Predictability Requirements of a Soft Modem

Michael B. Jones
Microsoft Research, Microsoft Corporation
One Microsoft Way
Redmond, WA 98052, USA

mbj @microsoft.com
http://research.microsoft.com/~mbj/

ABSTRACT

Soft Modems use the main processor to execute modem functions
traditionally performed by hardware on the modem card. To
function correctly, soft modems require that ongoing signa
processing computations be performed on the host CPU in a
timely manner. Thus, signa processing is a commonly occurring
background real-time application—one running on systems that
were not designed to support predictable real-time execution. This
paper presents a detailed study of the performance characteristics
and resource requirements of a popular soft modem.
Understanding these requirements should inform the efforts of
those designing and building operating systems needing to
support soft modems. Furthermore, we believe that the
conclusions of this study also apply to other existing and
upcoming soft devices, such as soft Digital Subscriber Line (DSL)
cards. We conclude that (1) signal processing in an interrupt
handler is not only unnecessary but also detrimental to the
predictability of other computations in the system and (2) a real-
time scheduler can provide predictability for the soft modem
while minimizing itsimpact on other computations in the system.

Keywords

Real-Time, CPU Scheduling, Soft Devices, Soft Modem, Signa
Processing, Open Real-Time System, Windows NT, Windows
2000, Ridto, Rialto/NT.

1. INTRODUCTION

Soft modems use the main processor to execute modem functions
traditionally performed by the digital signal processor (DSP) on
the modem card. Soft modems have enjoyed large success in the
home computer market. Two reasons for their success are low cost
and the flexibility of migrating to newer technologies by simple
software upgrade. Given recent advances in CPU processing
power, the impact of a soft modem on the throughput of the sys-
tem is reasonable—we measured a 14.7% sustained CPU load on
a 450 MHz Pentium I1. Because soft modems need periodic real-
time computations on the host CPU in order to maintain line con-
nection and transmit data, a mechanism ensuring predictable
scheduling is essential.

Appeared in Proceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, Cambridge,
MA, June 2001.

Stefan Saroiu
Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195-2350, USA

tzoompy@cs.washington.edu
http://www.cs.washington.edu/homes/tzoompy/

This paper presents a detailed study of the performance charac-
teristics and resource requirements of a popular soft modem®. We
analyzed the vendor-supplied version of the driver and three ad-
ditional versions that we created. The four versions of the soft
modem driver are:

* INT —the signa processing routines are executed in an inter-
rupt handler (ak.a. in interrupt context). This is the original
version.

« DPC - the signa processing routines are executed in the
context of a Deferred Procedure Call (DPC) [21, pages 107-
111].

e THR - the signa processing routines are executed in the
context of a kernel thread scheduled using the standard pri-
ority-based Windows 2000 scheduler.

* RES - the signal processing routines are executed in the
context of a kernel thread scheduled using a Rialto/NT CPU
Reservation [16].

We captured performance profiles of each of the four versions of
the driver and compared and contrasted the modem performance.
We report on the benefits and the problems encountered with each
of the driver versions analyzed. One of the goals of this study isto
make the detailed performance characteristics of a popular soft
modem available to the industry, allowing this data to inform their
work on providing predictable execution on consumer and gen-
eral-purpose operating systems.

While the soft modem’'s 14.7% CPU load is not high per se, a
problem with the vendor version is that all of thistimeis spent in
interrupt context. Once connected, the execution of the interrupt
handler typically lasts 1.8ms with arepeatable worst case of 3.3ms
during connection.

This study shows that signal processing in interrupt context is not
only unnecessary but also detrimental to the predictability of other
computations in the system. While DPCs and priority-based
scheduling cause milder side effects upon the rest of the system,
they nevertheless suffer from some of the same drawbacks as the
original version. We conclude that certain kinds of real-time
scheduling abstractions provide a better answer to the observed
predictability problems that can be caused by the soft modem.

Indeed, their real-time regquirements and omnipresence make the
soft modems an excellent environment for testing the feasibility
and the practicality of soft real-time scheduling for commodity
operating systems. One section of our results is dedicated specifi-

1 Our agreement with the manufacturer prevents us from identi-
fying this soft modem.

cally to studying the effectiveness of using a particular set of real-
time scheduling abstractions for supporting the predictability
requirements of the soft modem. This paper demonstrates a con-
crete set of benefits when real-time scheduling is applied to the
computations employed by a soft modem.

Findly, we believe many of the lessons learned from studying soft
modems are applicable to a wider class of problems. Other soft
devices are aready in use, with more coming soon. For instance,
software-based Digital Subscriber Line (Soft DSL) [22] devices
have been announced. As will be detailed, Soft DSL has similar
execution period requirements, but significantly larger overall
CPU requirements than soft modems.

The remainder of this paper is structured as follows: Section 2
provides background on soft modems and operating systems sup-
port for predictable execution. Section 3 describes the hardware
and software tools used for our study. Section 4 details how the
soft modem used in these experiments operates. Section 5 dis-
cusses the four soft modem driver versions used in this study.
Section 6 contains our results. A roadmap of the results can be
found at the beginning of Section 6. Section 7 discusses possibili-
ties for further related research. Section 8 relates some industry
perspectives on the findings of the study. And Section 9 presents
our conclusions.

2. BACKGROUND

2.1 Modem Taxonomy

A modem is a periphera device that enables computers to com-
municate with each other over conventional phone lines. The term
modem stands for Modulator/Demodulator. The purpose of a
modem is to convert (modulate) the digital signal that a computer
understands into an analog signal that can be carried over a phone
line, and to re-convert (demodulate) the analog into a digital sig-
na at the other end [3]. Demodulation consists of digitizing ana-
log waveforms using an A-to-D converter followed by the appli-
cation of signal processing algorithms. Modulation consists of a
different set of signal processing algorithms to produce a digitized
waveform, which is sent through a D-to-A converter.

Traditional modem communication standards assume that both
ends of a data connection are linked to the public switched te-
lephony network (PSTN) by analog lines. This limits the commu-
nication bandwidth to 33.6Kbps in each direction [1]. By assum-
ing that one of the endpoints is connected digitally to the PSTN
(like most Internet Service Providers are), modern modems are
able to achieve speeds of up to 56K bps downstream and 33.6Kbps
upstream using the V.90 protocol [12].

There are four functions that a modem provides:

1. An interface between analog phone lines and digital com-
puter components— A/D and D/A.

Signal modulations at different rates.
An Attention (AT) command set interpreter.

4. An asynchronous interface between the modem and the com-
puter.

In addition to these functions, any modem card will provide buff-
ering for data flowing in both directions.

Modems can be classified into hardware-based modems (tradi-
tional modems) or software-based modems, depending on where
each of these functions are executed.

2.1.1 Hardware-based Modems

Traditiona modems implement al the modem functionality in
hardware on the modem card. Dedicated chips provide signal
modulation and interpret the AT command set. The card also pro-
vides A/D and D/A converters. On older modems, the Universal
Asynchronous Receiver/Transmitter (UART) chip implements the
asynchronous interface between the modem and the computer.
Today, the PCI bus interface often provides this functiondity,
replacing the UART chip.

2.1.2 Software-based Modems

Software-based analog modems use the host processor to perform

some of the modem functions traditionally performed on the mo-

dem card. Two types of software-based modems have emerged

[71:

1. Controllerless modems (also known as winmodems or linmo-
dems), which perform and interpret the standard attention
(AT) commands on the main processor. Signal modulation,
A/D, and D/A are implemented by hardware on the modem
card.

2. Soft modems, which perform signal processing (as well as
AT commands) on the host CPU, unlike both regular and
controllerless modems. Modem data buffers may reside in
host memory. Soft modems still have hardware-based A/D
and D/A converters.

Today, the software-based analog modems are very common on
the new computer systems, both for workstations and especially
for laptops. Some of the reasons for their success are low cost,
low power consumption, and maximum upgrade flexibility.
Drawbacks are high CPU and memory usage. The scant availabil-
ity of drivers for operating systems other than Windows has also
contributed to their limited use on non-Windows platforms.

