03% to 4.32%.

For the experiments described below, we use only the top 1000 words with the highest mutual information for each
class; approximately 123K words appear in at least 3 training documents.

8

4.2 Classifiers

We employed several base-level classifiers and classifier combination methods in our comparative studies. We review
the classifiers and combination methods here.

4.2.1 Base Classifiers

In an attempt to isolate the benefits gained from the probabilistic combination of classifiers with reliability indicators,
we worked to keep the representations for the base classifiers in our experiments nearly identical. We would expect
that varying the representations (i.e., using different feature-selection methods or document representations) would
only improve the performance as this would likely decorrelate the performance of the base classifiers. We selected
four classifiers that have been used traditionally for text classification: decision trees, linear SVMs, naı̈ve Bayes, and
a unigram classifier.

For the decision-tree implementation, we employed the WinMine decision networks toolkit and refer to this as
Dnet below (WinMine Toolkit v1.0, 2001). Dnet builds decision trees using a Bayesian machine learning algorithm
(Chickering et al., 1997; Heckerman et al., 2000). While this toolkit is targeted primarily at building models that
provide probability estimates, we found that Dnet models usually perform acceptably for the goal of minimizing error
rate. However, we found that the performance of Dnet with regard to other measures is sometimes poor.

For linear SVMs, we used the Smox toolkit which is based on Platt’s Sequential Minimal Optimization algorithm
(Platt, 1999a). We have experimented with both binary and continuous feature representations, and both perform at
approximately the same level of accuracy. In order to keep the base representations used by each classifier as similar
as possible, we used a continuous model.

The naı̈ve Bayes classifier has also been referred to as a multivariate Bernoulli model. In using this classifier,
we smoothed word and class probabilities using a Bayesian estimate (with the word prior) and a Laplace m-estimate,
respectively.

The unigram classifier uses probability estimates from a unigram language model. This classifier has also been re-
ferred to as a multinomial naı̈ve Bayes classifier. Probability estimates are smoothed in a similar fashion to smoothing
in the naı̈ve Bayes classifier.

4.2.2 Basic Combination Methods

We performed experiments to explore a variety of classifier-combination methods. We considered several different
combination procedures. The first combination method is based on selecting one classifier for each binary class
problem, based on the one that performed best for a validation set. We refer to this method as the Best By Class
method.

Another combination method centers on taking a majority vote of the base classifiers. This approach is perhaps the
most popular methodology used for the combination of text classifiers. When performing a majority vote, ties can be
broken in a variety of ways (e.g., breaking ties by always voting for in class). We experimented with several variants
of this method, but we only present results here for the method which relies on breaking ties by voting with the Best
By Class classifier as this procedure nearly always outperformed the other majority vote methods. We refer to this
method as Majority BBC.

9

4.2.3 Hierarchical Combination Methods

Stacking

Finally, we investigate several variants of the hierarchical models described earlier. As mentioned above, omitting the
reliability-indicator variables transforms STRIVE to a stacking methodology (Ting & Witten, 1999; Wolpert, 1992).
We refer to these classifiers below as Stack-X where X is replaced by the first letter of the classifier that is performing
the metaclassification. Therefore, Stack-D uses a decision tree as the metaclassifier, and Stack-S uses a linear SVM
as the metaclassifier. We note that Stack-S is also a weighted linear combination method since it is based on a linear
SVM and uses only the classifier outputs.

We found it was challenging to learn the weights for an SVM when the inputs have vastly different scales. At times,
it is not possible to identify good weights. To address the problem of handling inputs with greatly varying scales, we
use an input normalization procedure: We normalize the inputs to the metaclassifiers to have zero mean and unit
standard deviation. In order to perform consistent comparisons, we perform the same alteration for the metaclassifiers
using Dnet. We also give for one of the Dnet variants the results in the absence of the normalization procedure; as
might be expected the impact of normalization for decision-tree learners is relatively minimal (and has both positive
and negative influences). To denote the metaclassifiers whose inputs have been normalized in this manner, we append
“(norm)” to their names.

STRIVE

Similar to the notation described above, we add a letter to STRIVE to denote the particular metaclassifier method being
used. So, STRIVE-D is the STRIVE framework using Dnet as a metaclassifier. For comparison to the stacking methods,
we evaluate STRIVE-D and STRIVE-S. Normalization, as above, is again noted by appending “(norm)” to the system
names.

The experiments reported here use a total of 49 reliability indicators (including those specific examples given in
Section 3.1). The full list of reliability indicators is described in detail in Appendix A. These reliability indicators
were formulated by hand as an initial pass at representing potentially valuable contexts. We are currently taking a
closer look at fundamental informational properties of different reliability indicators and have examined procedures
for identifying new reliability indicators. We delve more deeply into the nature and authoring of reliability indicators
in forthcoming work.

4.2.4 BestSelect Classifier

To study the effectiveness of the STRIVE methodology, we formulated a simple optimal combination approach as a
point of reference. Such an upper bound can be useful as a benchmark in experiments with classifier combination
procedures. This bound follows quite naturally, when classifier combination is formulated as the process of selecting
the best base classifier, on a per-example basis.

To classify a given document, if any of the classifiers correctly predict that document’s class, the best combination
would select any of the correct classifiers. Thus, such a classification combination errs only when all of the base
classifiers are incorrect. We refer to this classifier as the BestSelect classifier. If all of the base classifiers are better
than random, the BestSelect is the theoretical upper-bound on performance when combining a set of classifiers in a
selection framework.

We note that we are not using a pure selection approach, as our framework allows the possibility of choosing a class
that none of the base classifiers predicted. In cases where the classifiers are not better than random (or are logically

10

dependent), such an upper bound may be uninformatively loose. Even though we are not working in a pure selection
framework, we found it is rarely the case the metaclassifier outputs a prediction which none of the base classifiers
made. Therefore, we have employed this BestSelect bound to assist with understanding the performance of STRIVE.

4.3 Performance Measures

To compare the performance of the classification methods we look at a set of standard performance measures. The F1
measure (van Rijsbergen, 1979; Yang & Liu, 1999) is the harmonic mean of precision and recall where Precision =
Correct Positives
Predicted Positives and Recall = Correct Positives

Actual Positives . For F1, we can either macro-average or micro-average. In macro-
averaging, the score is computed separately for each class and then arithmetically averaged; this tends to weight rare
classes more heavily. Micro-averaged values are computed directly from the binary decisions over all classes; this
places more weight on the common classes. We evaluated the systems with both macro and micro averaged F1.

We can often assess a cost function in classification settings that can be described as C(FP, FN) = FP ∗
P (FalsePos) + FN ∗ P (FalseNeg) where FP is the cost of a false positive classification and FN is the cost of
a false negative classification. The most commonly used function in the literature is the error rate which is FP =

FN = 1. However, the importance of varying cost functions has been recognized by many researchers because
applications rarely have equal costs for different types of errors (Provost & Fawcett, 2001). In order to assess how
sensitive performance is to the utility measure, we considered results for C(10, 1) and C(1, 10).

In addition, we computed and displayed a receiver-operating characteristic (ROC) curve, which represents the
performance of a classifier under any linear utility function (Provost & Fawcett, 2001). We report results on the area
under the ROC curve as an attempt to summarize the linear utility space of functions.

4.4 Experimental Methodology

As the categories under consideration in the experiments are not mutually exclusive, the classification was carried out
by training n binary classifiers, where n is the number of classes. Decision thresholds for each classifier were set
by optimizing them for each performance measure over the validation data. That is, a classifier could have different
thresholds for each of the separate performance measures (and for each class). This ensures that the base classifiers are
as competitive as possible across the various measures. For the micro performance measures, obtaining truly optimal
performance requires optimizing all the thresholds in a corpus in conjunction; we have taken the more computationally
efficient approach of using the macro-optimized thresholds (i.e., each class’s threshold is set independently from the
thresholds for the other classes).

To generate the data for training the metaclassifier, (i.e., reliability indicators, classifier outputs, and class labels),
we used five-fold cross-validation on the training data from each of the corpora. The data set obtained through this
process was then used to train the metaclassifiers. Finally, the resulting metaclassifiers were applied to the separate
testing data described above.

4.5 Results

Tables 1, 2, and 3, present the main performance results over the three corpora. In terms of the various performance
measures, better performance is indicated by larger F1 or ROC area values or by smaller C(FP, FN) values. The
best performance (ignoring BestSelect) in each column is given in bold.

