CONMan: A Step Towards Network
Manageability

Hitesh Ballani and Paul Francis
Cornell University

ACM SIGCOMM 2007

Network Management is a Mess

» Ad-Hoc

» Complex

» Error-Prone

» Expensive
Worsening situation as network complexity increases

» 80% of IT budget in enterprises used to
maintain status quo [Kerravala'04]

» Configuration errors account for 62% of network
downtime [Kerravala'04]

Protocols expose their gory details

APPLICATIONS | | Mgmt Interface

Detailed Protocol and
- [ood] [ree] [erd] — > Detalled Pro

Device specific MIBs
-] [em] ey -

MIB Depot : 6200 MIBs from 142 vendors and

nearly a million MIB objects
SNMPLink : More than a thousand manage-

ment tools

Protocols expose their gory details

APPLICATIONS - Mgmt Interface

Detailed Protocol and
|UDP] |TCP| |GRE] ** Device specific MIBs

-

Super-smart human managing the network

Protocols expose their gory details

APPLICATIONS E:m02 is easy

Network Mgmt is
TCP] |GRE hard|

Super-smart human managing the network

Protocols expose their gory details

APPLICATIONS

TCPL |GREl " [High-level| 4=

goal
| —
Hame .

Human Manager only specifies high-level goal

Protocols expose their gory details

APPLICATIONS
"7 |High-level|¢=
Low-level

goal
scripts
i

(Complex)
Management
Applications

Configure

Management Application does the rest

Protocols expose their gory details

APPLICATIONS
"7 |High-level|¢=
Low-level

goal
scripts
i

(Complex)
Management
Applications

Configure

Deluge of complexity burdens the management
application

Protocols expose their gory details

APPLICATIONS
"7 |High-level|¢=

goal

Configure | (Simple)

Management
Structured | Applications
scripts

Ty

Refactor division of functionality between data and
management plane

An Extreme Alternative

Confine the operational complexity of protocols to
their implementation

An Extreme Alternative

Confine the operational complexity of protocols to
their implementation

A more modest approach

The management interface of data-plane protocols
should contain as little protocol-specific information
as possible

Complexity Oblivious Network Management
(CONMan)

A network management architecture
» (Little or) No protocol-specific information in
the management interfaces of protocols

» Reduces burden on the management plane and
hence, allows for simpler management

Focus on

» Network configuration tasks
» Management of data-plane protocols

Talk Outline

» Introduction

» CONMan Overview
» Module Abstraction
» CONMan primitives
» Implementation

» Conclusions and Future Work

CONMan Overview

Devices with unique identifiers (device-id)
» Routers
» Switches

» Hosts

> ...

Network Manager (NM)

» Software entity residing on one of the network
devices

» Manages some or all of them
» One or more NMs in each network

CONMan Overview

APPLICATIONS

Device D -
[|]]]
NM
s

Each module has an identifier (module-id)
Module-id for IP module = i = <IP,D,i>

CONMan Overview

APPLICATIONS
UDP} | TCP

s

Self-bootstrapping management channel

—Mgmt Channel =»

o8

NM

Allows bidirectional communication between the NM

and network devices

[4D, Greenberg et. al.

05]

Abstract away the details

APPLICATIONS

—Mgmt Channel =»

ProtocC evice m
speg#icN\IBs
NM
s

Protocols should not expose their gory detalls
What do the protocols expose?

Abstract away the details

Network configuration
» Provide paths between specific applications

» Ensuring that selected applications cannot use these paths

Basic characteristics of data-plane protocols
» Connect to other protocols
» Switching of packets
» Filtering of packets
» Queueing packets

» Dependence on external state

Abstract away the details

Network configuration
» Provide paths between specific applications

» Ensuring that selected applications cannot use these paths

Basic characteristics of data-plane protocols
» Connect to other protocols
» Switching of packets
» Filtering of packets
» Queueing packets

» Dependence on external state

These basic characteristics should serve as a narrow
waist for the Internet’'s management plane

Abstract away the details

:
Dependency.