The soft modem driver that we used for our experiments follows
the Windows Driver Model (WDM) standard [21, 19]. Since the
Rialto/NT abstractions were implemented on Windows 2000, our
study is focused on this operating system.

2.2 Commodity Operating Systems and Real-

Time Applications

General-purpose operating systems such as Windows 2000, Li-
nux, and Solaris are increasingly being used to run time-
dependent tasks such as audio and video processing despite good
arguments against doing so [20]. This is the case even though
many such systems, and Windows 2000 in particular, were de-
signed primarily to maximize aggregate throughput and to achieve
approximately fair sharing of resources, rather than to provide
low-latency response to events, predictable time-based schedul-
ing, or explicit resource alocation. Nonetheless, since these sys-
tems are being used for time-dependent tasks, it is important to
understand both their capabilities and limitations for such appli-
cations.

One common mechanism provided for real-time applications is to
designate a range of high priority levels as real-time priorities.

For instance, Windows 2000 supports 32 priority levels in three
classes:

e Idle Priority Oisused by the per-processor idle threads.

¢ Regular: Priorities 1-15 are variable levels; thread priorities
in this range are adjusted by the system within the range to
increase responsiveness. For example, quantum size is in-
creased for threads in the foreground process, priority may be
boosted upon completing a wait, and priority is boosted for
threads that have been ready to run, but not scheduled for
several seconds.

¢ Real-Time: Priorities 16-31 are real-time priorities. Quanta
and priorities of threads in this range are not adjusted—the
scheduler simply runs the threads at the highest priority in a
round-robin manner.

2.3 TheRialto/NT Approach

The CPU Reservation abstraction was devel oped within the Rialto
real-time operating system [14, 13]. This abstraction alows ac-
tivities to obtain minimum guaranteed execution rates with appli-
cation-specified reservation granularities. This abstraction was
subsequently ported to aresearch version of Windows 2000 called
Rialto/NT [16].

Rialto/NT was designed and built to combine the benefits of to-
day’s commodity operating systems with the predictability of the
best soft real-time systems. Rialto/NT supports simultaneous exe-
cution of independent real-time and non-real-time applications.
These goals are achieved by computing a deterministic schedule
that meets the declared requirements of all admitted real-time
tasks whenever the set of real-time applications changes.

3. ENVIRONMENT AND METHODOLOGY

3.1 Hardware Environment

All performance results reported were measured on a Dell Preci-
sion 610 system with a 450 MHz Pentium 1I, 384 MB ECC
SDRAM and a Quantum Viking Il SCSI hard drive. The soft mo-
dem supports theoretical speeds of up to 56Kbps downstream and
33.6Kbps upstream and a plethora of modem standards including
V.90, V.42bis, V.42, and V.34 [12]. The minimum system re-
quirements for this soft modem are:

e 150 MHz Pentium processor or 233 MHz AMD K6/K6-2

processor or 266 MHz Cyrix 6x86 M X processor.

¢ Windows 95/98 with 16 MB of RAM or Windows NT 4.0
with 32 MB of RAM.

e 2 MB of free disk space.

For al traces (except for results in Sections 6.5.2 and 6.6), we
connected to the Microsoft internal network via Remote Access
Service (RAS) using the Point-to-Point Protocol (PPP). We used
the same phone number that Microsoft employees use to connect
from home. The Microsoft RAS Servers use 3Com Total Control
[2] remote access devices. Under normal conditions, the modem
connected at speeds of 50.6Kbps downstream (and occasionally
higher) and 31.2Kbps upstream. The Microsoft internal network is
a 100M bps switched network.

For the results presented in Sections 6.5.2 and 6.6, we used a
dedicated Microsoft Research RAS Server with a Digi DataFire
RAS 48 PT2 [8] remote access concentrator device. The modem

connected at a downstream speed of 50.6Kbps and an upstream
speed of 28.8Kbps.

3.2 Software Environment

3.2.1 Instrumented Windows 2000 Kernel

We used an instrumented version of the Windows 2000 kernel in
order to understand and tune the behavior of the system and ap-
plications. The kernel is capable of logging a wide variety of
events to a physical memory buffer and then dumping them to
disk for post-processing. During our experiments, we used prede-
fined instrumentation points to log al deferred procedure calls
(DPCs), thread context switches, thread and process creations and
deletions, and synchronization events. We aso logged applica
tion-specific data such as modem hardware register values and
modem phase change events.

The instrumented kernel offers the same performance as a regular
kernel when no events are to be logged. Furthermore, logging an
event has minimal impact on the system performance. We meas-
ured an average execution of 247 cycles for logging an event,
which trandlates to about 549ns on the computer used to collect
the data.

Logging produced around 10MB of data per minute. After
dumping the binary event logs to disk and converting them into a
text format, we post-processed the output with Perl scripts that
filtered out uninteresting data and converted the remainder into a
more readable format.

All the experiments used a kernel that contains both the regular
Windows 2000 and the Rialto/NT [16] schedulers. A thread is
scheduled based on its priority unless it makes a CPU Reservation
via a system call. A thread to which a CPU Reservation is guar-
anteed is scheduled by the Rialto/NT scheduler.

3.2.2 Soft Modem Driver Source Code

For the soft modem driver, we had access to source code that
negotiates the connection, services the card interrupts, and makes
the appropriate calls to the signal processing routines. We did not
have source code for any signal processing related modem func-
tionality.

The lack of complete source code of the driver did not impede us
from studying the predictability of the soft modem. In the vendor
version of the driver, the calls to the signal processing routines are
made in the interrupt handler. The available source code alowed
us to instead make the calls in the context of either a DPC or a
thread, as needed in our experiments. We were unable, however,
to draw any conclusions about the effectiveness of the signal
processing agorithm, nor fully understand or modify its behavior
when invoked |ater than it would have been in the INT version.

4. SOFT MODEM OPERATION

The soft modem uses Direct Memory Access (DMA) to transfer
data between memory and the A/D and D/A. Sixteen-bit samples
are transferred at rates between 7.2 KHz and 16 KHz. When re-
celving, whenever a predefined amount of data has been sampled
off the phone line, the modem interrupts the system. The interrupt
handler processes both incoming and outgoing data. This soft
modem uses floating point but does not use MM X instructions for
its signa processing algorithms. The driver software must con-
sume incoming and provide outgoing samples without overflow-

ing or underflowing the buffers. There are four different buffers—
two output buffers (one for data and one for voice samples) and
two input buffers. Each buffer has a size of 512 16-bit samples,
for atotal of 1024 bytes. Since modems are mainly used for data
communication, our experiments traced the data buffers only.

When dial-up is initiated, but before the dia tone, the modem is
in an on-hook state performing ring detection. During this period,
which lasts about two seconds, interrupts occur whenever 18
samples have been transferred by the DMA to the memory; a a
DMA rate of 7.2 KHz, this corresponds to an interrupt rate (the
inter-arrival time between interrupts) of 2.5ms. During dialing and
initial modem connection attempts, interrupts occur for every 90
bytes of transferred data, corresponding to an interrupt rate of
12.5ms.

After dialing is finished, when the modem attempts to connect,
there is an initia period of training during which the modem lis-
tens to the phone line trying to determine whether any modem
protocols are in use and whether analog to digital conversion is
taking place. If no conversion is occurring, the V.90 protocol is
used and the modem connects at 56Kbps or less. If there is A/D
conversion then the ISP is not connected digitally to the PSTN
and the modem uses the V.34 protocol, with its inherent 33.6Kbps
connection speed [1].

5. SOFT MODEM DRIVER VERSIONS
5.1 Initial Interrupt-Based Version (INT)

In the initial (vendor-supplied) version of the driver, when the
card interrupts the CPU, the driver software performs signa proc-
essing inside the interrupt handler (ak.a. Interrupt Service Rou-
tine or ISR). Both outgoing and incoming samples are processed
during each interrupt. The handler also services modem requests
for changing the transfer frequency and the number of samples per
interrupt, both of which, in effect, determine connection speed.

