ViAggre: Making Routers Last Longer!

Hitesh Ballani

Paul Francis, Tuan Cao and Jia Wang Cornell University and AT&T Labs – Research

HotNets 2008

Motivation: Rapid Routing Table Growth

Motivation: Rapid Routing Table Growth

Rapid future growth

- ▶ IPv4 exhaustion
- ► IPv6 deployment

Typical Router Innards

Typical Router Innards

Typical Router Innards

Does (FIB) Size Matter?

Technical concerns

- More Memory
- More Processing
- Power and Heat dissipation problems

Does (FIB) Size Matter?

Technical concerns

- More Memory
- More Processing
- Power and Heat dissipation problems

Business concerns

- Less cost-effective networks
 - Price per byte forwarded increases
- Router memory upgrades

Does (FIB) Size Matter?

Technical concerns

- More Memory
- More Processing
- Power and Heat dissipation problems

Business concerns

- Less cost-effective networks
 - Price per byte forwarded increases
- Router memory upgrades

ISPs are willing to undergo some pain to reduce FIB size


```
[Deering, '96]
          [O'Dell, ID'97]
[Zhang et. al., ICNP'06]
       [Farinacci, ID'07]
  [Massey et. al., ID'07]
[Jen et. al., HotNets'08]
      [Francis, CNIS'94]
 [Deering et. al., ID'00]
            [Hain, ID'02]
```

[Krioukov et. al., Arxiv'05]


```
[Deering, '96]
          [O'Dell, ID'97]
[Zhang et. al., ICNP'06]
       [Farinacci, ID'07]
  [Massey et. al., ID'07]
[Jen et. al., HotNets'08]
      [Francis, CNIS'94]
 [Deering et. al., ID'00]
            [Hain, ID'02]
```

[Krioukov et. al., Arxiv'05]

Separate edge from the core


```
[Deering, '96]
[O'Dell, ID'97]
[Zhang et. al., ICNP'06]
[Farinacci, ID'07]
[Massey et. al., ID'07]
[Jen et. al., HotNets'08]
[Francis, CNIS'94]
[Deering et. al., ID'00]
[Hain, ID'02]
```

[Krioukov et. al., Arxiv'05]

Geographical routing


```
[Deering, '96]
[O'Dell, ID'97]
[Zhang et. al., ICNP'06]
[Farinacci, ID'07]
[Massey et. al., ID'07]
[Jen et. al., HotNets'08]
[Francis, CNIS'94]
[Deering et. al., ID'00]
[Hain, ID'02]
```

[Krioukov et. al., Arxiv'05]

Compact routing


```
[Deering, '96]
[O'Dell, ID'97]
[Zhang et. al., ICNP'06]
[Farinacci, ID'07]
[Massey et. al., ID'07]
[Jen et. al., HotNets'08]
[Francis, CNIS'94]
[Deering et. al., ID'00]
[Hain, ID'02]
```

[Krioukov et. al., Arxiv'05]

All require architectural change So many ideas, so little impact!


```
[Deering, '96]
[O'Dell, ID'97]
[Zhang et. al., ICNP'06]
[Farinacci, ID'07]
[Massey et. al., ID'07]
[Jen et. al., HotNets'08]
[Francis, CNIS'94]
[Deering et. al., ID'00]
[Hain, ID'02]
```

[Krioukov et. al., Arxiv'05]

Tackle routing scalability through a series of incremental, individually cost-effective upgrades


```
[Deering, '96]
          [O'Dell, ID'97]
[Zhang et. al., ICNP'06]
       [Farinacci, ID'07]
  [Massey et. al., ID'07]
[Jen et. al., HotNets'08]
      [Francis, CNIS'94]
 [Deering et. al., ID'00]
            [Hain, ID'02]
```

[Krioukov et. al., Arxiv'05]

This Paper: Focuses on reducing FIB size

Virtual Aggregation, aka ViAggre

A "configuration-only" approach to shrinking router FIBs

- Applies to legacy routers
- Can be adopted independently by any ISP

Key Insight: Divide the routing burden

A router only needs to keep routes for a fraction of the address space

Talk Outline

- ► Introduction
- ► ViAggre: Basic Idea
- ViAggre Design
- Evaluation
- Deployment
- Conclusions

Today: All routers have routes to all destinations

Divide address space into Virtual Prefixes (VPs)

Assign Virtual Prefixes to the routers Routers only have routes to a fraction of the address space

How to achieve such division of the routing table?

