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ABSTRACT

As the number of scientific publications soars, even the most
enthusiastic reader can have trouble staying on top of the
evolving literature. It is easy to focus on a narrow aspect
of one’s field and lose track of the big picture. Information
overload is indeed a major challenge for scientists today,
and is especially daunting for new investigators attempting
to master a discipline and scientists who seek to cross disci-
plinary borders. In this paper, we propose metrics of influ-
ence, coverage, and connectivity for scientific literature. We
use these metrics to create structured summaries of informa-
tion, which we call metro maps. Most importantly, metro
maps explicitly show the relations between papers in a way
which captures developments in the field. Pilot user studies
demonstrate that our method can help researchers acquire
new knowledge efficiently: map users achieved better preci-
sion and recall scores and found more seminal papers while
performing fewer searches.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval; H.5 [
Information Interfaces and Presentation]

Keywords

Metro maps, Information, Summarization

1. INTRODUCTION
“Distringit librorum multitudo” (the abundance of books

is a distraction), said Lucius Annaeus Seneca; he lived in
the first century.

A lot has changed since the first century, but Lucius’ prob-
lem has only become worse. The surge of the Web brought
down the barriers of distribution, and the scientific commu-
nity finds itself overwhelmed by the increasing numbers of
publications; relevant data is often buried in an avalanche
of publications, and locating it is difficult.
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Search engines have been relied upon in recent years for
accessing the scientific literature, and investments have even
been made to create special academic search and retrieval
tools. However, the search and browsing experience might
be best characterized as providing keyhole views onto the
literature: while search engines are highly effective in re-
trieving scientific publications, the task of fitting those pub-
lications into a coherent picture remains difficult.

In contrast, we are interested in methods that explicitly
show the relationships among publications in a way that
captures the main developments in the discipline. We be-
lieve that such methods can allow a user to explore a new,
complex topic and discover hidden connections effectively.
We consider as a sample motivation the creation of valuable
literature exploration tools that could help people entering a
new field, such as new graduate students or experts reaching
beyond their traditional disciplinary borders.

Several tools already exist for summarizing and visualizing
scientific literature (see [Borner, 2010] for a compendium).
However, the output of these systems is often not suitable for
a starting researcher. Some systems’ level of granularity is
too coarse: Boyack et al. [2009] provide a graph-summary of
chemistry research, where each node corresponds to a clus-
ter of disciplines (‘Biology-Zoology-Ecology’). Bassecoulard
and Zitt [1999] produce a hierarchical graph, where nodes
correspond to clusters of journals.

We believe that in order to allow researchers to under-
stand how a field is organized, a finer level of granularity
is needed. For this reason, we chose papers as our unit of
analysis. Most current tools that work at this level of granu-
larity provide visualizations of citation (or co-citation) net-
works, where papers are nodes [Chen, 2004; Dunne et al.,
2010]. Importantly, edges between papers are based on lo-
cal computation: the edges are selected because they pass
some threshold, or belong to a spanning tree. In such meth-
ods, there is no notion of coherent lines of research. We
believe that the notion of story lines is essential, and facili-
tates users’ knowledge acquisition and comprehension of the
frontier and evolutionary history of ideas in a discipline.

Several systems have attempted to create story lines, es-
pecially in the news domain [Swan and Jensen, 2000; Yan
et al., 2011; Allan et al., 2001]. However, this style of sum-
marization only works for simple stories, which are linear in
nature. In contrast, research fields display a very non-linear
behaviour: lines of research branch like a tangle of spaghetti
with side stories, dead ends, and intertwining narratives. In
order to explore these stories, one needs a map as a guide
through unfamiliar territory.

The metro map metaphor has been used before to dis-
play abstract knowledge. For example, Nesbitt’s map shows



interconnecting ideas running through his PhD thesis [Nes-
bitt, 2004]. However, these maps were all manually con-
structed. In this paper, we adapt the techniques of [Shahaf
et al., 2012] (previously applied to news articles) to con-
struct metro maps of scientific literature automatically. Our
main contributions are as follows:
• Formalizing metrics characterizing good metro maps, tak-

ing advantage of the additional structure encoded in the
scientific domain:
• Characterizing the probability that ideas in two papers

stem from a common source, then using this notion to
define coherence of research lines.

• Quantifying the impact of one paper on the corpus.
• Proposing a notion of connectivity that captures how

different lines of research can still interact with each
other, despite not intersecting.

• Providing efficient methods with theoretical guarantees
to compute these metrics and find a diverse set of high-
impact, coherent research lines and their interactions.

• Integrating user preferences into our framework by pro-
viding an appropriate user-interaction model.