To determine statistical significance for the macro-averaged measures, a one-sided macro sign test and macro t-test
were performed (Yang & Liu, 1999). For micro-F1, a one-sided micro sign test was performed (Yang & Liu, 1999).

11

Method Macro F1 Micro F1 Error C(1,10) C(10,1) ROC Area
Dnet 0.5502 0.5837 0.0583 0.3023 0.0771 0.8812
Smox 0.6705 0.7001 0.0455 0.2239 0.0799 0.9125
Naı̈ve Bayes 0.5527 0.5619 0.0649 0.2853 0.0798 0.8915
Unigram 0.5982 0.6116 0.0594 0.2589 0.0812 0.9003
Best By Class 0.6705 0.7001 0.0455 0.2236 0.0783 N/A
Majority BBC 0.6668 0.6919 0.0476 0.2173† 0.0761 N/A
Stack-D (norm) 0.6775 0.7038†‡ 0.0446†‡ 0.2118† 0.0784 0.9292†

Stack-S (norm) 0.6732 0.7037†‡ 0.0450 0.2174† 0.0757 0.9210†

STRIVE-D 0.6877†‡ 0.7179†‡ 0.0429†‡ 0.1939†‡ 0.0742 0.9383†

STRIVE-D (norm) 0.6908†‡ 0.7178†‡ 0.0434 0.1949†‡ 0.0742 0.9398†
STRIVE-S (norm) 0.6948†‡ 0.7233†‡ 0.0430†‡ 0.2037† 0.0712 0.9114
STRIVE-D (norm, omit Smox) 0.6670 0.6945 0.0464 0.2062†‡ 0.0754 0.9361†

BestSelect 0.8365 0.8577 0.0270 0.0905 0.0616 N/A

Table 1: Performance on MSN Web Directory Corpus

Method Macro F1 Micro F1 Error C(1,10) C(10,1) ROC
Dnet 0.7846 0.8541 0.0242 0.0799 0.0537 0.9804
Smox 0.8480 0.9102 0.0157 0.0580 0.0390 0.9815
Naı̈ve Bayes 0.6574 0.7908 0.0320 0.1423 0.0527 0.9703
Unigram 0.7645 0.8674 0.0234 0.0713 0.0476 0.9877
Best By Class 0.8592 0.9126 0.0153 0.0518 0.0409 N/A
Majority BBC 0.8524 0.9097 0.0160 0.0448 0.0446 N/A
Stack-D (norm) 0.8636 0.9181 0.0153 0.0449 0.0392 0.9893
Stack-S (norm) 0.8720†‡ 0.9201†‡ 0.0143† 0.0445 0.0365 0.9930†

STRIVE-D 0.8547 0.9106 0.0154 0.0472 0.0358 0.9903
STRIVE-D (norm) 0.8526 0.9085 0.0157 0.0468 0.0359 0.9897
STRIVE-S (norm) 0.8749† 0.9235†‡ 0.0125†‡ 0.0382† 0.0353 0.9939
STRIVE-D (norm, omit Smox) 0.8433 0.8961 0.0168 0.0484 0.0425 0.9900
BestSelect 0.9529 0.9725 0.0050 0.0100 0.0202 N/A

Table 2: Performance on Reuters Corpus

Differences with a p-level above 0.05 were not considered statistically significant.
We do not explicitly report significance results for the t-test comparisons over the main performance results;

instead, our analysis follows the macro and micro sign test which yield more conservative comparisons (i.e., the t-test
primarily increased the number of differences found to be significant in the tables).

The classifier combinations are annotated to indicate the results of the macro sign test and, for micro F1, the micro
sign test. A † indicates the method significantly outperforms (at the 0.05 level) the best base classifier. In addition, on
the variants of Stack and STRIVE, a ‡ indicates that the method outperforms the basic combination methods. Results
for the remaining sign test comparisons are omitted for brevity.

Tables 4, 5, and 6, present the performance results for additional experiments (described in Section 4.6.3) we
conducted to determine how much could be gained by incorporating the reliability indicators directly into a base
classifier versus combining them hierarchically with classifier outputs, as in STRIVE. Thus, this ablation experiment
aims to empirically examine how much first-order information the reliability indicators have versus their information

12

Method Macro F1 Micro F1 Error C(1,10) C(10,1) ROC
Dnet 0.6015 0.5798 0.0065 0.0342 0.0079 0.9768
Smox 0.7335 0.6966 0.0049 0.0294 0.0077 0.9691
Naı̈ve Bayes 0.5676 0.5349 0.0065 0.0455 0.0078 0.9755
Unigram 0.6001 0.5695 0.0064 0.0347 0.0079 0.9819
Best By Class 0.7335 0.6966 0.0049 0.0294 0.0077 N/A
Majority BBC 0.7145 0.6751 0.0056 0.0292 0.0075 N/A
Stack-D (norm) 0.7357 0.6982 0.0049 0.0241†‡ 0.0086 0.9856
Stack-S (norm) 0.7351 0.6997 0.0049 0.0288 0.0075 0.9656
STRIVE-D 0.7325 0.6991†‡ 0.0048 0.0276 0.0078 0.9858
STRIVE-D (norm) 0.7280 0.6973 0.0049 0.0271 0.0077 0.9855
STRIVE-S (norm) 0.7431 0.7078†‡ 0.0048 0.0295 0.0076 0.9634
STRIVE-D (norm, omit Smox) 0.6938 0.6527 0.0055 0.0313 0.0077 0.9858
BestSelect 0.8763 0.8195 0.0034 0.0149 0.0062 N/A

Table 3: Performance on TREC-AP Corpus

when conditioned on the other classifier outputs. The best performance in each column is given in bold.
The significance tests for this ablation experiment are summarized as an ordering over the systems in Table 7.

For each performance measure, the systems are ordered from worst (left) to best (right). When all systems above
a performance level significantly outperform all the lower performers, it is denoted in the following manner: when
significant according to the macro sign test a “<” is used; when significant according to the macro t-test a “≺” is used;
when significant according to both tests a “�” is used. For Micro F1 which uses only a micro sign test, a “<” is used.

4.6 Discussion

First, we note that the base classifiers are competitive and consistent with the previously reported results over these
corpora (Zhang & Oles, 2001; Dumais & Chen, 2000; Dumais et al., 1998; Joachims, 1998; Lewis, 1995; Lewis &
Gale, 1994; McCallum & Nigam, 1998).1 Furthermore, the fact that the linear SVM Smox tends to be the best base
classifier is consistent with the literature (Dumais et al., 1998; Joachims, 1998; Yang & Liu, 1999).

4.6.1 MSN Web Directory

Examining the main results for the MSN Web Directory corpus in Table 1 highlights several points. First, the basic
combiners have only one significant win, C(1,10) for the Majority BBC approach. The results directly support the idea
that the performance of a very good learner (Smox) tends to be diminished when combined via a majority vote scheme
with weak learners; in addition, the win most likely results from the fact that the base learners (other than Smox) have
a tendency to predict positively for a class. When false negatives are weighed more heavily, the shift toward predicting
positive helps reduce the number of false negatives.

Next, we see that Stacking posts several significant wins and appears to have some advantages over the base class-
ifiers. However, the Stacking combination shows little significant improvement over the basic combination methods.

STRIVE-D and STRIVE-S (norm) show advantages that are robust across a variety of performance measures. Each
shows a small (about 5% error reduction) but consistent improvement across a variety of performance measures. When

1While the results reported for Reuters are not directly comparable to those reported by Yang & Liu (1999) as these investigators report results
over all 90 classes and do not give a breakdown for the ten most frequent categories, others (Zhang & Oles, 2001; Dumais et al., 1998; Joachims,
1998; McCallum & Nigam, 1998; Platt, 1999b) provide published baselines over the ten largest classes.

13

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Dnet
Smox

Naive Bayes
Unigram

STRIVE-D
 STRIVE-S (norm)

PSfrag replacements

w1

w2

w3

wn

· · ·
r1

r2

r3

rn

Figure 5: The ROC curve for the Health & Fitness class in the MSN Web Directory corpus

compared to the best theoretical performance that could be achieved by a per-example selection model using these base
classifiers (as established by the BestSelect model), the error reduction provided by the STRIVE combination methods
is an even greater portion of the total possible reduction.