Under Windows 2000, the interrupts are serviced in a priority
order based on their interrupt request levels (IRQLS). Thus, the
modem interrupt handler can be preempted by other interrupt
handlers. On our test machine, al other interrupts had higher
priority with two exceptions—the interrupts associated with the
network card and the SCSI controller for the CD-ROM. Some of
the higher priority interrupts include the interrupts servicing the
keyboard, the communications ports, the mouse, the audio drivers,
the floppy disk and the SCSI hard disk.

5.2 DPC-Based Version (DPC)

Deferred Procedure Calls (DPCs) are routines executed within the
kernel in no particular thread context in response to queued re-
quests for their execution. For example, DPCs check the timer
queues for expired timers and process the completion of 1/0 re-
quests. Having interrupt handlers queue DPCs to finish work
associated with them reduces hardware interrupt latency. All
queued DPCs are executed whenever athread is selected for exe-
cution just prior to starting the selected thread. There cannot be
more than one instance of the same DPC inside the queue at any
one moment. While good for interrupt latencies, DPCs can be bad
for thread scheduling latencies, as they can potentially result in an
unbounded amount of work before athread is scheduled.

We created a version of the soft modem driver that executes the
signal processing code in a DPC. When the modem card raises an
interrupt, the ISR queues a DPC to process the buffer of samples.
Unlike the vendor version, where only higher priority interrupts
preempt the signal processing routines, signal processing execut-
ing inside of aDPC is preempted by al hardware interrupts.

There can be more than one occurrence of the interrupt before the
DPC is executed. Therefore, synchronization between the inter-
rupt handler and the DPC was implemented using an atomically
incremented variable that was set to the number of interrupt oc-
currences. This variable is atomically decremented by each proc-
essing unit executed by the DPC.

5.3 Thread-Based Version (THR)

In the THR version of the driver, signa processing is performed
in a thread running at a specified priority. The thread is created
during driver initialization.

A semaphore was chosen as the synchronization mechanism be-
tween the thread and the interrupt handler. Under the Windows
2000 model, a semaphore cannot be directly set from an interrupt
handler. Thus, whenever the interrupt occurs, the interrupt handler
gueues a DPC that signals the thread via the semaphore. As be-
fore, since there can be more than one occurrence of the interrupt
before the DPC is executed, an atomically set variable is shared
between the ISR and the DPC.

Because interrupt handlers and DPCs run to completion before a
thread is dispatched, there is a potentially unbounded delay be-
tween the interrupt and when the thread starts to run. However,
for specific hardware and driver combinations, reasonable delays
are achievablein practice [6].

5.4 CPU Reservation-Based Version (RES)

In the final version of the driver, the signal processing thread uses
the Rialto/NT real-time scheduler's CPU Reservation abstraction
to ensure a minimum guaranteed execution rate and granularity.

CPU Reservation reguests are of the form reserve X units of time
out of every Y units for thread A. This requests that for every time
interval of size Y, thread A be scheduled for at least X time units,
provided it is runnable. For example, a thread might request
800us every 5ms, 7.5ms every 33.3ms, or one second every min-
ute.

CPU Reservations are continuously guaranteed. If A has a reser-
vation for X time units out of every Y, then for every time T, A
will be run for at least X time units in the interval [T, T+Y], pro-
vided it is runnable. Execution time intervals granted to a thread
for its reservation are not guaranteed to be contiguous. If a thread
is not runnable during its reserved time intervals, the time is re-
turned to the Windows 2000 scheduler and used for other threads.

The current implementation of Rialto/NT has two restrictions: (1)
CPU reservations must have values that are integer multiples of
milliseconds, since they are driven off the periodic Windows 2000
clock and (2) the period of a reservation must be a power-of-two
multiple of a millisecond due to a choice of agorithms within
Rialto/NT.

Since processors run at different speeds, a CPU Reservation re-
quest should have different values on different machines. In prac-
tice, developers will typically use one of two adaptive techniques
to determine an appropriate CPU Reservation amount: The pro-

gram can dynamically measure the amount of time actually used
for its time sensitive computation, and base its reservation amount
on the observed runtimes. And it can adjust its reservation amount
according to whether the computation was able to finish on time
during previous iterations. Both techniques may also be employed
in combination.

We andyzed the soft modem under different reservations—1
millisecond every 8 milliseconds (12.5%), 2ms/8ms (25%),
2ms/16ms (12.5%), 3ms/16ms (18.75%), 1ms/dms (25%). The
reservation is requested only after the on-hook phase of about two
seconds in order to avoid interference with this high interrupt rate
period. During this initial phase, the thread runs without a reser-
vation but with a real-time priority. Since the soft modem causes
audio computations during dia-up (different protocol attempts
can be heard while connecting), and the kernel audio mixer
threads run at priority no higher than 24, we assigned priority 24
to the thread during this period. Having sub-millisecond reserva-
tion accuracy would have allowed us to use a different reservation
for the on-hook phase, for instance 0.1ms every 2.5ms.

6. RESULTS

Our results are organized as follows: Section 6.1 gives an over-
view of our experiments. Section 6.2 quantifies the resource usage
and timing behavior of the origina soft modem driver, plus the
DPC and THR versions. Section 6.3 measures the drivers' inter-
ference with other applications operation. Section 6.4 describes
the behavior of the soft modem and its effects upon other applica-
tions when CPU Reservations are used to schedule its signal proc-
essing computations. Section 6.5 quantifies the effects that the
different implementations have upon end-to-end modem down-
load throughput. Section 6.6 attempts to precisely characterize the
minimum resource and timing requirements that the soft modem
must obtain in order to function correctly.

6.1 Overview of Experiments

We analyzed the behavior of the modem under two main scenar-
ios—dial-up and steady state communication. These are the ex-
periments we ran:

e Establishing a connection with and without contention by a
synthetic CPU load. The CPU load we applied was a normal
priority (priority 8) spinning thread.

¢ A highly compressed file transfer with and without a normal
priority spinning thread.

« Different rea-time and normal thread priorities for the THR
version, with a spinning competitor.

. Different reservation amounts for the RES version.

e A dtress scenario where the soft modem driver, a norma
priority (priority 8) spinning thread and a priority 10 process
performing a grep command that searches the entire file sys-
tem were run concurrently. By running the grep over the en-
tire file system, we ensured disk activity. We found the stress
scenario results to be identical to those for a connection with
a normal priority competitor. The induced disk activity did
not influence the soft modem driver behavior.

In addition to these tests, we studied the impact of the different
driver versions on the scheduling latency observed by a real-time
thread that uses Windows multimedia timers to request a callback
every 1ms.

In order to quantify the observed modem behavior, we measured
the following parameters:

» Thetimes between successive soft modem interrupts.

* The times between successive DPC calls and thread wake-
ups.

* The elapsed times spent in the soft modem interrupt handler,
DPC, and thread. (Note that these times include processing
times spent in other contexts that preempt the traced ISR,
DPC, or thread. We believe that this is appropriate, since
signal processing times are the variable of interest and not
execution times.)

e The number of samples pending to be processed. This vari-
able directly reflects whether the modem is meeting its dead-
lines and whether it recovers from temporary unprocessed
data accumulations. This value will always be less than the
buffer size of 512 samples since it will wrap around to zero
(indicating loss of data) should it ever reach 512.

» The modem'’s effect on the scheduling latency of coexisting
threads.

e The end-to-end modem throughput. This is a primary meas-
ure of user-visible modem behavior.

Whenever possible, we compared the measured soft modem per-
formance to the PC 99 specification recommendations [11]. PC
99 was created by Intel and Microsoft as a set of recommenda-
tions to hardware manufacturers and driver writers for the Micro-
soft Windows family of operating systems.

6.2 Soft Modem Resour ce Usage Study

The measurements presented in this section use a test scenario of
a dial-up connection with a normal priority spinning competitor
thread.