• Performing validation studies with users that highlight the
promise of the methodology. Our method outperforms
popular competitors.

2. OBJECTIVE
We first review the desired properties of a metro map,

following the criteria outlined in [Shahaf et al., 2012]. We
shall briefly present these criteria, motivate and formalize
them. Later, we present a principled approach to construct-
ing maps that optimizes tradeoffs among these criteria. Be-
fore we begin, we formally define metro maps.

Definition 2.1 (Metro Map [Shahaf et al., 2012]). A metro
map M is a pair (G, Π), where G = (V, E) is a directed
graph and Π is a set of paths in G. We refer to paths as
metro lines. Each e ∈ E must belong to at least one line.

The vertices V correspond to scientific papers, and are de-
noted by docs(M). The lines of Π correspond to aspects of
the field. A key requirement is that each line is coherent :
following the papers along a line should give the user a clear
understanding of the evolution of a story.

Coherence is crucial for good maps, but is it sufficient
as well? In order to put this matter to a test, we computed
maximally coherent lines for the set of papers returned in re-
sponse to the query ‘support vector machines’ (using meth-
ods detailed below). The results were discouraging. While
the lines were indeed coherent, they were not important.
Many of the lines revolved around narrow topics; many fo-
cused on a single research group, never expanding beyond
it.

The example suggests that maximizing coherence does not
guarantee good maps. Instead, the key challenge is balanc-
ing coherence and coverage: in addition to being coherent,
lines should cover topics that are important to the user.

Finally, a map is more than just a set of lines; there is
information in its structure as well. Publications offer a rich
palette of interaction possibilities: assumption, affirmation,
contrast, methodology, related work, and more. Therefore,
our last property is connectivity. The map’s connectiv-
ity should convey the underlying structure of the field, and
how different lines of research interact with each other.

In Sections 3-5, we formalize coherence, coverage and
connectivity. In Section 6, we explore tradeoffs among
them and combine them into a single objective function to
guide the construction of maps.

• Europe weights possibility
of debt default in Greece

• Why Republicans don’t fear
a debt default

• Italy; The Pope’s leaning
toward Republican ideas

• Italian-American groups
protest ‘Sopranos’

• Greek workers protest
austerity plan

Chain A

• Europe weights possibility
of debt default in Greece

• Europe commits to action
on Greek debt

• Europe union moves
towards a bailout of Greece

• Greece set to release
austerity plan

• Greek workers protest
austerity plan

Chain B

3. COHERENCE
How should we measure coherence for a chain of papers?

We rely on the notion of coherence developed in Connect-
the-Dots (CTD) [Shahaf and Guestrin, 2010]. In the follow-
ing, we briefly review this approach.

In order to define coherence, a natural first step is to mea-
sure similarity between each two consecutive papers along
the chain. As a single bad transition can destroy the coher-
ence of an entire chain, we measure the strength of the chain
by the strength of its weakest link.

However, this simple approach can produce poor chains.
Consider, for example, Chain A above. The transitions of
Chain A are all reasonable when examined out of context.
The first two articles are about debt default; the second and
third mention Republicans. Despite these local connections,
the overall effect is associative and incoherent.

Now, consider Chain B. This chain has the same end-
points, but it is significantly more coherent. Let us take a
closer look at these two chains. Figure 1 shows word ap-
pearance along both chains. For example, the word ‘Greece’
appeared throughout Chain B. It is easy to spot the asso-
ciative flow of Chain A in Figure 1. Words appear for short
stretches; some words appear, then disappear and reappear.
Contrast this with Chain B, where stretches are longer and
transitions between documents are smoother. This observa-
tion motivates our definition of coherence.
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Figure 1: Word patterns in Chain A (left) and Chain B

(right). Bars correspond to the appearance of a word in

the articles depicted above them.

We represent documents as vectors of concepts (for the
sake of presentation, assume concepts C are words). Given
a chain of papers (p1, ..., pn), we first score each transition
pi → pi+1 by the number of concepts both articles share:

Coherence(p1, ..., pn) = min
i=1...n−1

∑

c∈C

1(c ∈ pi ∩ pi+1)

However, word appearance is too noisy. Articles must use
the exact same words; synonyms are treated as unrelated.
Also, all words are treated equally: the word ‘Greece’ is as
important as the word ‘today’.

Therefore, we replaced the indicator function 1(·) with a
notion of influence of concept c in a transition. Intuitively,
Influence(pi, pj | c) is high if (1) both documents are highly
connected, and (2) c is important for the connectivity. Note
that c does not have to appear in either of the documents.