As can be inferred from the sign tests, these results are very consistent across classes. For example, by the ROC
area measure of performance, STRIVE-D beats the base classifiers and basic combiners on 13/13 classes, and it beats
the stacking methods on 12/13 classes. The notable exception is the performance of STRIVE-S (norm) on ROC area;
graphical inspection of the ROC curves suggests this result arises because too much weight is being placed on the
strong classifier for a curve.

Often, there is a crossover in the ROC curve between two of the base classifiers further out on the false-positives
axis. Most utility measures in practice correspond to the early part of the curve (this depends on the particular features
of the given curve). The Smox metaclassifier sometimes seems to lock onto the classifier that is strong in the early
portion of the curve and loses out on the later part of the curve. Since this portion of the curve rarely matters, one
could consider using an abbreviated version of curve area to assess systems.

In Figure 5, we can see that the two STRIVE variants dominate the four base classifiers. In fact, STRIVE-D dominates
(i.e., its quality is greater than any other curve at every point) most of the MSN Web Directory corpus. We also can
see (note the truncated scale) the base classifiers catching up with STRIVE-S (norm) on the right side of the curve. The
base classifiers, in fact, do surpass STRIVE-S (norm). As a result, STRIVE-D is usually a more appropriate choice if the
utility function penalizes false negatives significantly more heavily than false positives.

In some cases, we can develop an understanding of why the decision tree is more appropriate for tracking crossovers.
In the case portrayed in Figure 2, it appears that the tree establishes a score region for Smox and a score region for
Dnet where the reliability indicators give further information about how to classify an example. Since a linear SVM
is a weighted sum over the inputs, it cannot represent crossovers that are dependent on breaking a single variable into
multiple regions (such as this one); it has to use the information present in other variables to try to distinguish these

14

regions. Higher-order polynomial kernels are one way to allow an SVM to represent this type of information.
Finally, we performed an ablation experiment to determine how STRIVE would behave without the presence of

an extremely strong base classifier. Since Smox frequently outperforms the other base classifiers, we investigated the
level of performance STRIVE could obtain if the output of Smox was omitted from the inputs given to the metaclassifier,
STRIVE-D (norm, omit Smox). The results show that when we omit the base classifier Smox, the resulting combination
improves by a large margin over the remaining base methods; however, the resulting classifier generally still fails
to beat Smox’s individual performance. This suggests that there are not enough indicator variables tied to Smox’s
behavior, or alternatively, that the other classifiers as a group behave like Smox, rather than classify in a complementary
fashion.

4.6.2 Reuters and TREC-AP

The results for Reuters and TREC-AP in Tables 2 and 3 are consistent with the above analysis. We note that the level
of improvement tends to be less pronounced for these corpora. Since it is common in the literature to show results for
each class of the top ten largest classes in Reuters, we provide a detailed listing in Appendix B.

4.6.3 Additional Experiments

Method Macro F1 Micro F1 Error C(1,10) C(10,1) ROC Area
Dnet 0.5502 0.5837 0.0583 0.3023 0.0771 0.8812
Dnet+RIV– 0.6547 0.6841 0.0489 0.2136 0.0760 0.9295
Dnet+RIV 0.6825 0.7127 0.0447 0.2022 0.0781 0.9374
Stack-D (norm) 0.6775 0.7038 0.0446 0.2118 0.0784 0.9292
STRIVE-D 0.6877 0.7179 0.0429 0.1939 0.0742 0.9383
STRIVE-D (norm) 0.6908 0.7178 0.0434 0.1949 0.0742 0.9398

Table 4: Results of incorporating reliability indicators directly into a base classifier for the MSN Web Directory Corpus

Method Macro F1 Micro F1 Error C(1,10) C(10,1) ROC Area
Dnet 0.7846 0.8541 0.0242 0.0799 0.0537 0.9804
Dnet+RIV– 0.8429 0.8985 0.0167 0.0629 0.0444 0.9888
Dnet+RIV 0.8479 0.9074 0.0161 0.0460 0.0439 0.9908
Stack-D (norm) 0.8636 0.9181 0.0153 0.0449 0.0392 0.9893
STRIVE-D 0.8547 0.9106 0.0154 0.0472 0.0358 0.9903
STRIVE-D (norm) 0.8526 0.9085 0.0157 0.0468 0.0359 0.9897

Table 5: Results of incorporating reliability indicators directly into a base classifier for the Reuters Corpus

Finally, we investigated whether the reliability indicators could be directly incorporated into the base classifiers.
That is, we wanted to understand to what extent their information can be directly used to improve classification and to
what extent it is conditional on the presence of classifier outputs. To examine these issues, we performed an experiment
where we added all of the reliability indicators to the standard document representation and built a model using Dnet.
The resulting system is denoted Dnet+RIV. Since some of the reliability indicators contain information equivalent to

15

Method Macro F1 Micro F1 Error C(1,10) C(10,1) ROC Area
Dnet 0.6015 0.5798 0.0065 0.0342 0.0079 0.9768
Dnet+RIV– 0.6716 0.6444 0.0056 0.0291 0.0078 0.9853
Dnet+RIV 0.7037 0.6734 0.0052 0.0315 0.0078 0.9854
Stack-D (norm) 0.7357 0.6982 0.0049 0.0241 0.0086 0.9856
STRIVE-D 0.7325 0.6991 0.0048 0.0276 0.0078 0.9858
STRIVE-D (norm) 0.7280 0.6973 0.0049 0.0271 0.0077 0.9855

Table 6: Results of incorporating reliability indicators directly into a base classifier for the TREC-AP Corpus

the output of other classifiers, we also built a model that uses almost all of the reliability indicators2 and the standard
document representation (denoted Dnet+RIV–). We compare these systems to their most similar counterparts presented
in the earlier results: the base classifier (Dnet); the stacking method using the decision tree as a metaclassifier (Stack-D
(norm)); and the normalized and standard version of STRIVE-D.

The expectation is that Dnet will be outperformed by all other systems, and Dnet+RIV– will be outperformed by
all others except Dnet. A quick examination of the results indicates that this is generally the case according to nearly
all of the performance measures. The amount of improvement of Dnet+RIV– over Dnet indicates the extent to which
the reliability indicators give information that can be used directly to improve classification — which is quite large
when compared to Dnet. However, the remaining methods still often show significant improvement beyond this when
all the base classifier outputs are used. This experiment also highlights that because of the rarity of the classes, it is
extremely challenging to produce any significant wins for the C(10,1) function which places a heavy penalty on false
positives, i.e., emphasizing extremely high precision.

We also tried integrating the reliability-indicator variables directly into the Smox classifier as well. We were
surprised to observe a tendency for the test performance to decrease significantly below the level of the base Smox
system. We believe this is the result of representational inhomogeneity: the majority of words that define support
vectors are not present in any given document, but all the reliability indicators have values for documents. Thus, the
reliability indicators dominate the influence of words by their sheer magnitude and not necessarily by the reliability
information they carry. This highlights the value of hierarchical modeling for classifier combination; hierarchical
modeling allows variables of the same type to be modeled in the same layers. This highlights that one major advantage
to hierarchically combining systems is that variables of the same type can be modeled in the same layer.

5 Future Work

We are excited about the opportunities for probabilistic combination of multiple classifiers with reliability indicators.
We are pursuing several research directions. Foremost, we believe that a functional search that generates and tests a
larger number of reliability indicators could provide valuable sets of informative reliability indicators. Also, we are
interested in exploring the value of introducing more flexibility into the set of base classifiers that are being used. In
the experiments we described, the classifiers were purposely held constant in an attempt to investigate the influence of
reliability-indicator variables. In future studies, we will allow representations to vary to induce more variety among the
base classifiers we have focused on. We are also interested in exploring the use of other classifiers as metaclassifiers.

2The omitted variables are the Type 4 variables and the unigram and naı̈ve Bayes variants of the Type 3 variable MeanOfLogOfRatioOfWord-
GivenClass discussed in Appendix A. We left in other variables such as UnigramVariance that are related to other classifier models but are not
directly correlated with their outputs.