Rate of Interrupts (INT)
On-hook Dialing Training Connected
35
30
»n 25
kel
S 20
(5] . -
2 .
@ 15
= 10
5
-_——
0 T T T T T 1
0 5 10 15 20 25 30
Time (seconds)
Figure 1: Rate of soft modem interrupts (INT)

6.2.1 Soft Modem Interrupt Rate

Figure 1 shows the interrupt rate for the INT version. Before di-
aling, interrupts occur very frequently (every 2.5ms) for about two
seconds—the modem is on-hook performing ring detection. For
the next 9 seconds, interrupts occur every 12.5ms while the mo-
dem is dialing and waiting for the other end to start the connec-
tion. Whenever there is a change in DMA frequency or in the size
of the sample buffers, the modem requests an interrupt frequency
change. This request causes a short delay in the interrupt rate that
corresponds to the six scattered points in the graph. Once the
connection has been established, interrupts occur every 13.125 or
11.25 milliseconds. The rates fall within the PC 99 recommended

interrupt rates of 3-16 milliseconds[11]. The other driver versions
have the same interrupt rates.

Elapsed Times in Interrupt Handler (INT)

2 On-hook Dialing Training Connected
3.5
- 3 -
2 25 2
S . 03
g 2 ey
= 15 P-‘
b= . 3
1 5 x Sogs
05 P ——]
0 T T T T
0 5 10 15 20 25 30

Time (seconds)

Figure 2: Elapsed timesin interrupt handler (INT)
6.2.2 Elapsed Timesin ISRin INT Version

The PC 99 gpecification recommends that the maximum time
during which a driver-based modem disables interrupts should not
exceed 100pus [11]. Figure 2 shows that the execution of the inter-
rupt handler typically lasts 1.8ms with a repeatable worst case of
3.3ms—a factor of 33 worse than the specs recommend. The
elapsed times measure the times needed to handle the soft modem
interrupts and include time spent in other interrupts that might
have preempted the soft modem interrupt handler.

We believe that spending this much time in interrupt context has
unacceptable consequences for the predictability of coexisting
real-time activities. For instance, multimedia timers in Windows
2000 alow applications to schedule callbacks at millisecond
granularity. Obviously, this resolution will not be attainable if any
ISRs run for longer than 1ms. We quantify multimedia timer delay
in Section 6.3.

CPU load in steady state. As Figure 3 illustrates, the soft modem
uses 14.7% of the CPU once connected.

Elapsed Times In Interrupt Handler (DPC)

18 On-hook Dialing Training Connected
"
=}
c
(=]
(4]
(7]
0
<
L
=

2

0 T T T T T

0 5 10 15 20 25 30
Time (seconds)
Elapsed Times In Queued DPC (DPC)
On-hook Dialing Training Connected

35 0

3 +
2]
T 25 ¢
Q 3
: il
= 15 S
s - N

1 -%

0.5 e

Mo
0 T + T T T
0 5 10 15 20 25 30

Time (seconds)

Figure 4: Elapsed timesin interrupt handler (above) and in
queued DPC (below) (DPC)

CPU Load
350 On-hook Dialing Training Connected
30%
25%
3 B
S 20% c
-
o] * o oz s
& 15% —
o ’*‘
10% -
<. -~
50 . ‘...__
0% | emi™ 2 !\ T T T
0 5 10 15 20 25 30

Time (seconds)

Figure 3: CPU utilization (INT)

6.2.3 CPU Utilization

Figure 3 shows the CPU utilization of the soft modem. Each point
represents the utilization during a 12.5ms interval while the soft
modem code was executing. We chose 12.5ms because this is the
average period between soft modem interrupts during all but the
first two seconds of a connection. The connection is established
after 23 seconds, thus the last five seconds of the trace present the

6.2.4 Times Spent by the DPC Version

When signa processing is done in a DPC, the interrupt handler
does very little work—an average of 5.4us per interrupt and a
maximum of 16us. Figure 4 shows the times spent inside of the
interrupt handler and the DPC. Unsurprisingly, the times spent in
the DPC are essentialy identical to those spent in the ISR in the
original version in Figure 2.

While the ISR execution times have been reduced from millisec-
onds to a few microseconds, the time spent inside the DPC is till
too large. The PC 99 specifications suggest that at any instant in
time, the total execution time required for all DPCs that have been
queued by a driver-based modem, but have not been executed,
should not exceed 500us [11].

6.2.5 Samples Pending to be Processed

Executing signal processing in a thread context has the benefit of
minimizing the times spent in interrupt handlers and DPCs. While
the predictability gains are obvious, the question becomes whether
the soft modem is able to process data and maintain the line con-
nection. A good indicator of the connection performance is the
number of samples pending to be processed in the receive data
buffer. Figure 5 shows these unprocessed samples for the vendor
version, measured after the call to the signal processing routine
returns.

In the training and connected phases, there are never more than 30
samples left unprocessed in the buffers, which is very small rela
tive to the size of the buffer (512 samples). The DPC version has
approximately the same number of unprocessed samples.

Samples Pending to be Processed (INT)

5 On-hook Dialing Training Connected
o 30
K]
E 2 e
3
2 20
3 o wecems wes
8 15 —
S
s 10 —
=
2 5

0 4

0 5 10 15 20 25 30

Time (seconds)

Figure 5: Samples pending to be processed with a normal
priority spinning thread (INT)

Samples Pending to be Processed (THR 24)

On-hook Dialing Training Connected

35
30

25 e e
20
15 —

CRRRRY P SR

10

Unprocessed Samples
[

0 5 10 15 20 25 30
Time (seconds)
Figure 6: Samples pending to be processed with a normal
priority spinning thread (THR 24)

Figure 6 shows the samples pending to be processed for the THR
driver version, measured after the call to the signal processing
routine returns. The PC 99 specs recommend that drivers should
perform long computations in a real-time thread using priorities
28 and above. After trying different priority settings, we con-
cluded that priority 24 suffices, which is the same as the thread
priorities of the audio drivers that are used by the soft modem to
output the modem noises during connection.

In Figure 6, the THR version of the driver is able to keep up with
the received samples, even in the presence of normal priority
competition. There are more cases when there are 30 samples left
unprocessed, but overall, the behavior looks very similar to the
vendor version.

6.2.6 Samples Pending for a Failed Connection

In order to understand the modem behavior under severe compe-
tition, we lowered the priority of the signal processing thread.
Figure 7 shows the samples pending to be processed when the
processing thread has normal priority (priority 8) and there is a
normal priority spinning competitor. The soft modem is not able
to dial the number properly. Instead, the “ Please hang up and try
your call again” message is heard. As Figure 7 illustrates, run-
ning the modem thread at too low a priority causes buffer over-
flows when competition is present.

Samples Pending to be Processed (THR 8)

On-hook Dialing "Please hang up and try your call again”

Unprocessed Samples

Time (seconds)

Figure 7: Samples pending to be processed with a normal
priority spinning thread (THR 8)

Elapsed Times in Thread Run (THR 24)

4 On-hook Dialing Training Connected
35 -
3 . :
1%2] . .
T 25 . ;
<] . el el o
= 15 - &
= PO
1 of
05 ’Fl;"‘
H e
0 T T T T T T
0 5 10 15 20 25 30 35

Time (seconds)

Figure 8: Elapsed timesin thread run (THR 24)

Elapsed Times in Thread Run (THR 8)

07 On-hook Dialing "Please hang up and try your call again"

0.6

0.5 + ~

0.4 n S .
P R T X AR AN
. .

0377 AN
0.2 ...
$

0.1 ’?
:

0+H—+4 : : : : :
0 5 10 15 20 25 30 35

Time (seconds)

Figure 9: Elapsed timesin thread run (THR 8)

Milliseconds
N
‘e

6.2.7 Elapsed Timesin the Sgnal Processing

Thread
Figure 8 shows the elapsed times spent per thread wakeup for the
THR driver version at priority 24 with a normal priority spinning
competitor.