After the introduction of influence, the objective becomes:

Coherence(p1, ..., pn) = min
i=1...n−1

∑

c

Influence(c | pi, pi+1)

This objective guarantees good transitions, but associative
chains like Chain A can still score well. However, these
chains need to use many words in order to achieve high
scores, as many of their transitions use a unique set of words.
On the other hand, coherent chains (like Chain B) can often
be characterized by a small set of words, which are impor-
tant throughout many of the transitions.

Therefore, instead of summing Influence(c | pi, pi+1) over
all concepts, the problem is transformed into an optimiza-
tion problem, where the goal is to choose a small set of
concepts (called ‘active’), and score the chain based only on
these concepts. Constraints on possible activations enforce
a small number of words and smooth transitions, imitating
the behaviour of Figure 1 (right). Formally,

Coherence(p1, ..., pn) = max
activations

min
i=1...n−1

∑

c

Influence(c | pi, pi+1)1(c active in pi, pi+1) (3.1)

Finally, the coherence of a map is defined as the minimal
coherence across its lines Π.

3.1 Coherence for Scientific Papers
The coherence notion of [Shahaf and Guestrin, 2010] (Def-

inition 3.1) was developed for the news domain, and relied
exclusively on article content. It was designed to use very
basic features, namely words. However, the simplicity of the
representation can sometimes result in incoherent chains. To
illustrate the problem, consider the following three papers:

p1: Multiagent planning with factored MDPs /
Guestrin et al / NIPS ’01

p2: Timing and power issues in wireless sensor
networks / Aakvaag et al / ICPP ’05

p3: Social network analysis for routing in
disconnected delay-tolerant manets / Daly et al /

MobiHoc ’07

These papers share many words, such as ‘network’, ‘prob-
ability’ and ‘cost’, and thus can achieve a good coherence
score. However, they clearly do not follow a coherent re-
search line. The problem may be alleviated by higher-level
features (e.g., distinguishing between different uses of ‘net-
work’); in this section, we choose instead to take advantage
of the side information provided by the citation graph, and
define a coherence notion more suited for scientific papers.

Upon close examination, our original coherence notion
(Definition 3.1) is composed of two main ideas: comput-
ing the influence of concepts on transitions, and choosing
a small set of active concepts that captures the story well.
While the latter idea seems domain-independent, comput-
ing influence may benefit from the additional structure of
the citation graph.

The citation graph explicitly captures the way papers in-
fluence each other: the content of a publication is often af-
fected by cited work, the authors’ prior work and novel in-
sights. The influence notion proposed in BKS [El-Arini and
Guestrin, 2011] captures exactly this behaviour. In BKS, the
authors define a directed, acyclic graph Gc for every concept
c in the corpus. Nodes represent papers that contain c and
the edges represent citations and common authorship.

To capture the degree of influence, BKS defines a weight
ωu,v for each edge u → v in Gc, representing the probability
of direct influence from paper u to paper v with respect to
concept c. Some probability is assigned to ‘novelty’, the case
that concept c in paper v was novel.

Given a concept-specific weight for each edge in Gc, BKS
defines a probabilistic, concept-specific notion of influence
between any two papers in the document collection:

Definition 3.1 (Direct Influence [El-Arini and Guestrin, 2011]).
Let Gr

c be a random subgraph of Gc, where every edge u → v
is included in Gr

c with probability ωu,v. The influence be-
tween papers pi and pj w.r.t. c is the probability there exists
a directed path in Gr

c between pi and pj .

The BKS notion of influence has many attractive proper-
ties: it is simple, and it appears to capture the way ideas
travel along the citation graph. However, using it for co-
herence severely limits the chains we can hope to identify.
According to definition 3.1, the only pairs of papers that can
have influence between them are ancestor-descendant pairs
in Gc. Therefore, chains with high influence are likely to
contain only papers that directly build on top of one an-
other, especially papers by the same authors.

Consider papers p2 and p3 from above. Their notion of
‘network’ is similar, but there is no direct path from p2 to
p3 in the corresponding graph. To mitigate this problem, we
introduce a different notion of influence. Rather than requir-
ing that pi influence pj , we are only interested in whether
concept c in pi and concept c in pj refer to the same idea.
To capture this property, we modify the notion of influence:

Definition 3.2 (Ancestral Influence). The influence between
papers pi and pj with respect to concept c is the probability
pi and pj have a common ancestor in Gr

c .
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Figure 2: Di-

rect (left) vs. an-

cestral influence

(right).