APPLICATIONS |

|

.®
-
-
-
-
-
-
"
-

~ gy
~
-
~
-
LS
~ gy

i

é . mPlpe
_________ I:I E EQueue
SWltchlng
®F|Iter|ng
. Security
......... H H

L

Module

Module Abstraction:

Abstraction

Mgmt Interface of a module

Models the protocol’s potential and dependencies

Abstract away the details

Dependency.
APPLICATIONS |

.
I.. .
~~~~~~~~ b i

_________ EI E E Queue

SWltchlng
E Fllterlng
C T:ISecurlty
..... '1':... ‘ . E E

Frame ’,.'D'ownT If
T

Module

Modu

Abstraction

e Abstraction: Mgmt Interface of a module

vlies to (almost) all data-plane protocols



CONMan: The big picture

APPLICATIONS Human Manager

High-level
UDP] |TCP RE Goal
1]

NM
] [ere] e

Human managers specify high-level goals



CONMan: The big picture

APPLICATIONS Human Manager
RE High-level
UDP] |TCP Goal

ﬂ | Device Connectivity
and Module Abstraction
s

Each device's connectivity and the abstraction for its
modules are sent to the NM




CONMan: The big picture

APPLICATIONS

UDP

Frame
Relay

| Device Connectivity

NM knows the network topology and the network

Network
Topology and

Potential

and Module Abstraction

potential

Human Manager

High-level
Goal

A




CONMan: The big picture

APPLICATIONS
UDP} | TCP

ﬂ | Device Connectivity
and Module Abstraction
\ Configuration / NM

e

CONMan Primitives
NM uses CONMan primitives to manipulate
abstraction elements and configure network devices

Human Manager

Network
Topology and

Potential

High-level
Goal

A




CONMan: The big picture

APPLICATIONS
UDP} | TCP

ﬂ | Device Connectivity
and Module Abstraction
\ Configuration / NM

o

CONMan Primitives
The amount of complexity that the NM needs to
handle is reduced!

Human Manager

Network
Topology and

Potential

High-level
Goal

A




CONMan Abstraction and Primitives

Abstraction Components CONMan primitives
» Name » show
> Up-Down Pipes > create
» Physical Pipes » delete
» Switch » conveyMessage
» Filter » listFieldsAnd-
» Perf. Reporting -Values
» Perf. Trade-off

» Security



CONMan Abstraction and Primitives

Abstraction Components CONMan primitives
» Name » show
> Up-Down Pipes > create
» Physical Pipes » delete
» Switch » conveyMessage
» Filter » listFieldsAnd-
» Perf. Reporting -Values
» Perf. Trade-off

» Security



Talk Outline

» Introduction

» CONMan Overview
» Module Abstraction
» CONMan primitives
» Implementation

» Conclusions and Future Work



Pipes

Router R Host H
IP |P
/\
ETH]|ETH ETH




Pipes

Router R Host H
IP |P
ZAN
ETH||ETH ETH

I R S

Physical Pipes

Model actual network links
Are discovered and enabled by the NM



Pipes

Router R Host H
IP |P
ETH]|ETH ETH

Up-Down Pipes
Between modules in the same device
Can be created/deleted by the NM

Pipe in figure is Down pipe for IP and Up pipe for
ETH



Pipes

Router R Host H
IP |P
/\
ETH]|ETH ETH

Connectable Modules
» (Captures the possible protocol plumbing

» Eg. Connectable Modules for an up pipe of an ETH
module: {IP, MPLS}



Pipes

Peer modules
» Up-Down pipes associated with peer modules

» Peer modules coordinate low-level details



Pipes

Peer modules
» Up-Down pipes associated with peer modules

» Peer modules coordinate low-level details