The elapsed times for the thread runs look identical to the elapsed
times in the interrupt handler for the vendor version and the
elapsed times in a DPC for that version. This is expected, since
there is no real-time competitor for the signal processing thread.

As Section 6.2.6 shows, when the signal processing thread has
priority 8, the modem is not able to dial the number properly un-

der the presence of a normal priority spinning competitor. Since
no data is exchanged over the phone lines, there is very little time
elapsed per thread run for signal processing, as seen in Figure 9.

6.3 Interference with Scheduling

Predictability of Other Applications
In order to understand the effects of long running ISRs and DPCs,
we measured the wakeup latencies of a callback routine that uses
Windows multimedia timers. The timers have been set to fire
every millisecond and the routine is called with priority 31, the
highest priority for area-time thread.

Control Case - No Modem
3.0%

96.8%
2.5%

2.0%

1.5%

1.0%

Percentage of Callbacks

0.5%
0.0% = = ﬂ [

N} QO N} QO N} QO \) Q \) Q \) QO N}
PO E P \90 \963 \/,\9 \ign \90 \963
Latency (microseconds)

Figure 10: Latency histogram for a 1ms callback routine
without the soft modem

6.3.1 Control Case: Timer Latency with no Modem
Figure 10 shows a histogram of the measured timer wakeup laten-
cies on a quiescent machine when the soft modem is not running.
The experiment captured 30,000 wakeups over a 30-second pe-
riod. Samples are accumulated into 50us buckets. On this ma-
chine, timer wakeups are triggered by the Real-Time Clock (RTC),
which isinterrupting at a rate of 1024Hz, or every 976ps. (It sup-
ports only power-of-two frequencies.) Thus, as described in [15],
approximately 2.4% of the wakeups occur near 2ms, since clock
interrupts arrive 2.4% faster than the desired 1ms timer wakeup
rate.

6.3.2 Timer Latency with INT and DPC Versions
Figures 11 and 12 show histograms of the measured latencies
when the soft modem is added, for the INT version and for the
DPC versions, respectively. The damage the soft modem’s long-
running ISR or DPC causes to the predictability of the callback
routine is evident: the tails of the distributions increase from 2ms
to over 5ms. This is precisely the reason why the PC 99 modem
guidelines recommend that such long-running computations be
performed in threads.

6.3.3 Timer Latency with THR Version

Figure 13 illustrates the callback latencies for the THR driver
version. As before, it uses a priority 24 real-time thread. By run-
ning the modem computations in a thread, timer wakeup latencies
are once again nearly as predictable as those for the control case
in Figure 10.

Given that thread-based signal processing works well and causes
less disruption of coexisting system activities, why then might a
vendor dtill chose to perform signa processing in DPCs or in
interrupt handlers instead of athread?

INT Version

3.0%

83.1%
1]
£ 25%
©
2
3 2.0%
8
©
S 15%
j=2)
@
£ 1.0%
[}
=4
& 05%

0.0% IR LLEL e nmmmn et AR AAIAI e
RIS R S N N S I R S N
SLTALSL,ELELLSLEL LSS L LSS S
R S R S S

Latency (microseconds)

Figure 11: Latency histogram for a Ims callback routine
with the vendor driver version (INT)

DPC Version
3.0%
82.6%
L 25%
Q
[
o
= 2.0%
o
k]
° 15%
j=2)
@
£ 1.0%
[}
I
S 05% HH
0.0% ‘“‘”‘”‘ﬂ‘“‘ﬂ‘ﬂ‘“‘”‘“‘H‘H‘ﬂ‘“‘ﬂ‘ h \H\H\“\“\“\“\“\“\“\“\“\“\ PO LT P —
O O O O O O O O O O O O O o o o o o o
O W0 Wmn nH uwwmwwLwLuwLuwmLwmwLwmWLwmLwmLwmLwmo o
N < © 0 O N ¥ © 0 O N ¥ © 0 O N N~ I
o 4 4 4 4 N N N N N OO M M <

Latency (microseconds)

Figure 12: Latency histogram for a 1ms callback routine
with the DPC version

THR Version (24)
3.0%

93.8%
2.5%

2.0%

1.5%

1.0%

Percentage of Callbacks

0.5%

0.0% -+ = = A

R Y Y Y Y P Y
TP E S

N
Latency (microseconds)

Figure 13: Latency histogram for a 1ms callback routine —
THR version (THR 24)

6.3.4 Reflections upon the Vendor Choice

With threads, vendors face a problem common to all priority-
based open systems (ones in which independently authored appli-
cations and/or drivers may be executed): for any chosen priority,
there is a potentially unbounded delay until athread is scheduled
to run. These delays can be caused by other applications running
for arbitrary periods of time at the chosen or higher priority. Thus,
no timing guarantees can be made.

For systems with a fixed priority preemptive scheduler, like Win-
dows 2000, one solution would be to use Rate Monotonic Analy-
sis (RMA) [18] to assign priorities such that all time-dependent

tasks can meet their deadlines. (Rate monotonic analysis does two
things: it assigns priorities to periodic tasks in order of their peri-
ods, with higher priorities going to tasks with shorter periods.
And it determines whether the entire resulting schedule is feasible,
based upon the resulting priority assignments and computational
requirements of each task.) Unfortunately, RMA cannot be practi-
cally employed because:

* RMA assumes cooperation between the threads, which is
unrealistic in an open system, given the existence of inde-
pendently developed drivers and applications written by dif-
ferent vendors running together on the same operating sys-
tem.

* RMA assumes constant timing requirements for al the co-
existing threads. Whenever the CPU requirements of a thread
change, it potentially affects the scheduling all the other co-
existing threads.

We believe that a better alternative to RMA in an open system
would be a real-time scheduler such as Rialto/NT. The coexisting
threads could then reserve ongoing portions of the CPU according
to their needs, using the CPU Reservation abstraction. They
would be then guaranteed timely execution even in the presence
of competition. This aternative is explored in the next section.

6.4 Rialto/NT Real-Time Scheduling Results
This section presents results achieved by scheduling the soft mo-
dem’s signal processing computations using CPU Reservations
provided by the Rialto/NT scheduler. All experiments in this sec-
tion were run with anormal priority spinning competitor thread.

6.4.1 Samples Pending to be Processed in RES

Version

Figure 14 shows the samples pending to be processed for the RES
driver version for a 2ms every 8ms CPU Reservation, which re-
serves 25% of the CPU. Note that there are unprocessed samples
left in the buffers, but the modem is able to process them in time
and no buffer overflows occur. This situation occurs because a
2ms every 8ms CPU Reservation only approximates the desired
2ms every 12.5ms reservation. While there are more pending un-
processed samples than in the vendor version or THR version
without real-time competition (see Figure 6), we believe that this
isasmall price to pay in exchange for the gains in the predictabil-
ity of the coexistent system activities. The number of samples
pending to be processed is much smaller than the receive buffer
size of 512 samples, and there is no degradation in the modem
performance.

Furthermore, no matter how many competing threads are intro-
duced at any priority, or with other reservations, the modem’'s
CPU reservation always guarantees it the same amount of time,
alowing it to function just as well as the case shown here. Other
programs behaviors will not drive the modem into the “Please
hang up and try your call again” state that can happen when using
threads without reservations—a key advantage of the RES version
over the THR version.

6.4.2 Elapsed Times per Wakeup in RESVersion
Figure 15 presents the elapsed times spent in the signal processing
thread per thread wakeup. The elapsed times are the times needed
for a single run to complete signal processing. As mentioned be-
fore, this incorporates times spent in activities that preempt the
driver thread.