16

Macro F1
MSN Web Dnet� Dnet+RIV–� Stack-D (norm), Dnet+RIV, STRIVE-D, STRIVE-D (norm)
Reuters Dnet ≺ Dnet+RIV–, Dnet+RIV, STRIVE-D (norm), STRIVE-D, Stack-D (norm)
TREC-AP Dnet� Dnet+RIV– ≺ Dnet+RIV� STRIVE-D (norm), STRIVE-D, Stack-D (norm)

Micro F1
MSN Web Dnet < Dnet+RIV– < Stack-D (norm), Dnet+RIV < STRIVE-D (norm), STRIVE-D
Reuters Dnet < Dnet+RIV– < Dnet+RIV, STRIVE-D (norm), STRIVE-D < Stack-D (norm)
TREC-AP Dnet < Dnet+RIV– < Dnet+RIV < STRIVE-D (norm), Stack-D (norm) < STRIVE-D

Error
MSN Web Dnet� Dnet+RIV–� Dnet+RIV, Stack-D (norm), STRIVE-D (norm), STRIVE-D
Reuters Dnet ≺ Dnet+RIV–, Dnet+RIV, STRIVE-D (norm), STRIVE-D, Stack-D (norm)
TREC-AP Dnet� Dnet+RIV–� Dnet+RIV� Stack-D (norm), STRIVE-D (norm)� STRIVE-D

C(1,10)
MSN Web Dnet� Dnet+RIV–, Stack-D (norm)� Dnet+RIV� STRIVE-D (norm), STRIVE-D
Reuters Dnet, Dnet+RIV–, STRIVE-D, STRIVE-D (norm), Dnet+RIV, Stack-D (norm)
TREC-AP Dnet < Dnet+RIV < Dnet+RIV– < STRIVE-D, STRIVE-D (norm), Stack-D (norm)

C(10,1)
MSN Web Stack-D (norm), Dnet+RIV, Dnet, Dnet+RIV–, STRIVE-D (norm), STRIVE-D
Reuters Dnet, Dnet+RIV–, Dnet+RIV, Stack-D (norm), STRIVE-D (norm), STRIVE-D
TREC-AP Stack-D (norm), Dnet, Dnet+RIV, STRIVE-D, Dnet+RIV–, STRIVE-D (norm)

ROC Area
MSN Web Dnet� Stack-D (norm), Dnet+RIV–� Dnet+RIV < STRIVE-D� STRIVE-D (norm)
Reuters Dnet ≺ Dnet+RIV–, Stack-D (norm), STRIVE-D (norm), STRIVE-D, Dnet+RIV
TREC-AP Dnet < Dnet+RIV–, Dnet+RIV, STRIVE-D (norm), Stack-D (norm), STRIVE-D

Table 7: An ordered comparison of classification models built with reliability indicators directly added to a base
classifier versus hierarchical combination models. For each performance measure, the systems are ordered from worst
(left) to best (right).

The metaclassifier should be a classifier that handles correlated input well (e.g., use of maximum entropy [Nigam
et al., 1999]) as classifiers performing better than random will be necessarily correlated.

In addition, we believe the STRIVE framework can be used to elucidate deeper, information-theoretic foundations
of how classifiers leverage information in text classification. Currently, we build one metaclassifier for each binary
topic problem in a corpus (e.g., Acquisitions vs. not Acquisitions). However, a promising abstraction of the STRIVE

framework enables us to use model structure or parameters learned using data from one binary task for a separate
binary task (even in a different corpus). This can be experimentally tested by coalescing metalevel training data
from different binary discrimination tasks and building one, more general, metaclassifier. With this approach, we
treat the metaclassifier as an abstraction moving the focus of the analysis from discriminating a specific topic (e.g.,
Acquisitions vs. not Acquisitions) to the problem of discriminating topic membership (i.e., In-Topic vs. Out-of-Topic).
The base-level classifiers trained on a particular topic are used as the representation of topic-specific knowledge, while
the metaclassifier provides information about how to leverage context across topic-classification in general. If the
metaclassifier still improves performance of base classifiers, then the reliability indicators will have inductively defined
informational properties for classifier combination across all of the text problems considered. Such an extension is only
possible if we generalize the reliability indicators away from linkages to the precise words in a document. Consider
when “shares” occurs in a document in the Acquisitions discrimination task and “corn” occurs in a document in
the Corn Futures discrimination task. One task-invariant representation of context at the metalevel might transform

17

both of these to: Is the word with maximum mutual information for the current task present in this document? This
representation enables the metaclassifier to use information about how document-specific context influences topic
discrimination across a wide variety of text classification tasks. Recent experiments have demonstrated that this
methodology can be valuable in enhancing the performance of classifiers (Bennett et al., 2003). We are continuing to
pursue this promising extension.

6 Summary and Conclusions

We reviewed a methodology for building a metaclassifier for text documents that centers on combining multiple
distinct classifiers with probabilistic learning and inference that leverages reliability-indicator variables. Reliability
indicators provide information about the context-sensitive nature of classifier reliability, informing a metaclassifier
about the best way to integrate the outputs from base-level classifiers. We reviewed several popular text classification
methods, and described several combination schemes. We introduced the STRIVE methodology that uses reliability
indicators in a hierarchical combination model and reviewed comparative studies comparing STRIVE with other com-
bination mechanisms.

We conducted experimental evaluations over three text-classification corpora (MSN Web, Reuters 21578, and
TREC-AP) with a variety of performance measures. These measures were selected to determine the robustness of the
classification procedures under different misclassification penalties. The empirical evaluations support the conclusion
that a simple majority vote in situations where one of the classifiers performs strongly can weaken the best classifier’s
performance. In contrast, in all of these corpora across all measures, the STRIVE methodology was competitive, failing
to produce the top performer in only two instances (the two skewed linear utility measures in the TREC-AP corpus).
Furthermore, on a class-by-class basis, the STRIVE methodology produced receiver-operating characteristic curves that
dominated the other classifiers in nearly every class of the MSN Web corpus—demonstrating that it provides the best
choice for any possible linear utility function in this corpus. In conclusion, the experiments show that stacking and
STRIVE provide robust combination schemes across a variety of performance measures.

Acknowledgments

We thank Max Chickering and Robert Rounthwaite for their special support of the WinMine toolkit, and John Platt for
advice and code support for the linear SVM classifier. We would also like to thank the anonymous reviewers for the
useful suggestions they provided.

Appendix A: Detailed Descriptions of Inputs to STRIVE

This appendix gives details for all of the inputs to STRIVE—including the base classifier outputs in addition to all 49
reliability-indicator variables.

A.1 Outputs of Base Classifiers

We considered the outputs of four base classifiers as inputs to STRIVE.

• OutputOfDnet
This is the output of the decision tree built using the Dnet classifier (available as the WinMine toolkit [WinMine
Toolkit v1.0, 2001]). Its value is the estimated probability at the leaf node of belonging to the class.

18

• OutputOfSmox
This is the output of the Linear SVM model built using the Smox toolkit. It is a probability estimate of class
membership obtained via a monotonic transformation using a fitted sigmoid (Platt, 1999) of the raw score of the
SVM.

• OutputOfNaı̈vebayes
This is the output of the naı̈ve Bayes model built using a multivariate Bernoulli representation (i.e. only feature
presence/absence in an example is modeled) (McCallum & Nigam, 1998). It is the log-odds (or logistic) of the
model’s probability estimate of class membership, i.e. log P (c|d)

1−P (c|d) . The direct probability estimate is not used
because typically enough machine floating-point precision is not available to preserve the ranking induced by
this model (they cluster too closely to zero and one).

• OutputOfUnigram
This is the output of the unigram model (also referred to as a multinomial model [McCallum and Nigam, 1998]).
It is the log-odds (or logistic) of the model’s probability estimate of class membership, i.e. log P (c|d)

1−P (c|d) . The
direct probability estimate is not used because typically enough machine floating-point precision is not available
to preserve the ranking induced by this model (they cluster too closely to zero and one).

A.2 Reliability Indicator Variables

Indicator variables are currently broken roughly into one of four types:

• Amount of information present in the original document (15/15);

• Information loss or mismatch between representations (12/12);

• Sensitivity of the decision to evidence shift (20/6);

• Basic voting statistics (2/2).

The first number in parentheses is the number of variables of this type that were present in the experimental
evaluation. The second number is the number of those whose effect on the metaclassifier model appears to be non-
negligible. We group the reliability indicators into their primary type (based on the main reasons we expect to see a
link to classifier reliability). We note that this is only a soft clustering; some reliability indicators may provide context
information in more than one way.