Edge Edge

m

M

GRE Tunn

A GRE tunnel between edge routers A and B



Pipes

Peer modules
» Up-Down pipes associated with peer modules

» Peer modules coordinate low-level details

Edge Edge

FQOLnerﬁ{’_J////,’—_‘\\\\TL,~————————~J§gEEf;B
ISP

GRE GRE
|
L |l P

| |
ETH LJ\—/ ETH

NM builds the path by creating the requisite pipes

NM can invoke create and delete primitives at the
devices



Pipes

Peer modules
» Up-Down pipes associated with peer modules

» Peer modules coordinate low-level details

Edge Edge
FQOLner/\’_J////,’—_‘\\\\TL,~————————~J§gEEf;B
GRE ISP GRE
l |
||i’ ~ IP

1
ETH d1\\\\\\____—///;\\\\\~__// ETH

What about the low-level details?
ip tunnel add name gre-A-B mode gre remote 204.9.169.1

local 204.9.168.1 ikey 1001 okey 2001 icsum ocsum iseq
oseq



Pipes

Peer modules
» Up-Down pipes associated with peer modules

» Peer modules coordinate low-level details

Edge Edge

Router A MB
Peer Modules
GREJy = - - PR _ o

P H—-=— - - - = = = = ]| IP
]

]
ETH LJ\_/ ETH

Peer modules can coordinate low-level values

Eg. Peer GRE modules can exchange key values
(1001, 2001)



Hiding Complexity

NM operates in terms of abstract components

» Eg. Filter rules specify abstraction components

Exceptions
» |P address assignment

» Filtering based on regular expressions in HT ML

» Broadcast suppression on switch ports



Talk Outline

» Introduction

» CONMan Overview
» Module Abstraction
» CONMan primitives
» Implementation

» Conclusions and Future Work



CONMan Workflow

Human Manager
High-lever L NM_ | Low-level=} NM | conmam) Protocol povice jevel
goal goal script Module  Scripts

Implementation
> A Network Manager (NM) that understands
the CONMan abstraction and implements the
CONMan primitives

» Protocol Modules: GRE, MPLS, IP, ETH




CONMan Workflow

| I
(| High-leve L.NM_ [Low-level ) NM__ | CONMan Protocol Device-level
| goal goal script 1| Module ~ scripts

Implementation
» A Network Manager (NM) that understands
the CONMan abstraction and implements the
CONMan primitives

» Protocol Modules: GRE, MPLS, IP, ETH



CONMan Workflow

Human Manager '

I
I
' I
High-lever L NM_ | Low-level=} NM | conmam] POl pevice-level
goal goal [ | scriet Module  scripts |
I

Implementation
> A Network Manager (NM) that understands
the CONMan abstraction and implements the
CONMan primitives

» Protocol Modules: GRE, MPLS, IP, ETH



Virtual Private Networks

Customer 1 Customer 1
Site 1 Router B Site 2

Router A @ Router C
Router Des> T~ ) Sp ~as Router E

Configure connectivity between sites S1 and S2 of customer C1



Virtual Private Networks

Customer 1
Site 1

Customer 1
Site 2

Router B

S

Router A
S

Router C

Router Des> Router E

Configure connectivity between sites S1 and S2 of customer C1

Router A Router B Router C
P©@ |[Gre 0 IP (i) el LP®
|| - — L . ||
Customer 1 = — [
: GREM)| - MpLs(q)] Customer 1
Site 1 MPII__IS(O) |Pér|1) T [wrLs o) |pé? I Site 2
||
Router D 1 1 1 1 1 1
== e @] [Eth ) cn ol [En @ en @] [En ()| <demOUTE

[~ X



Virtual Private Networks

Customer 1
Site 1

Customer 1
Site 2

Router B

S

Router A
S

Router C

Router Des> Router E