Samples Pending to be Processed (RES 2ms/8ms)

lGOOn-hook Dialing Training Connected
» 140
< ‘e
2 120
£ o N
& 100 — .
9 v oo P—
@ 80 AL ’,
2 ssore
o 60 S e —
o P T Soenmmemn smemene
3 40 . o R
c R I -
> 20 oo v et ———" -

0 T T T T T T
0 5 10 15 20 25 30 35

Time (seconds)
Figure 14: Samples pending with a normal priority spinning
thread (RES 2ms/8ms — 25%)

Elapsed Times in Thread Run (RES 2ms/8ms)

16 On-hook Dialing Training Connected
14 s
12
2]
2 10
8 8 ° M
Q
2 SO At 0 RN
3 X3
4
2 . . .
s -
0 : o ; ‘ ‘
0 5 10 15 20 25 30 35

Time (seconds)

Figure 15: Elapsed timesin thread run (RES 2ms/8ms —
25%)

RES Version (2ms/8ms)

9
7.0% 85.5%

6.0% —
5.0% —

4.0% —
3.0% —

2.0% —

Percentage of Callbacks

1.0% —

0.0%

Latency (microseconds)

Figure 16: Latency histogram for a 1ms callback routine —
RES version (RES 2ms/8ms)

While larger as a percentage than the actual modem requirements,
a 2mg/8ms CPU Reservation is not an ideal match for the soft
modem processing routines. The period of 8ms causes the signal
processing thread to be scheduled to execute at different times
than the occurrences of the interrupt. Whenever scheduled, the
thread will cede its reservation to the normal spinning competitor
if it isnot in aready state. Also, data can be available when the
thread is outside its reservation, thus having to compete with the
normal priority spinning thread. This behavior is illustrated in
Figure 15 by the elapsed times of 6-8ms for signal processing.
However, despite the period mismatch, this reservation does allow
the modem to operate perfectly, as the resultsin Section 6.5 show.

6.4.3 Coexistent Thread Latenciesin RESVersion
Section 6.3 illustrated the impact of the INT and DPC versions of
the soft modem on the predictability of a callback routine. Figure
16 shows the calback latencies for the RES version with a
2ms/8ms CPU Reservation.

The predictability of the callback routine improves substantially
over the INT and DPC versions. Note that the callback routine is
scheduled by the Windows 2000 scheduler with a priority of 31.
The predictability is similar to the THR version shown in Figure
13, abeit with three times more callbacks occurring one histo-
gram interval of 50us to the left or right of the ideal 1ms callback
period in this version than in the THR version.

6.5 End-to-End Modem Download
Throughput

To analyze modem throughput, we measured the time required to
transfer a 200,000 byte file. The file is compressed to defeat mo-
dem data compression. We repeated the experiment ten times for
each version of the driver.

6.5.1 Microsoft RAS Server Pool

We placed the file on a computer on the Microsoft intranet and
then we measured the transfer times, connecting to the Microsoft
RAS server, as before. There are two components of the measured
times: (1) transfer times of the file through the Microsoft internal
network (from the source computer to the RAS server) and (2)
transfer times through the phone line (from the RAS server to the
destination computer). While including the network times intro-
duces some noise into the modem transfer times, thisis arealistic
scenario; therefore, we chose to include these results.

Min Max Mean [Std Dev|Succ
INT 37.914| 37.258| 37.222| 0.019 10
DPC 37.151| 37.303| 37.229(0.051 10
THR Pri 8 59.899| 60.658| 60.219(0.228 10
THR Pri 24 37.147| 40.648| 37.560 1.086 10
RES 2ms/16ms | 156.632| 240.932| 204.146| 35.447 10
RES 3ms/16ms 37.864| 122.042| 76.840(30.775 10
RES 1ms/8ms 43.741| 83.336| 56.237| 10.73 9
RES 2ms/8ms 37.086| 37.242| 37.175| 0.053 10
RES 1ms/4ms 37.118| 38.823| 37.354| 0.518 10

Table 1: Filetransfer times (seconds) of 200,000 bytes
including network transfer times

Table 1 contains statistics about the transfer times recorded in
seconds, along with the number of successful file copies out of a
total of ten attempts. For the THR priority 8 test, there was no
spinning competitor; otherwise the modem cannot keep the con-
nection dive for the entire transfer. For all the other tests, a nor-
mal priority spinning thread was executing in parallel with the file
transfer.

The 2ms every 8ms and 1ms every 4ms reservations (25% CPU)
behaved identically to the INT and the DPC version, while the
1ms/8ms (12.5%), 3ms/16ms (18.75%) and 2ms/16ms (12.5%)
needed alonger amount of time for transfers.

6.5.2 Microsoft Research Dedicated RAS Server

Next, we eliminated the network transfer times by placing the file
on a RAS server itself. We could not do this on the Microsoft
RAS servers, since running controlled experiments on the large
modem pool would have been infeasible both administratively and

10

technically. Instead, we used a dedicated, Microsoft Research
RAS server.

Min Max Mean |Std Dev [Succ
INT 36.334| 36.398 36.367 0.029 10
DPC 36.272| 36.447| 36.396 0.048 10
THR Pri 8 36.533| 37.000(36.716 0.152 10
THR Pri 24 36.319| 36.475| 36.384 0.056 10
RES 2ms/16ms | 329.485| 363.891| 346.688| 24.329 2
RES 3ms/16ms 94.615| 174.070| 103.789| 24.735 10
RES 1ms/8ms N/A N/A N/A N/A 0
RES 2ms/8ms 36.319| 36.444| 36.378 0.038 10
RES 1ms/4ms 36.303| 36.425| 36.345 0.036 10

Table 2: Filetransfer times (seconds) of 200,000 bytes
excluding network transfer times

Having eliminated the potentia variability introduced by the net-
work, the file transfer times and success rates out of ten attempts
are presented in Table 2. As before, there is a spinning competitor
thread for all the tests except the THR priority 8 test.

This set of resultsis similar to the ones presented in the previous
section, with two differences:

e The RES driver version using a 1ms/8ms reservation discon-
nected so frequently it was impossible to run the experi-
ments. Likewise, the 2ms/16ms reservation was nearly unus-
able.

e On average, the transfer times are both lower and more pre-
dictable, due to diminating the network transfer.

We believe that the disconnections for the 1ms/8ms and
2mg/16ms cases of the dedicated RAS server are most likely
caused by the difference in the type of modem at the server. Re-
member that the corporate RAS server bank uses 3Com Total
Control [2] remote access devices, whereas the dedicated server
uses aDigi DataFire RAS 48 PT2 [8] remote access concentrator
device. Another difference is that while both servers connected at
50.6Kbps in the downstream direction using the V.90 protocol,
the server pool upstream connections occurred at 31.2Kbps,
whereas the dedicated upstream connections occurred at
28.8Kbps. All of this servesto illustrate that the modem protocols
are complicated, and two standards-compliant implementations
may still operate differently.

Nevertheless, while the corporate and research server results are
not directly comparable due to the server hardware differences, we
have succeeded in providing a more accurate measure of end-to-
end modem throughput.

6.6 Reservation Sensitivity Study and Model
As the data above shows, the reservation parameters chosen are
critical to modem performance. A sufficient reservation can make
the RES version perform as well as the origina driver, whereas a
poorly chosen reservation can render the modem inoperable. In
order to better understand the characteristics of these reservation
ranges, and to attempt to develop a predictive model for them, we
undertook the following study.

First, we constructed a modified version of the Rialto/NT sched-
uler that removes the restriction that reservation periods be a
power-of-two multiple of a millisecond, instead allowing us to
make a single reservation with a period of any integer number of
milliseconds. And unlike Riato/NT, in which a thread remains
eligible for timeshare scheduling outside its reserved time dlots,

this new scheduler never alows a thread to run outside of its re-
served time dots. We made these changes in order to be able to
more precisely quantify exactly how much time the soft modem
needs to operate correctly.

We then ran a series of controlled experiments, varying the mo-
dem reservation parameters, in which we re-measured the file
transfer times to the dedicated RAS server, as per the previous
section. With the thread forced to live within its reservation by the
modified scheduler, we found the results extremely consistent
across runs—they tended to either work essentially perfectly or
not work at al, depending upon the reservation. Table 3 shows
transfer times and success rates out of ten attempts for key sets of
reservation values during these experiments.