Several of the variables listed below have an instantiation for each class in a learning problem (the variable counts
we report tallies each instance separately). For these variables below we list only one entry and use “{Class}” in the
name of the variable to denote that this variable has one instantiation per class. Since our methodology built a binary
classifier for each topic, then our experiments have a Positive and a Negative class version. In a two-class problem,
the values of the two instantiations may be redundant. We have, however, retained each since in polyclass (3 or more
classes) discrimination they are more distinct.

After each bullet below, a number is given in parentheses, indicating the number of variables that this description
includes. Thus, the total of the numbers in parentheses is 49.

A.2.1 Type 1: Amount of information present in the original document

There are 15 reliability indicator variables whose primary type is considered to be this type (11 not counting instanti-
ations for each class).

19

• (1) DocumentLength
The number of words in a document before feature selection. Presumably longer documents provide more
information to base a decision upon. Therefore, longer documents will lead to more reliable decisions (when
DocumentLength is correctly modeled). Alternatively, models that do not correctly normalize for document
length may be less reliable for extreme lengths (short or long) of documents.

• (1) EffectiveDocumentLength
DocumentLength minus the number of out-of-vocabulary words in the document. Since a model cannot gener-
alize strongly (other than smoothing) for features that were not seen in the training set, this variable may be a
better indicator of information present in the document than DocumentLength.

• (1) NumUniqueWords
Number of distinct tokens in a document, i.e. |{w|w ∈ document}| (as opposed to length which counts repeats
of a token in a document). The motivation is similar to DocumentLength, but here the variable is only counting
each new word as an indicator of new information.

• (1) EffectiveUniqueWords
NumUniqueWords minus the number of unique out-of-vocabulary words. This is the analogue of Effective-
DocumentLength and is included for similar reasons.

• (1) PercentUnique
This is a measure of the variety in word choice in a document. It is equal to NumUniqueWords / Docu-
mentLength. This can also be seen as 1 / average number of times a word is repeated in a document. Close
to 1 means very few words (if any) are repeated in the document; close to 0 means the documents consists of
very few unique words (possibly repeated many times). This is essentially a normalized version of NumUnique-
Words; however this variable will show high variance for short documents. The intuition here is that more
complex documents, while providing more information, also might be more difficult to classify (since they may
have many features each carrying some small weight).

• (1) PercentOOV
The percentage of the words in a document which weren’t seen in the training set. It is equal to the number of
out-of-vocabulary words divided by DocumentLength. Similar to PercentUnique, this variable can show high
variance for short values. The intuition here is that the more novel words a document contains the more likely a
classifier is to incorrectly classify the document into the a priori prevalent class (typically unseen words slightly
favor minority classes since we have less samples from them). This is a variable that essentially allows a global
smoothing model to be induced. Its range is [0, 1]. Therefore, as it approaches 1, we would expect minority
classes to be more likely than our base models might estimate.

• (1) PercentUniqueOOV
The percentage of the words (not counting duplicates) in a document which weren’t seen in the training set.
This is the distinct token analogue for PercentOOV. Again, the motivations are similar to just using a different
information model.

• (2) PercentIn{Class}BeforeFS
Of all words occurring in the training set (i.e. out-of-vocabulary words are ignored), the percentage of words in
a document that occurred at least once in examples belonging to the class. It is equal to the number of words that
occurred in the class before feature selection divided by EffectiveDocumentLength. Similar to PercentOOV, this

20

can be used to inductively learn smoothing behavior. The assumption is that if this variable is high, predictions
that the example belongs to the class are more reliable. For the binary case with a negative class that effectively
groups many classes together, this isn’t quite expected with respect to PercentInNegBeforeFS (since predictions
of “negative” would almost always expected to be more reliable under that assumption).

• (2) UpercentIn{Class}BeforeFS
Of all words occurring in the training set (i.e. out-of-vocabulary words are ignored), the percentage of unique
words in a document that occurred at least once in examples belonging to the class. This is the analogue to
PercentIn{Class}BeforeFS using unique tokens as the basis for the information model.

• (2) %Favoring{Class}BeforeFS
Of all words occurring in the training set, the percentage of words in a document that occurred more times in
examples belonging to the class than in examples not belonging to the class. This is essentially a rough statistic
for an unnormalized unigram model (tied slightly into the smoothing related variables discussed above) that
gives a very rough sense of the evidential weight of the original document.

• (2) U%Favoring{Class}BeforeFS
Of all words occurring in the training set, the percentage of unique words in a document that occurred more
times in examples belonging to the class than in examples not belonging to the class. This is the analogue to
%Favoring{Class}BeforeFS.

A.2.2 Type 2: Information loss or mismatch between representations

There are 12 reliability indicator variables whose primary type is considered to be this type. While each of these
variables are a measure of loss of information, they all generally have a paired variable of Type 1 that together give a
more direct measure of information loss.

• (1) DocumentLengthAfterFS
The number of words in a document after out-of-vocabulary words have been removed and feature selection was
performed. Similar to DocumentLength, this is the measure of information that the classifier actually sees with
respect to this document. Currently, it’s assumed the metaclassifier can combine this with DocumentLength to
infer information loss.

• (1) UniqueAfterFS
The number of unique words remaining in a document after out-of-vocabulary words have been removed and
feature selection was performed. This is the distinct token analogue of DocumentLengthAfterFS and is similarly
expected to be used in conjunction with NumUniqueWords as a gauge of information loss.

• (1) PercentRemoved
The percentage of a document that was discarded because it was out-of-vocabulary or removed by feature
selection. It can have high variance for short documents. The intuition is that reliability of a classifier is higher
for low values of PercentRemoved.

• (1) UniquePercentRemoved
The percentage of unique words in a document that were discarded because they were out-of-vocabulary or
removed by feature selection. The distinct token analogue of PercentRemoved where the information model is
unique words.

21

• (2) PercentIn{Class}AfterFS
Of all words occurring in the training set, the percentage of words remaining in a document after feature selection
that occurred at least once in examples in the class. Together with PercentIn{Class}BeforeFS, allows the model
to inductively model shift in information content because of feature selection.

• (2) UpercentIn{Class}AfterFS
Of all words occurring in the training set, the percentage of unique words remaining in a document (after
feature selection) that occurred at least once in the class. Again, this is expected to be used in conjunction with
UpercentIn{Class}BeforeFS to model information loss.

• (2) %Favoring{Class}AfterFS
Of all words occurring in the training set, the percentage of words remaining in a document (after feature
selection) that occurred more times in examples in the class than in examples not in the class. Like its BeforeFS
counterpart, it is essentially like an unnormalized unigram model. We expect that it can be used in conjunction
with %Favoring{Class}BeforeFS to measure how a feature selection method may have biased the information
for a given document toward a particular class.

• (2) U%Favoring{Class}AfterFS
Of all words occurring in the training set, the percentage of distinct words remaining in a document after feature
selection that occurred more times in examples in the class than examples not in the class.

A.2.3 Type 3: Sensitivity of the decision to evidence shift

There are 20 reliability indicator variables that fall into this class. Ten of them are based on a unigram model (where
only the probabilities of the words present are modeled), and the other ten are based on a naı̈ve Bayes multivariate
Bernoulli model (where a document is modeled in terms of the probabilities of each word’s presence/absence).3

• (2) UnigramVariance, Naı̈veBayesVariance
In a binary class problem, the weight each word contributes to the unigram model’s decision is log P (w|c)

P (w|¬c) .

Similarly, each word’s presence/absence contributes a weight of log P (w={present,absent}|c)
P (w={present,absent}|¬c) to the naı̈ve Bayes

model. If this ratio is greater than 0, the word gives evidence to the positive class (c), and if it is less than zero,
the word gives evidence to the negative class (¬c). The reliability indicators are the variance of these weights
for the feature values (word occurrences or presence/absence) in a specific document. If the variance is close to
zero, that means all of the words tended to point toward one class. As the variance increases, this means there
was a large skew in the amount of evidence present by the various words (possibly strong words pulling toward
two classes). The intuition is that the reliability of naı̈ve Bayes related classifiers will tend to decrease as this
variable increases. To apply this to polyclass learning problems, there should be one value per class and the
weight should be either log P (w|c)

1−P (w|c) or log P (w|c)
maxc′ 6=c P (w|c′) with the second being preferred.