Without changes to routers and routing protocols Without cooperation from external networks

Talk Outline

- ► Introduction
- ▶ ViAggre: Basic Idea
- ViAggre Design
- Evaluation
- Deployment
- Conclusions

ViAggre Control-Plane

eBGP Peers may advertise full routing table

ViAggre Control-Plane

FIB Suppression

Blue routers only load blue routes into their FIB

Data-Plane paths

Consider packets destined to a prefix in the red VP

Data-Plane paths

ViAggre path

Ingress (I) \rightarrow Aggregation Pt (A) \rightarrow Egress (E)

Ingress → Aggregation Point

Router I doesn't have a route for destination prefix

Ingress — Aggregation Point

Aggregation Points advertise corresponding Virtual Prefixes

Ingress → Aggregation Point

Blue router has a route for the red Virtual Prefix

Aggregation Point → Egress

Aggregation Pt. A tunnels packet to external router

Aggregation Point → Egress

Egress Router strips the tunnel header off outgoing packets

Failure of Aggregation Point

What if Aggregation Pt. A fails?

Failure of Aggregation Point

Router I installs the route advertised by A2

Failure of Aggregation Point

Packets are re-routed appropriately

ViAggre's impact on ISP's traffic

ViAggre paths can be longer than native paths Traffic stretch, increased router and link load, etc.

Popular Prefixes

Traffic volume follows power-law distribution

- ▶ 95% of the traffic goes to 5% of prefixes
- Has held up for years

Install "Popular Prefixes" in routers

- Stable over weeks
- Mitigates ViAggre's impact on the ISP's traffic

Talk Outline

- ► Introduction
- ▶ ViAggre: Basic Idea
- ViAggre Design
- Evaluation
- Deployment
- Conclusions

Stretch Vs FIB Size

Assigning more routers to aggregate a virtual prefix

- Reduces Stretch imposed on Traffic
- Increases FIB size

Aggregation Point Assignment Problem

- Minimize Worst FIB size, subject to constraint on Worst stretch
- NP-complete problem
- Implemented a greedy approximation

Performance Study

Data from tier-1 ISP

► Topology, Routing tables, Traffic matrix

Used out algorithm with varying stretch constraints

Constraining Worst Stretch

FIB Size reduces as Stretch constraint is relaxed

Worst-case Stretch \leq 4ms \Rightarrow Worst FIB = 10,226 prefixes (4% of global routing table)

Constraining Worst Stretch

Average Stretch is negligible

Worst-case Stretch \leq 4ms \Rightarrow Average Stretch = 0.2msec

Router Load

Deployment with Worst-case Stretch ≤ 4msec

- ► Shrinks FIB by more than 20x
- ► Median router load increases by 31.3%

Using popular prefixes

- ▶ 5% popular prefixes carry 96.7% of traffic
- \blacktriangleright Median and Worst-case router load increase \approx 1%

Talk Outline

- ► Introduction
- ▶ ViAggre: Basic Idea
- ViAggre Design
- ► Evaluation
- Deployment
- Conclusions

ViAggre Pros

- Shrinks router FIB substantially
- Can be incrementally deployed
- Can be deployed on a limited-scale
- Incentive for deployment
- No change to ISP's routing setup
 - Does not affect convergence times
 - Does not affect routes advertised to neighbors
 - Does not restrict routing policies
 - **.** . . .

Can it be deployed?

Configuration overhead of a configuration-only solution

- Configuring FIB suppression on routers
- Configuring LSP advertisements on edge routers

Planning Overhead

- Choosing virtual prefixes
- Assigning aggregation points
- Assuring network robustness
- **...**

ViAggre management overhead

Deployed ViAggre on WAIL

- Cisco 7300 routers
- Developed Configuration Tool
 - \sim 330 line python script
 - Extracts information from existing configuration files
 - Generates ViAggre configuration files
- Planning tool in the works

Working with a router vendor (Huawei)

- Implement ViAggre natively
- ▶ IETF Draft

Conclusion

ViAggre shrinks the FIB on routers

Can extend the lifetime of installed routers

Is this a "complete" solution? No

- A simple and effective first step
- Next Step: Inter-domain ViAggre

Thank You!