See Figure 2 for an illustration of
the difference between direct influ-
ence (left) and ancestral influence
(right). In order for pi to have di-
rect influence on pj , there has to be
a path from pi to pj . In order for pi

to have ancestral influence on pj , it
is sufficient that they have a com-
mon ancestor in the graph. The an-
cestor can also be pi itself.

As for p2 and p3: with no direct path among them, their
direct influence is zero. However, as both cite Perkins’ 1999
networks paper, their ancestral influence is non-zero.

4. COVERAGE
In addition to coherence, we need to ensure that the map

has high coverage. Before defining coverage of a map, we
need to understand which elements we wish to cover.

4.1 What to cover?
In [Shahaf et al., 2012], we only had the articles’ content

to rely upon, and thus the covered elements were concepts.
We denoted the amount an article p covered a concept c by
coverp(c), and looked for a set of articles that, when com-
bined, achieved high coverage for many important concepts.

However, when we applied the same technique to scien-
tific papers, we encountered a problem: papers with similar
content may appear exchangeable w.r.t. their coverage, but
they will not necessarily be equivalent in the user’s eyes. For
example, the user may notice that the papers aim at differ-
ent communities, or that one paper is more seminal than the
other. Consider the following two papers:



(a) (b)

(c) (d)

Figure 3: Tag clouds for p1 and p2. The size of a word is

proportional to its frequency. (a-b) p1 and p2’s content,

respectively. (c-d) Venues and authors of papers affected

by p1 and p2, respectively. Note that (a) and (b) are very

similar, but (c) and (d) are not.

p1: SVM in Oracle database 10g: Removing the
barriers to widespread adoption of support vector

machines / Milenova et al
VLDB ’05 Proceedings of the 31st International Conference

on Very Large Data Bases

p2: Support Vector Machines in Relational
Databases / Rüping

SVM ’02 Proceedings of the First International Workshop
on Pattern Recognition with Support Vector Machines

The content of p1 and p2 is similar. Figures 3(a)-(b) dis-
play the papers as tag clouds: both papers share many of
their important words (‘data’,‘database’, ‘svm’, ‘implemen-
tation’). Numerous other words have a closely related match
(‘performance’/ ‘efficiency’, ‘Oracle’/ ‘relational database’).

One way to distinguish between the aforementioned pa-
pers is to examine their impact. Figures 3(c)-(d) show tag
clouds of authors and venues for papers citing p1 and p2.
Figure 3(c) has more words than 3(d), implying that p1 has
affected more unique authors and venues than p2. Interest-
ingly, despite the similar content of the papers, there is al-
most no intersection between the papers citing them; only a
single paper cites both (Mona Habib from Microsoft Cairo).

Based on this intuition, we propose to use the papers
themselves as elements of coverage. A paper p should cover
itself and the papers it has had impact on. By this defini-
tion, a high-coverage set of papers consists of papers that,
when combined, had impact on a large portion of the corpus.

The idea that a paper covers its descendants (and not
its ancestors) may seem counterintuitive at first. After all,
how can a paper cover future contributions? Nevertheless,
we believe that examining a paper’s ancestors merely helps
understanding the context in which the paper was written,
while its descendants truly reveal the gist of its contribution.

4.2 Coverage of a single paper

4.2.1 Desiderata
We would like papers to cover their descendants. Instead

of a hard, binary notion of coverage, we prefer a softer no-
tion, allowing us to express that descendants are covered to
various degrees (depicted as a gradient in Figure 4a).

(a) (b) (c)

Figure 4: A simple citation graph. Edges traverse in

the direction of impact, from cited to citing paper. (a)

Coverage of document A. Gradient indicates different

degrees of coverage. (b-c) The effect of adding papers B

and C (respectively) to paper A. Since B’s descendants

are already covered to some extent by A, we prefer C.

Let us concentrate on the degree to which paper p covers
its descendant q, coverp(q). In order to evaluate the impact
that p had on q, we examine the way q is connected to p
in the citation graph. Intuitively, if q can be reached from
p by many paths, p had a high impact on q. Since impact
is diluted with each step, shorter paths are more important
than longer ones.

Before we devise a coverage formulation based on paths
between p and q, we consider another point: impact is not
necessarily transitive. Consider, for example, Figure 5. The
figure outlines a (small) fraction of the descendants of Ni-
colo Cesa-Bianchi’s paper, ‘How to Use Expert Advice’. As
before, edges indicate citation. A snippet from the citation
text appears by each edge.

5. MAC protocol to reduce 

energy consumption

2. Tracking the

best expert

1. How to use expert 

advice [JACM 97]

3. Tracking the best 

linear predictor

4. Dynamic disk spin-

down technique

The algorithm is a member of 

the mw algorithmic family…

Note that our protocol is 

different from pervious work…

We have used the same 

basic technique as …

The new bounds in this article 

build on previous work of…

Figure 5: Two branches in the citation graph. The left

branch is coherent; the right one is not.