• (4) UnigramVarianceOfLogOfWordGiven{Class}, Naı̈veBayesVarianceOfLogOfWordGiven{Class}
These variables represent the variance of the log of the conditional probabilities of a word given a class. For
example UnigramVarianceOfLogOfWordGivenPositive is the variance of logP (w|Class = Positive) over the
words in the document.

3Our current analysis of the metaclassifier models has restricted our attention to a set of only 35 of the 49 total variables used in the experiments
above. The remaining variables have been eliminated from future study because they are highly correlated with other reliability indicators or have
had little impact on the metaclassifier. All 14 eliminated variables are Type 3 variables and are listed last in this section.

22

• (4) UnigramMeanOfWordGiven{Class}, Naı̈veBayesMeanOfWordGiven{Class}
These variables represent the mean of the conditional probabilities of a word given a class. For example Uni-
gramMeanOfWordGivenPositive is the mean of P (w|Class = Positive) over the words in the document. None
of these variables had much impact on the metaclassifier model and have been eliminated from future study as
a result.

• (4) UnigramMeanOfLogOfWordGiven{Class}, Naı̈veBayesMeanOfLogOfWordGiven{Class}
These variables represent the mean of the conditional probabilities of a word given a class. For example Uni-
gramMeanOfLogOfWordGivenPositive is the mean of logP (w|Class = Positive) over the words in the docu-
ment. This essentially provides a log scaling of the variables (UnigramMeanOfWordGiven{Class}, Naı̈veBayesMean-
OfWordGiven{Class}) described above and is only a factor if the metaclassifier is sensitive to the scaling. None
of these variables had much impact on the metaclassifier model and have been eliminated from future study as
a result.

• (4) UnigramVarianceOfWordGiven{Class}, Naı̈veBayesVarianceOfWordGiven{Class}
These variables represent the variance of the log of the conditional probabilities of a word given a class. For
example UnigramVarianceOfWordGivenPositive is the variance of P (w|Class = Positive) over the words
in the document. This essentially provides a log scaling of the variables (UnigramVarianceOfLogOfWord-
Given{Class}, Naı̈veBayesVarianceOfLogOfWordGiven{Class}) described in the Type 3 section and is only
a factor if the metaclassifier is sensitive to the scaling. We have found that the metaclassifiers have not been
sensitive to this scaling, and these variables have been eliminated from future study while their counterparts are
being retained.

• (2) UnigramMeanOfLogOfRatioOfWordGivenClass, Naı̈veBayesMeanOfLogOfRatioOfWordGivenClass
In a binary class problem, the weight each word contributes to the unigram model’s decision is log P (w|c)

P (w|¬c) .

Similarly, each word’s presence/absence contributes a weight of log P (w={present,absent}|c)
P (w={present,absent}|¬c) to the naı̈ve Bayes

model. If this ratio is greater than 0, the word gives evidence to the positive class (c), and if it is less than
zero, the word gives evidence to the negative class (¬c). The reliability indicators are the mean of these weights
for the feature values (word occurrences or presence/absence) in a specific document. These variables are being
eliminated from future study because their information is highly correlated with the output scores of the unigram
and naı̈ve Bayes classifiers.

A.2.4 Type 4: Basic voting statistics

There are 2 reliability indicator variables whose primary type is considered to be this type. Both of these were
introduced mainly to reduce the data required to learn m-of-n rules in the decision tree metaclassifier.

• (1) PercentPredictingPositive
We refer to this in the main text as NumVotingForClass. This variable is the percentage of base classifiers (out
of all base classifiers) that vote for membership in the class. In our experimental evaluation, we only used one
instantiation of this variable. This was added to help the search space since learning this m-of-n type of feature
can require significant data for a decision tree learning algorithm (unless it is specifically altered for this).

• (1) PercentAgreeWBest
This variable is referred to as PercentAgreement in the main text. For polyclass problems, PercentAgreement can
be used to indicate how many classes the classifiers fracture their votes among. Since there are only two classes

23

here, we altered it to indicate the percent agreement with the best base classifier (the classifier that performed
best over the training data).

24

Appendix B: Detailed Results for Reuters

Since it is common in the literature to provide detailed performance results for the top ten most frequent classes in
Reuters 21578, we present a breakdown by class here. For the reader’s benefit, we also give after the class name the
number of training documents and testing documents with membership in the class (Train/Test). The best result per
class per performance measure (excluding BestSelect) is in bold.

Table 8: Details for Reuters by Class

Class Method F1 Error C(1,10) C(10,1) ROC Area
ACQ (1650 / 719)

Dnet 0.8475 0.0634 0.1773 0.1910 0.9758
Smox 0.9280 0.0306 0.1176 0.0837 0.9891
Naı̈ve Bayes 0.8554 0.0597 0.1658 0.1716 0.9796
Unigram 0.9249 0.0433 0.0943 0.1494 0.9900
Best By Class 0.9280 0.0306 0.1176 0.0837 N/A
Majority BBC 0.9341 0.0306 0.0818 0.1376 N/A
Stack-D (norm) 0.9431 0.0312 0.0891 0.0967 0.9924
Stack-S (norm) 0.9416 0.0285 0.0888 0.0888 0.9934
STRIVE-D 0.9354 0.0273 0.0994 0.0806 0.9938
STRIVE-D (norm) 0.9362 0.0270 0.0994 0.0776 0.9939
STRIVE-S (norm) 0.9492 0.0218 0.0791 0.0852 0.9935
STRIVE-D (norm, omit Smox) 0.9274 0.0309 0.1115 0.1000 0.9924
BestSelect 0.9804 0.0082 0.0145 0.0424 N/A

CORN (181 / 56)
Dnet 0.9180 0.0030 0.0033 0.0170 0.9987
Smox 0.8421 0.0045 0.0255 0.0152 0.9813
Naı̈ve Bayes 0.5481 0.0149 0.0612 0.0164 0.9844
Unigram 0.6115 0.0115 0.0391 0.0164 0.9910
Best By Class 0.9180 0.0030 0.0033 0.0152 N/A
Majority BBC 0.9060 0.0024 0.0082 0.0167 N/A
Stack-D (norm) 0.9106 0.0033 0.0033 0.0091 0.9994
Stack-S (norm) 0.9402 0.0024 0.0036 0.0088 0.9995
STRIVE-D 0.9204 0.0027 0.0033 0.0091 0.9995
STRIVE-D (norm) 0.9204 0.0027 0.0033 0.0091 0.9995
STRIVE-S (norm) 0.9381 0.0021 0.0055 0.0124 0.9996
STRIVE-D (norm, omit Smox) 0.9286 0.0024 0.0033 0.0045 0.9997
BestSelect 0.9825 0.0006 0.0006 0.0027 N/A

CRUDE (389 / 189)
Dnet 0.8429 0.0200 0.0570 0.0603 0.9896
Smox 0.8587 0.0161 0.0464 0.0409 0.9928
Naı̈ve Bayes 0.6220 0.0358 0.1622 0.0576 0.9644
Unigram 0.8421 0.0191 0.0421 0.0509 0.9942
Best By Class 0.8587 0.0161 0.0421 0.0509 N/A
Majority BBC 0.8632 0.0149 0.0361 0.0497 N/A
Stack-D (norm) 0.8655 0.0167 0.0379 0.0543 0.9952
Stack-S (norm) 0.8706 0.0158 0.0270 0.0388 0.9966
STRIVE-D 0.8365 0.0206 0.0367 0.0449 0.9927

continued on next page

25

continued from previous page
Class Method F1 Error C(1,10) C(10,1) ROC Area

STRIVE-D (norm) 0.8365 0.0206 0.0367 0.0449 0.9927
STRIVE-S (norm) 0.8737 0.0145 0.0252 0.0239 0.9976
STRIVE-D (norm, omit Smox) 0.8333 0.0170 0.0309 0.0443 0.9944
BestSelect 0.9764 0.0027 0.0079 0.0306 N/A