Configure connectivity between sites S1 and S2 of customer C1

Router A Router B Router C
P©@ |[Gre 0 IP (i) el LP®
| | - — L . | |
Customer 1 = O L1
: GREM)| - MpLs(q)] Customer 1
Site 1 MPII__IS(O) |Pér|1) - MPIL:IS(p) |pé? I Site 2
Router D% il Bl ] ] 1 r=r=n
:rl_ Eth @ || Eth (0) eth © | [ € @ et @ | Bt () |1 <dem ROUETE

High-level goal: Configure connectivity between the
customer-facing interfaces <ETH,A,a> and <ETH, C,f> for
traffic between C1-S1 and C1-S2




Virtual Private Networks

Customer 1
Site 1

Customer 1
Site 2

Router B

S

Router A
S

Router C

Router Des> Router E

Configure connectivity between sites S1 and S2 of customer C1

Router A Router B Router C
P©@ |[Gre 0 IP (i) el LP®
|| - — L . ||
Customer 1 = — [
: GREM)| - MpLs(q)] Customer 1
Site 1 MPII__IS(O) |Pér|1) T [wrLs o) |pé? I Site 2
||
Router D 1 1 1 1 1 1
== e @] [Eth ) cn ol [En @ en @] [En ()| <demOUTE

[~ X

Routers inform the NM of their connectivity and their modules

The figure represents the network map as seen by the NM



Virtual Private Networks

Customer 1
Site 1

Customer 1
Site 2

Router B

S

Router A
S

Router C

Router Des> Router E

Configure connectivity between sites S1 and S2 of customer C1

- - Router A _ Router B Router C
—L =L L1 — -
1LP @ [ Gre o] ! ity GRe(n) | LIPK)
customer1 ' o = = ==
ustomer I ] ] | Cust 1
: GRE (m) M |_| MPLS(q) US. omer
Ste 1 : MPLSOILIE® 1] LT |MPLS (p) -t - Site 2
[ 1 =
Router De%> 1 [ — 1 1 | |
: Eth (@) | [ Eth (0) | Eth (c) | | Eth (d) Eth ()| [ Eth () @Router E
1 1

NM is also presented with the abstraction for various modules

This includes pipe connectivity and switch capabilities



NM Implementation

IP(9)
GrED |
P ()
MPLS (0)
|
ETH (a) ETH (b)
—1 L

Potential Connectivity sub-graph for router A



NM Implementation

Path Finder

» Find all paths between any two modules

» Depth First Search across the graph

For example, find_path (<ETH,A,a>, <ETH,C,f>)

Customer 1
Site 1

Router Deg™

Router A Router B Router C
IP (9) GRE ()) IP (i) GRE (n) IP (k)
= =5 @ =
m
IP (h) IP (j)
[ 1 E JI:‘\I [ ] E
Eth (a) Eth (b) Eth (c) Eth (d) Eth (e) Eth (f)

One possible path (using GRE-IP

Customer 1
Site 2

@Router E
J/‘CE

unnel)
a, gl h bcidejnkf



NM Implementation

For example, find_path (<ETH,A,a>, <ETH,C,f>)

>

v v v v v v v Y%

Using IP-IP Tunnel: a, g, h, b, ¢, I, d, e, J, k, f

Using GRE-IP Tunnel: a, g, I, h, b, c, i, d, e j, n, k f
Using MPLS: a, g, 0, b, ¢, p, d, e, q, k, f

Using IP-IP over MPLS

Using GRE-IP over MPLS

Using IP-IP over MPLS only between A and B

Using IP-IP over MPLS only between B and C

Using GRE-IP over MPLS only between A and B
Using GRE-IP over MPLS only between B and C




NM Implementation

For example, find_path (<ETH,A,a>, <ETH,C,f>)

>

vy v v v v v v %

Using IP-IP Tunnel: a, g, h, b, ¢, i, d, e, Jj, k, f

Using GRE-IP Tunnel: a, g, I, h, b, c, i, d, e j, n, k f
Using MPLS: a, g, 0, b, ¢, p, d, e, q, k, f

Using IP-IP over MPLS

Using GRE-IP over MPLS

Using IP-IP over MPLS only between A and B

Using IP-IP over MPLS only between B and C

Using GRE-IP over MPLS only between A and B
Using GRE-IP over MPLS only between B and C




NM Implementation