Min Max Mean [Std Dev | Succ
RES 1ms/7ms 36.333| 36.724| 36.426 0.112 10
RES 1ms/8ms N/A N/A N/A N/A 0
RES 2ms/13ms | 36.288| 36.975| 36.547 0.232 10
RES 2ms/14ms | 38.631| 91.713| 65.172| 37.535 2
RES 2ms/15ms N/A N/A N/A N/A 0
RES 3ms/15ms | 36.275| 36.586| 36.387 0.108 10
RES 3ms/16ms | 97.289| 180.415| 110.523| 26.408 9
RES 3ms/17ms N/A N/A N/A N/A 0
RES 4ms/16ms | 36.255| 37.116| 36.415 0.256 10
RES 4ms/17ms N/A N/A N/A N/A 0
RES 7ms/20ms N/A N/A N/A N/A 0
RES 8ms/20ms | 36.347| 36.476| 36.394 0.039 10

Table 3: Filetransfer times (seconds) for reservations not also
receiving timeshared time

Figure 17 is a graphical representation of the space of possible
CPU reservations in which the reservations from Table 3 are
plotted, differentiating three cases: reservations that were Suffi-
cient for the modem to operate correctly, reservations that were
Insufficient for the modem to operate correctly, and reservations
that were M ar ginal—those for which the modem operated in a
degraded fashion. The Actual average interrupt amount and pe-
riod for the INT version of the driver, 1.84ms out of each 12.5ms,
is also presented as a point of reference.

Also, two lines that play arole in our model of the soft modem’'s
reservation requirements are included in the graph. Oneis a line
from the origin through the “actual” point (1.84ms every 12.5ms).
This slope corresponds to a CPU reservation percentage of 14.7%.
The second is a line dividing the space into regions where the
reservation period and amount differ by more or less than 12.5ms.
In other words, points to the right of this line have reservations
with gapsin them longer than 12.5ms.

For all reservations receiving at least 14.7% of the CPU with gaps
of under 12.5ms, the soft modem operated perfectly. The observed
boundary between working reservations and non-working reser-
vations closely approaches the two boundary lines, with an in-
flection point near their intersection. Indeed, our model of the
modem’s operating ranges predicts that all reservations in this
region of the space should operate correctly, whereas al reserva-
tions outside this region should fail. The intuition behind this
model’s predictionsis explained below.

Firgt, dl points below the 14.7% line represent reservations re-
ceiving a smdler share of the CPU than the original version actu-
ally uses when executing an average of 1.84ms of work every
12.5ms. With insufficient CPU time, the modem eventually falls

11

Modem Reservation Operating Ranges

10
/
% 7] ’
E 8 '
E 71 Sufficient
© 6 - CPU Percentage
S
< 54 and Frequency
c
o 44 Gaps
g 3| 'I:or_]Q_.
9 21 ° 9
]
o 1 . A,
0 Loz i Insufficient Percentage
0O 2 4 6 8 10 12 14 16 18 20 22
Reservation Period (ms)

—e—Sufficient m Marginal

—a—Insufficient ® Actual

------- 14.7% of CPU —.—-.-125ms Gaps

Figure 17: Areas of CPU reservation space where modem
does and does not function correctly. “ Actual” valueisINT
version interrupt rate and amount.

behind and loses data. Second, al points to the right of the
12.5ms gap line represent reservations in which there are periods
of time longer than 12.5ms during which the modem gets to do no
work. During these long gaps, more than one interrupt’s worth of
work can arrive. Yet despite the RES version caling the signal
processing code multiple times when multiple interrupts occur,
the code appears to sometimes not successfully process an old
interrupt’s work once a new one has occurred. (However, without
source for the signal processing code, we are unable to verify this
assumption.) Apparently the signal processing routine must be
caled at least every 12.5msif it isto work correctly.

All insufficient and marginal reservation values fail one or both of
these tests—either their percentage is too small, or their gaps are
too long, or both—conforming to our moddl of what kinds of
reservations should and should not result in the modem operating
successfully. Indeed, the locations of the two marginal results,
where the connection sometimes fails or where the transfer rate is
significantly degraded, likewise affirm the validity of our model—
both are close to, but on the wrong sides of the boundary lines.

We would be remiss, however, if we did not point out that a res-
ervation of 1ms every 7ms proved to be sufficient, even though
this is only 14.3% and our model predicts that 14.7% should be
required. While very close to the predicted threshold, this point
seems to indicate that the behavior in this region is not completely
linear.

To summarize, it appears that both a minimum average fraction of
the CPU must be delivered and it must be delivered frequently
enough in order for the soft modem to function correctly. Both the
fraction and the frequency were easily determined by observing
the behavior of the original interrupt-based driver. The observed
data closely fit this predictive model.

Finally, we believe that other real-time tasks, such as Soft DSL,
which aso involve filling and/or emptying a buffer at a constant
rate will be likely to exhibit similar behavior, albeit, with different
parameters as dictated by the particular buffer size and rate values.

7. FURTHER RESEARCH

Our study is one step in understanding the application benefits of
using real-time schedulers. Soft modems are an ideal platform for
prototyping different real-time system abstractions due to their
precise timing requirements. One potential extension to our study
would be the analysis of the application impact of CPU reserva-
tions for multiprocessor machines.

Multiple soft modems serviced by the same driver on a single
system would pose different challenges to the real-time schedulers
depending on the number of simultaneously communicating mo-
dems. Likewise, more studies are needed to understand the overall
system behavior when multiple rea-time applications using the
Riato/NT scheduling abstractions are concurrently executing.
One opportunity would be to conduct experiments in which both
the soft modem and the digital audio player application, which
was studied in [17], are present.

It would likely prove interesting to construct and study a version
of the driver that used an extension to Windows 2000 providing
hard real-time timing guarantees, such as RTX [5].

Finaly, this research could be extended to the newly proposed
software-based Digital Subscriber Line (soft DSL) [22]. While
CPU requirements for soft DSL are much higher, they possess
some of the same real-time characteristics as soft modems, making
them ideal candidates for understanding the benefits and limita-
tions of real-time schedulers.

8. INDUSTRY PERSPECTIVESAND
THINGSTO COME
8.1 Industry Perspectives on I mplementation

Choices

While one might assume that the vendor was unaware of or chose
to ignore the PC 99 timing guidelines [11] for soft modem inter-
rupt handlers, we have learned through private communication
[Anonymous soft modem vendor, September 2000—identity
withheld due to licensing terms] that the real story is more com-
plex (and more interesting). The vendor, in fact, did produce a
version of their driver that performed signal processing in a
thread, and tested this version with numerous combinations of
hardware and other software.

Just like our THR implementation, their thread-based implemen-
tation normally worked fine. However, during testing, they came
across a few scenarios that starved the modem thread. These in-
cluded copying data from one IDE device to another (for instance,
a CD to a disk), and starting applications such as Internet Ex-
plorer. They aso saw a USB scanner using the Intel 440BX chip-
set holding off interrupts for 30-50ms. Therefore, in an under-
standable move of self-defense, they chose to do signal processing
in interrupt context.

One might ask how such choices could be avoided, particularly
since al users of this soft modem suffer the consequences of the
signal processing being done in interrupt context, whereas only a
very small number of test cases produced problems for a thread-
based version. And indeed, those test cases were caused by be-
haviors themselves not conforming to the PC 99 guidelines—
behaviors such as IDE disk drivers not using DMA, for instance.

The vendor acknowledged that they would be thrilled to be good
system citizens and run the signal processing in athread, provided

12

they could have confidence that other software and hardware ven-
dors would do the same. Clearly, all would benefit from such an
outcome, as overall system predictability would improve, includ-
ing for the modem device itself.

To accomplish this, it is our belief that, ultimately, systematic
latency timing verification of all components and software is the
only viable solution. The definition of “correct operation” must be
extended to include not just “produces the correct answer” but
also measures of timeliness. Only then will vendors have the con-
fidence to “play by the rules’ because they know that others are as
well. For more on thistopic, see[6] and [15].