EARN (2877 / 1087)
Dnet 0.9529 0.0315 0.0867 0.0479 0.9959
Smox 0.9790 0.0139 0.0458 0.0500 0.9951
Naı̈ve Bayes 0.9348 0.0373 0.3383 0.0415 0.9687
Unigram 0.9617 0.0249 0.1949 0.0394 0.9837
Best By Class 0.9790 0.0139 0.0458 0.0500 N/A
Majority BBC 0.9751 0.0158 0.0549 0.0373 N/A
Stack-D (norm) 0.9794 0.0136 0.0512 0.0336 0.9978
Stack-S (norm) 0.9798 0.0133 0.0476 0.0491 0.9978
STRIVE-D 0.9786 0.0142 0.0527 0.0312 0.9982
STRIVE-D (norm) 0.9750 0.0167 0.0530 0.0312 0.9981
STRIVE-S (norm) 0.9793 0.0136 0.0455 0.0367 0.9989
STRIVE-D (norm, omit Smox) 0.9665 0.0221 0.0643 0.0470 0.9969
BestSelect 0.9954 0.0030 0.0070 0.0130 N/A

GRAIN (433 / 149)
Dnet 0.8797 0.0085 0.0388 0.0258 0.9842
Smox 0.9342 0.0061 0.0264 0.0197 0.9853
Naı̈ve Bayes 0.7205 0.0261 0.0737 0.0436 0.9877
Unigram 0.8148 0.0164 0.0446 0.0330 0.9900
Best By Class 0.9342 0.0061 0.0264 0.0197 N/A
Majority BBC 0.9161 0.0061 0.0215 0.0239 N/A
Stack-D (norm) 0.9384 0.0055 0.0158 0.0197 0.9919
Stack-S (norm) 0.9338 0.0061 0.0161 0.0173 0.9950
STRIVE-D 0.9129 0.0076 0.0285 0.0197 0.9916
STRIVE-D (norm) 0.9129 0.0076 0.0224 0.0197 0.9917
STRIVE-S (norm) 0.9352 0.0058 0.0164 0.0152 0.9882
STRIVE-D (norm, omit Smox) 0.9054 0.0085 0.0318 0.0139 0.9914
BestSelect 0.9703 0.0012 0.0061 0.0055 N/A

INTEREST (347 / 131)
Dnet 0.5249 0.0318 0.1337 0.0452 0.9645
Smox 0.7470 0.0224 0.0997 0.0330 0.9597
Naı̈ve Bayes 0.5059 0.0358 0.1367 0.0412 0.9635
Unigram 0.6471 0.0315 0.0773 0.0388 0.9840
Best By Class 0.7470 0.0224 0.0997 0.0412 N/A
Majority BBC 0.6807 0.0261 0.0846 0.0382 N/A
Stack-D (norm) 0.7470 0.0255 0.0843 0.0382 0.9806
Stack-S (norm) 0.7530 0.0227 0.0967 0.0364 0.9827
STRIVE-D 0.6933 0.0236 0.0906 0.0409 0.9804
STRIVE-D (norm) 0.6933 0.0236 0.0906 0.0382 0.9804
STRIVE-S (norm) 0.7737 0.0188 0.0655 0.0303 0.9888
STRIVE-D (norm, omit Smox) 0.6553 0.0273 0.1115 0.0385 0.9759
BestSelect 0.8755 0.0155 0.0155 0.0282 N/A

MONEY-FX (538 / 179)
continued on next page

26

continued from previous page
Class Method F1 Error C(1,10) C(10,1) ROC Area

Dnet 0.5779 0.0412 0.1531 0.0591 0.9478
Smox 0.7756 0.0267 0.0815 0.0661 0.9788
Naı̈ve Bayes 0.5526 0.0473 0.2143 0.0682 0.9425
Unigram 0.7077 0.0358 0.0727 0.0597 0.9823
Best By Class 0.7756 0.0267 0.0727 0.0661 N/A
Majority BBC 0.7627 0.0318 0.0809 0.0600 N/A
Stack-D (norm) 0.7754 0.0255 0.0712 0.0570 0.9844
Stack-S (norm) 0.7807 0.0246 0.0764 0.0606 0.9868
STRIVE-D 0.7403 0.0276 0.0867 0.0573 0.9839
STRIVE-D (norm) 0.7403 0.0276 0.0867 0.0597 0.9839
STRIVE-S (norm) 0.8100 0.0206 0.0573 0.0776 0.9910
STRIVE-D (norm, omit Smox) 0.7283 0.0294 0.0558 0.0879 0.9796
BestSelect 0.9070 0.0106 0.0233 0.0343 N/A

SHIP (197 / 89)
Dnet 0.7284 0.0133 0.0418 0.0270 0.9800
Smox 0.8506 0.0079 0.0276 0.0318 0.9950
Naı̈ve Bayes 0.7485 0.0136 0.0436 0.0318 0.9853
Unigram 0.8391 0.0085 0.0279 0.0333 0.9954
Best By Class 0.8506 0.0079 0.0276 0.0318 N/A
Majority BBC 0.8706 0.0067 0.0182 0.0264 N/A
Stack-D (norm) 0.8506 0.0079 0.0327 0.0318 0.9898
Stack-S (norm) 0.8686 0.0070 0.0197 0.0233 0.9968
STRIVE-D 0.8508 0.0082 0.0212 0.0215 0.9862
STRIVE-D (norm) 0.8508 0.0082 0.0212 0.0215 0.9862
STRIVE-S (norm) 0.8556 0.0079 0.0203 0.0267 0.9921
STRIVE-D (norm, omit Smox) 0.8343 0.0088 0.0233 0.0291 0.9857
BestSelect 0.9605 0.0024 0.0058 0.0082 N/A

TRADE (369 / 117)
Dnet 0.6764 0.0249 0.1000 0.0418 0.9688
Smox 0.7034 0.0212 0.0755 0.0321 0.9520
Naı̈ve Bayes 0.4348 0.0303 0.1828 0.0339 0.9380
Unigram 0.6496 0.0291 0.0773 0.0333 0.9808
Best By Class 0.7034 0.0212 0.0755 0.0333 N/A
Majority BBC 0.7100 0.0191 0.0527 0.0346 N/A
Stack-D (norm) 0.7289 0.0185 0.0555 0.0333 0.9694
Stack-S (norm) 0.7364 0.0191 0.0570 0.0294 0.9826
STRIVE-D 0.7692 0.0164 0.0461 0.0385 0.9843
STRIVE-D (norm) 0.7631 0.0176 0.0482 0.0385 0.9715
STRIVE-S (norm) 0.7449 0.0155 0.0640 0.0376 0.9900
STRIVE-D (norm, omit Smox) 0.7568 0.0158 0.0446 0.0349 0.9852
BestSelect 0.9283 0.0039 0.0133 0.0261 N/A

WHEAT (212 / 71)
Dnet 0.8974 0.0048 0.0076 0.0215 0.9982
Smox 0.8613 0.0073 0.0339 0.0173 0.9855
Naı̈ve Bayes 0.6517 0.0188 0.0440 0.0215 0.9891
Unigram 0.6466 0.0142 0.0424 0.0215 0.9859
Best By Class 0.8974 0.0048 0.0076 0.0173 N/A

continued on next page

27

continued from previous page
Class Method F1 Error C(1,10) C(10,1) ROC Area

Majority BBC 0.9054 0.0064 0.0094 0.0215 N/A
Stack-D (norm) 0.8974 0.0048 0.0076 0.0179 0.9916
Stack-S (norm) 0.9150 0.0036 0.0121 0.0121 0.9992
STRIVE-D 0.9091 0.0058 0.0070 0.0139 0.9919
STRIVE-D (norm) 0.8974 0.0058 0.0067 0.0188 0.9987
STRIVE-S (norm) 0.8889 0.0048 0.0030 0.0070 0.9995
STRIVE-D (norm, omit Smox) 0.8974 0.0058 0.0067 0.0249 0.9985
BestSelect 0.9524 0.0015 0.0058 0.0112 N/A

28

References

Al-Kofahi K, Tyrrell A, Vacher A, Travers T and Jackson P (2001) Combining multiple classifiers for text categoriza-
tion. In CIKM ’01, Proceedings of the 10th ACM Conference on Information and Knowledge Management. pp.
97–104.

Bartell BT, Cottrell GW and Belew RK (1994) Automatic combination of multiple ranked retrieval systems. In SIGIR
’94, Proceedings of the 17th Annual International ACM Conference on Research and Development in Information
Retrieval. pp. 173–181.