For example, find_path (<ETH,A,a>, <ETH,C,f>)
» Using IP-IP Tunnel: a2, g, h, b, c, 1, d, e J, k f

Using GRE-IP Tunnel: a, g, I, h, b, c, i, d, e j, n, k f

Using MPLS: a, g, 0, b, ¢, p, d, e, q, k, f

Using IP-IP over MPLS

Using GRE-IP over MPLS

Using IP-IP over MPLS only between A and B

Using IP-IP over MPLS only between B and C

Using GRE-IP over MPLS only between A and B

Using GRE-IP over MPLS only between B and C

v v v v v v v Y%

NM needs to be able to choose amongst the paths
based on high-level directives/metrics



NM Implementation

For example, find_path (<ETH,A,a>, <ETH,C,f>)
» Using IP-IP Tunnel: a2, g, h, b, c, 1, d, e J, k f

Using GRE-IP Tunnel: a, g, I, h, b, ¢, i, d, e j, n, k f

Using MPLS: a, g, 0, b, ¢, p, d, e, q, k, f

Using IP-IP over MPLS

Using GRE-IP over MPLS

Using IP-IP over MPLS only between A and B

Using IP-IP over MPLS only between B and C

Using GRE-IP over MPLS only between A and B

Using GRE-IP over MPLS only between B and C

vy v v v v v v Y%

NM needs to be able to choose amongst the paths
based on high-level directives/metrics



NM Implementation

| |
(| High-lever LLNM_ | Low-level—) NM__| CONMan Protocol .o level
I goal goal | script Module scripts

High-level goal: Configure connectivity between the
customer-facing interfaces <ETH,A,a> and <ETH,C,f> for
traffic between C1-S1 and C1-52

Low-level goal: Configure the path comprising of modules a,
g |, h b cidejnkf



NM Implementation

Customer 1
Site 1

Router Dee~

Router A Router B Router C
o == i L]
IP©) [ GRE () IP (i) sreml P ®
= ﬁ I_?Iip =
GRE (m) 1 Customer 1
i IP () Site 2
LT L LT
Eth (@) | | Eth (b) Eth () | | Eth (d) et ©1 [ Eth aRouter E




NM Implementation

- - RouterA_ _ | Router B Router C
il Ll = —
1LPO@ [[cre ]! L) GrRem | LR K
T i = S
Customerl ' [erem) | Customer 1
Site 1 ! PO | P () Site 2
o Tl I
Router D ] I J

u : (@) Eth (b) {1 Eth (c) Eth (d) Eth (e) Eth () @Router E

1 - == === J

PO = create (pipe, <IP,A,g>, <ETH,A,a>, None, None, None)

P1 = create (pipe, <IP,A,g>, <GRE,A,1>, <IP,C,k>, <GRE,C,n>,
trade-off: in-order delivery, trade-off: error-rate)

create (switch, <IP,A,g>, [PO, dst:C1-S2 = P1])

create (switch, <IP,A,g>, [P1 = PO, S2-gateway]|)

P2 = create (pipe, <GRE,A,1>, <IP,A,h>, <GRE,C,n>, <IP,C,j>,
None)

create (switch, <GRE,A,1>, P1, P2)

P3 = create (pipe, <IP,A,h>, <ETH,A,b>, <IP,B,i>, <ETH,B,c>,
None)

create (switch, <IP,A,h>, P2, P3)

create (switch, <ETH,A,b>, P3,P4)



NM Implementation

Customer 1
Site 1

Router Dee~

Router A Router B Router C
o == i L]
IP©) [ GRE () P (i) sreml P ®
& ﬁ F& =
: GRE (M) [ Customer 1
T P 0) Site 2
R I
1
Eth (@) | | Eth (b) Eth () | | Eth (d) et ©1 [ Eth aRouter E

PO = create (pipe, <IP,A,g>, <ETH,A,a>, None, None, None)



NM Implementation

Router A Router B Router C
= . 1|
IP©@) { cre () L) GrRem | LR K
Customer 1 == ] T
. GRE (M) | Customer 1
Site 1 IP (h) I IP (j) Site 2
Router Dee> [ E 1 i
Eth (@)| | Eth (b) Eth (c) | | Eth (d) Eth (€)| | Eth (f) @. 'Router E

P1 = create (pipe, <IP,A,g>, <GRE,A,1>, <IP,C,k>, <GRE,C,n>,

trade-off: in-order delivery, trade-off: error-rate)



NM Implementation

GRE modules use conveyMessage() to exchange