8.2 Soft DSL and Other Soft Devices
Software-based Digital Subscriber Line (soft DSL) [22] interfaces
are about to appear on the market. The CPU requirements for soft
DSL will be even more demanding than for soft modems. The
facts below were obtained through private communication with
the soft modem vendor [Anonymous soft modem vendor, Sep-
tember 2000—identity withheld due to licensing terms].

There are two communication rates for DSL: G.lite, which is
1.531Mbps downstream and 512Kbps upstream, and full rate
DSL, which is 3.062Mbps downstream and 512Kbps upstream.
Soft G.lite produces a CPU load of approximately 25% of a 600
MHz Pentium I11. Full-rate DSL requires nearly twice that. For
both rates, soft DSL requires a 4ms processing period—signifi-
cantly shorter than the 12.5ms steady state period required for the
V.90 soft modem.

Soft implementations of the 802.11b wireless LAN protocol [10]
and the Bluetooth wireless protocol [9] are aso possible. While
only 2-3% of a 600 MHz CPU is needed, they require short com-
putations extremely frequently—every 312.5us.

Going further, software radio [4], including the use of adaptive
modulation techniques only possible with soft implementations, is
an active area of research and devel opment activity.

The requirements of these, and other soft devices that may be
developed, only increase the motivation for effective operating
system and testing support for low-latency predictable computa-
tions.

9. CONCLUSIONS

We created four different versions of a soft modem driver that
execute the signal processing code in interrupt context, in a DPC,
in a thread using the Windows 2000 scheduler, and in a thread
scheduled by the Rialto/NT real-time scheduler. We anayzed the
performance profiles and the behavior of each driver version.
Based on this analysis, we drew the following conclusions.

First, signal processing in interrupt context is not only unneces-
sary, but also detrimenta to the predictability of any coexisting
activity. Unfortunately, this is precisely what the vendor version
does. We believe, however, that the vendor’'s choice is under-
standable given the absence of predictability guarantees in Win-
dows 2000.

Second, the DPC version has some of the same predictability
drawbacks as the vendor version. Both the vendor and the DPC
versions do not conform to the PC 99 set of recommendations for
the Windows 2000 driver writers[11].

Third, the Windows 2000 scheduled thread version aleviates
some of these problems. We found that the soft modem driver

functions well when the signal processing thread has high real-
time priority and no competition.

Fourth, we conclude that other threads are less interfered with
when the modem is scheduled using the real-time CPU Reserva-
tions abstraction. In particular, this abstraction allows us to con-
trol the amounts of time that the modem interferes with other
time-sensitive computations while still meeting its needs.

In summary, this study makes the detailed performance character-
istics of a popular soft modem available to the industry. We be-
lieve that this data should prove useful for informing ongoing
work on providing predictable execution on consumer and gen-
eral-purpose operating systems.

ACKNOWLEDGMENTS

We wish to thank the soft modem driver engineers for providing
the driver source code for these experiments. Their assistance in
clearing up some of the confusing modem behavior was invalu-
able. We dso thank John Douceur, Steve Gribble, Patricia Jones,
John Regehr, and the SIGMETRICS reviewers for their helpful
comments on earlier drafts of the paper.

REFERENCES

[1] 3Com V.90 Technology. 3Com Corporation, 1998.
http://www.3com.com/technol ogy/tech_net/
white_papers/pdf/50065901. pdf.

[2] Enterprise Remote Access Products. 3Com Corporation,
2000. http://www.3com.com/products/remote.html.

[3] Douglas Anderson, Patrick Dawson, and Michael Tribble.
The Modem Technical Guide, First Edition. Micro House
International, June 1996.

[4] Vanu Bose, Mike Ismert, Matt Welborn, and John Guttag.
Virtual Radios. In IEEE Journal on Selected Areasin Com-
munications, vol. 17, no. 4, pages 591-602, April 1999.

[5] Bill Carpenter, Mark Roman, Nick Vasilatos, and Myron
Zimmerman. The RTX Real-Time Subsystem for Windows
NT. In Proceedings of the USENIX Windows NT Workshop,
Seattle, WA, pages 33-37, August 1997.

[6] Erik Cota-Robles and James P. Held. A Comparison of Win-
dows Driver Model Latency Performance on Windows NT
and Windows 98. In Proceedings of the Third USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI "99), New Orleans, LA, pages 159-172, February
1999.

[7] Software Modems and Microsoft Windows 2000. Dell Corpo-
ration, December 1999. http://www.dell.com/
us/en/hied/topics/vectors_1999-softmodems.htm.

[8] DataFire RAS Scalable Server-Based Remote Access Con-
centrators for Analog and Digital Connections. Digi Inter-
national, 2000. http://www:.digi.com/solutions/
mmcommadapters/dfras.shtml.

[9] Jaap Haartsen and Sven Mattisson. BLUETOOTH: A New
Radio Interface for Ubiquitous Connectivity. In Proceedings
of the |EEE, October 2000.

[10] IEEE Std. 802-11.1997, |IEEE Standard for Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Soecification. Approved 26 June 1997.

13

[11] PC 99 System Design Guide — A Technical Reference for
Designing PCs and Peripherals for the Microsoft Windows
Family of Operating Systems, Chapter 19 — Modems. Intel
Corporation and Microsoft Corporation, 1998.
ftp://downl oad.intel.com/design/pc98/pc99/Pc_99 1.pdf.

[12] Recommendation V.90 — A digital modem and analogue
modem pair for use on the Public Switched Telephone Net-
work (PSTN) at data signalling rates of up to 56000 bit/s
downstream and 33600 bit/s upstream. International Tele-
communication Union, September 1998.
http://www.itu.int/itudoc/itu-t/rec/v/v90.html.

[13] Michael B. Jones, Joseph S. Barreralll, Alessandro Forin,
Paul J. Leach, Daniela Rosu, Marcel-Catalin Rosu. An Over-
view of the Rialto Real-Time Architecture. In Proceedings of
the Seventh ACM SIGOPS European Workshop, Connemara,
Ireland, pages 249-256, September 1996.

[14] Michael B. Jones, Daniela Rosu, Marcel-Catilin Rosu. CPU
Reservations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities. In Proceedings of the
16" ACM Symposium on Operating System Principles, St-
Malo, France, pages 198-211, October 1997.

[15] Michael B. Jones and John Regehr. The Problems You're
Having May Not Be the Problems Y ou Think Y ou’re Hav-
ing: Results from a Latency Study of Windows NT. In Pro-
ceedings of the Seventh Workshop on Hot Topicsin Operat-
ing Systems (HotOS-V 1), Rio Rico, Arizona, |IEEE Com-
puter Society, March 1999.

[16] Michael B. Jones and John Regehr. CPU Reservations and
Time Constraints. |mplementation Experience on Windows
NT. In Proceedings Third USENIX Windows NT Symposium,
Seattle, WA, pages 93-102, July 1999.

[17] Michael B. Jones and John Regehr. Predictable Scheduling
for Digital Audio. Microsoft Research Technical Report
M SR-TR-2000-87, December 2000.

[18] C. L. Liu and James W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. In
Journal of the ACM, vol. 20, pages 46-61, January 1973.

[19] WDM for Windows 98 and Windows 2000. Microsoft Corpo-
ration, 1998. http://www.microsoft.com/hwdev/desinit/
WDMyview.htm.

[20] Jason Nieh, James G. Hanko, J. Duane Northcutt, and Gerald
Wall. SVR4 UNIX Scheduler Unacceptable for Multimedia
Applications. In Proceedings of the Fourth International
Workshop on Network and Operating System Support for
Digital Audio and Video. Lancaster, U.K., November 1993.

[21] David A. Solomon and Mark Russinovich. Inside Microsoft
Windows 2000, Third Edition. Microsoft Press, 2000.

[22] Mike Tramontano. The DSL Market is Going Soft. In-
ter@ctive Week Online, Ziff Davis, July 17, 2000.
http://www.zdnet.com/intweek/stories/news/
0,4164,2604854,00.html.