Belkin N, Cool C, Croft W and Callan J (1993) The effect of multiple query representations on information retrieval
system performance. In SIGIR ’93, Proceedings of the 16th Annual International ACM Conference on Research
and Development in Information Retrieval. pp. 339–346.

Bennett PN, Dumais ST and Horvitz E (2002) Probabilistic combination of text classifiers using reliability indicators:
Models and results. In SIGIR ’02, Proceedings of the 25th Annual International ACM Conference on Research and
Development in Information Retrieval. pp. 207–214.

Bennett PN, Dumais ST and Horvitz E (2003) Inductive transfer for text classification using generalized reliability
indicators. In Working Notes of ICML ’03 (The 20th International Conference on Machine Learning), Workshop on
The Continuum from Labeled to Unlabeled Data. pp. 72–79.

Chickering D, Heckerman D and Meek C (1997) A Bayesian approach to learning Bayesian networks with local
structure. In UAI ’97, Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. pp. 80–89.

Dietterich T (2000) Ensemble methods. In MCS ’00, Proceedings of the 1st International Workshop on Multiple
Classifier Systems. Springer. pp. 1–15.

Duda R, Hart P and Stork D (2001) Pattern classification. New York, NY: John Wiley & Sons, Inc.

Dumais ST and Chen H (2000) Hierarchical classification of web content. In SIGIR ’00, Proceedings of the 23rd
Annual International ACM Conference on Research and Development in Information Retrieval. pp. 256–263.

Dumais ST, Platt J, Heckerman D and Sahami M (1998) Inductive learning algorithms and representations for text
categorization. In CIKM ’98, Proceedings of the 7th ACM Conference on Information and Knowledge Management.
pp. 148–155.

Gama J (1998a) Combining classifiers by constructive induction. In ECML ’98, Proceedings of the 10th European
Conference on Machine Learning. pp. 178–189.

Gama J (1998b) Local cascade generalization. In ICML ’98, Proceedings of the 15th International Conference on
Machine Learning. pp. 206–214.

Heckerman D, Chickering D, Meek C, Rounthwaite R and Kadie C (2000) Dependency networks for inference, col-
laborative filtering, and data visualization. Journal of Machine Learning Research, 1:49–75.

Hersh W, Buckley C, Leone T and Hickam D (1994) OHSUMED: An interactive retrieval evaluation and new large test
collection for research. In SIGIR ’94, Proceedings of the 17th Annual International ACM Conference on Research
and Development in Information Retrieval. pp. 192–201.

29

Horvitz E, Breese J and Henrion M (1988) Decision theory in expert systems and artificial intelligence. International
Journal of Approximate Reasoning, Special Issue on Uncertain Reasoning, 2:247–302.

Horvitz E, Jacobs A and Hovel D (1999) Attention-sensitive alerting. In UAI ’99, Proceedings of the 15th Conference
on Uncertainty in Artificial Intelligence. pp. 305–313.

Hull D, Pedersen J and Schuetze H (1996) Method combination for document filtering. In SIGIR ’96, Proceedings
of the 19th Annual International ACM Conference on Research and Development in Information Retrieval. pp.
279–287.

Joachims T (1998) Text categorization with support vector machines: Learning with many relevant features. In ECML
’98, Proceedings of the 10th European Conference on Machine Learning. pp. 137–142.

Kargupta H and Chan P, eds. (2000) Advances in distributed and parallel knowledge discovery. Cambridge, Mas-
sachusetts: AAAI Press/MIT Press.

Katzer J, McGill M, Tessier J, Frakes W and DasGupta P (1982) A study of the overlap among document representa-
tions. Information Technology: Research and Development, 1:261–274.

Kessler B, Nunberg G and Schütze H (1997) Automatic detection of text genre. In ACL ’97, Proceedings of the 35th
Annual Meeting of the Association for Computational Linguistics. pp. 32–38.

Klein LA (1999) Sensor and data fusion concepts and applications. Society of Photo-optical Instrumentation Engi-
neers. 2nd edition.

Lam W and Lai KY (2001) A meta-learning approach for text categorization. In SIGIR ’01, Proceedings of the 24th
Annual International ACM Conference on Research and Development in Information Retrieval. pp. 303–309.

Larkey LS and Croft WB (1996) Combining classifiers in text categorization. In SIGIR ’96, Proceedings of the 19th
Annual International ACM Conference on Research and Development in Information Retrieval. pp. 289–297.

Lewis DD (1995) A sequential algorithm for training text classifiers: Corrigendum and additional data. ACM SIGIR
Forum, 29(2):13–19.

Lewis DD (1997) Reuters-21578, distribution 1.0. http://www.daviddlewis.com/resources/testcollections-
/reuters21578 (visited 2002).

Lewis DD and Gale WA (1994) A sequential algorithm for training text classifiers. In SIGIR ’94, Proceedings of the
17th Annual International ACM Conference on Research and Development in Information Retrieval. pp. 3–12.

Lewis DD, Schapire RE, Callan JP and Papka R (1996) Training algorithms for linear text classifiers. In SIGIR
’96, Proceedings of the 19th Annual International ACM Conference on Research and Development in Information
Retrieval. pp. 298–306.

Li Y and Jain A (1998) Classification of text documents. The Computer Journal, 41(8):537–546.

McCallum A and Nigam K (1998) A comparison of event models for naive bayes text classification. In Working Notes
of AAAI ’98 (The 15th National Conference on Artificial Intelligence), Workshop on Learning for Text Categoriza-
tion. pp. 41–48.

30

Nigam K, Lafferty J and McCallum A (1999) Using maximum entropy for text classification. In Working Notes of
IJCAI ’99 (The 16th International Joint Conference on Artificial Intelligence), Workshop on Machine Learning for
Information Filtering. pp. 61–67.

Platt JC (1999a) Fast training of support vector machines using sequential minimal optimization. In Schölkopf B,
Burges C and Smola A, eds. Advances in kernel methods - support vector learning. MIT Press. pp. 185–208.

Platt JC (1999b) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.
In Smola AJ, Bartlett P, Scholkopf B and Schuurmans D, eds. Advances in large margin classifiers. MIT Press. pp.
61–74.

Provost F and Fawcett T (2001) Robust classification for imprecise environments. Machine Learning, 42:203–231.

Rajashekar T and Croft W (1995) Combining automatic and manual index representations in probabilistic retrieval.
Journal of the American Society for Information Science, 6(4):272–283.

Sahami M, Dumais S, Heckerman D and Horvitz E (1998) A bayesian approach to filtering junk e-mail. In Work-
ing Notes of AAAI ’98 (The 15th National Conference on Artificial Intelligence), Workshop on Learning for Text
Categorization. pp. 55–62.

Schapire RE and Singer Y (2000) BoosTexter: A boosting-based system for text categorization. Machine Learning,
39:135–168.

Sebastiani F (2002) Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1–47.

Shaw J and Fox E (1995) Combination of multiple searches. In TREC-3, Proceedings of the 3rd Text REtrieval
Conference. pp. 105–108.

Ting K and Witten I (1999) Issues in stacked generalization. Journal of Artificial Intelligence Research, 10:271–289.

Toyama K and Horvitz E (2000) Bayesian modality fusion: Probabilistic integration of multiple vision algorithms for
head tracking. In ACCV 2000, Proceedings of the 4th Asian Conference on Computer Vision.

van Rijsbergen CJ (1979) Information retrieval. Butterworths, London.

Weiss S, Apte C, Damerau F, Johnson D, Oles F, Goetz T and Hampp T (1999) Maximizing text-mining performance.
IEEE Intelligent Systems, 14(4):63–69.

WinMine Toolkit v1.0, http://research.microsoft.com/˜dmax/WinMine/ContactInfo.html (visited 2002). Microsoft
Corporation.

Wolpert DH (1992) Stacked generalization. Neural Networks, 5:241–259.

Yang Y, Ault T and Pierce T (2000) Combining multiple learning strategies for effective cross validation. In ICML
’00, Proceedings of the 17th International Conference on Machine Learning. pp. 1167–1182.

Yang Y and Liu X (1999) A re-examination of text categorization methods. In SIGIR ’99, Proceedings of the 22nd
Annual International ACM Conference on Research and Development in Information Retrieval. pp. 42–49.

Zhang T and Oles FJ (2001) Text categorization based on regularized linear classification methods. Information
Retrieval, 4:5–31.

31