protocol-specific parameters such as key values

Router A / Router B \ Router C

IP©@) { cre () L) GrRem | LR K
Customer 1 == R ]
: GRE (m) - Customer 1
Ste 1 P ) I P () Site 2
Router Dee> ] E A i
- Eth (@] [ Eth () Eth © | [ Eth (@) e @] [En @] <o OUErE

P1 = create (pipe, <IP,A,g>, <GRE,A,1>, <IP,C,k>, <GRE,C,n>,

trade-off: in-order delivery, trade-off: error-rate)



NM Implementation

Router A Router B Router C
Iz%) GRE () '29 Gre(m | LIP K
Customer 1 —E— GRE (m) IL—Irl Customer 1
Site 1 IP (h) I IP (j) Site 2
Router Dee> 1 E 1 i
Eth (@) | | Eth (b) Eth (c) | | Eth (d) Eth (e)| | Eth () @l lRouter E

P2 = create (pipe, <GRE,A,1>, <IP,A,h>, <GRE,C,n>, <IP,C,j>,

None)



NM Implementation

IP modules use conveyMessage() to exchange
IP addresses of tunnel end-points

Router A Router B Router C
IP'—(?Q); GRE () 'P,:!(') Gre(m | LIP K
Customer 1 —g— GRE (m) Customer 1
Site 1 IP (h) I IP () Site 2
Router Dee> 1 E 1 i
Eth (@) | | Eth (b) Eth (c) | | Eth (d) Eth (e)| | Eth () @l lRouter E

P2 = create (pipe, <GRE,A,1>, <IP,A,h>, <GRE,C,n>, <IP,C,j>,

None)



NM Implementation

#!/bin/bash

# Insert the GRE-IP kernel module

insmod /lib/modules/2.6.14-2/ip _gre.ko

# Create the GRE tunnel with the appropriate key

ip tunnel add name greA mode gre remote 204.9.169.1 local
204.9.168.1 ikey 1001 okey 2001 icsum ocsum iseq oseq
ifconfig greA 192.168.3.1

# Enable Routing

echo 1 > /proc/sys/net/ipv4/ip_forward

# Create IP routing from customer to tunnel

echo 202 tun-1-2 >> /etc/iproute2/rt_tables

ip rule add to 10.0.2.0/24 table tun-1-2

ip route add default dev greA table tun-1-2

# Create IP routing from tunnel to customer

echo 203 tun-2-1 >> /etc/iproute2/rt_tables

ip rule add iff greA table tun-2-1

ip route add default dev ethl table tun-2-1

ip route add to 204.9.169.1 via 204.9.168.2 dev eth2

Linux script generated by the protocol
modules



NM Implementation

NM-generated CONMan script snippet

PO = create (pipe, <IP,A,g>, <ETH,A,a>, None,
None, None)

P2 = create (pipe, <GRE,A,1>, <IP,A,h>,
<GRE,C,n>, <IP,C,j>, None)

create (switch, <GRE,A,1>, P1, P2)

Module-generated Linux script snippet

# Insert the GRE-IP kernel module
insmod /lib/modules/2.6.14-2/ip_gre.ko

# Create the GRE tunnel with the appropriate key

ip tunnel add name greA mode gre remote 204.9.169.1
local 204.9.168.1 ikey 1001 okey 2001 icsum ocsum iseq
oseq



Talk Outline

» Introduction

» CONMan Overview
» Module Abstraction
» CONMan primitives
» Implementation

» Conclusions and Future Work



Conclusions

CONMan: Complexity Oblivious Network Mgmt.

» Strives to reduce protocol-specific information
in the management interface of protocols

Balances division of functionality

» Management applications don't deal with
orotocol-specific details

» Protocols still need low-level details to operate

» Protocol implementor needs to understand
orotocol operation




Future Work

Scalability

» Load on the NM
» Dynamic network configuration

Multiple NMs

Management channel
NM design

» User-side

» Network-side

Deployment model






	Introduction
	Design
	Abstraction
	Implementation
	Conclusions
	Future Work
	Thanks