The left branch of Figure 5 revolves around Online Learn-
ing Theory. The papers in this branch (#2 and #3) build on
top of each other. Intuitively, the root paper had impact on
both of them. In contrast, the right branch is more difficult
to follow. Both descendants deal with extending the battery
life of devices, but while paper #4 is a direct application of
the root paper, paper #5 is not. In fact, when #5 cites
#4, the citation reads ‘Note that our protocol is different
from previous work’. In other words, paper #5 is no longer
relevant to the root node, and should not be covered by it.

The difference between the two branches can be captured
by the coherence notion of Section 3: The left branch is much
more coherent than the right one. Based on that intuition,
we only want a paper to cover the descendants that can be
reached by a coherent path. Unlike Section 3, we are only in-
terested in direct-influence coherent chains (Definition 3.1),
as they model the true impact of a paper.
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Figure 6: Coherence graph.

Nodes represent papers (names

appear inside). Paths represent

coherent chains. Each paper may

have multiple corresponding ver-

tices: the highlighted vertices are

all copies of paper p.

4.2.2 Formulation
In the previous section, we provided desiderata for coverp(q):

coverage is high if there are many short and coherent paths
between p and q. In order to formalize this idea, we employ
the technique of random walks.

Let q be a paper. Consider a walk from q to its ances-
tors, taking only coherent paths into account. At each step,
the walker either terminates (with probability α), or chooses
an ancestor uniformly at random among the coherent paths
that extend the current walk. If there are many short, co-
herent paths between p and q, there is a high probability
that the walk reaches p before termination. We denote this
probability by coverp(q).

Let us formalize this intuition now. Since we only consider
coherent paths, it is more convenient to formulate coverage
in terms of walks performed directly on a coherence graph
G. A coherence graph is a graph representing all coherent
chains in the domain (See Figure 6 for an example. In Sec-
tion 7.1 we explain how to encode the graph compactly).
Each vertex v of G corresponds to a single paper, which
we denote paper(v); each paper p may have multiple corre-
sponding vertices in G, which we denote copies(p). In Figure
6, copies(p) are highlighted.

Let G be a coherence graph. For each paper q, we con-
struct the graph Gq by reversing the direction of all edges
in G and adding an additional vertex, vq. vq is the starting
vertex of our walk. We connect vq to each vertex of G which
corresponds to paper q, copies(q). This way, a walk from vq

will always proceed to a copy of q, and then to its ancestors
in the coherence graph G. Since the graph is a DAG, the
probability that a walk reaches vertex v is easy to compute.
We first compute a topological ordering on Gq, and compute
the probabilities in this order:

coverv(q) =

{

P (vq → v), v ∈ copies(q)

(1 − α) · (
∑

u:u→v P (u → v) · coveru(q)), o/w

where P (u → v) is the probability the walker chose to go
from vertex u to vertex v. We want the walker to choose
uniformly among the coherent paths that extend the current
walk; in other words, we want to bias the walker towards
ancestors that participate in many coherent paths. There-
fore, we compute for each vertex v the number of coherent
paths that end in v, #Path(v). For example, the number of
paths that end in the vertex marked ‘n’ in Figure 6 is two
(o,s,n and p,n). Since Gq is a DAG, computing the number
of paths takes polynomial time. The probability that the
walker chooses to go from vertex v to vertex u is propor-
tional to #Path:

P (u → v) =
#Path(v)

∑

w:u→w #Path(w)

We now have a coverage notion for vertices of G. However,
we are interested in a coverage notion for papers. In order
to compute the coverage of paper p, we need to sum up the

scores of all vertices in copies(p):

coverp(q) =
∑

v∈copies(p)

coverv(q)

This score corresponds to the probability of reaching p before
termination. In particular, since p can never appear more
than once along a path in G, this score always less than 1.

4.3 Map Coverage
Now that we have defined coverage of a single document,

let us define coverage of a map. In order to encourage di-
versity, we view set coverage as a sampling procedure: each
paper pi in the map tries to cover document q with prob-
ability coverpi

(q). The coverage of q is the probability at
least one of the documents succeeded.

coverM(q) = 1 −
∏

pi∈docs(M)

(1 − coverpi
(q))

Thus, if the map already includes papers which cover q well,
coverM(q) is close to 1, and adding another paper which
covers q well provides very little extra coverage of q. This
encourages us to pick papers which cover new areas of the
graph, promoting diversity.

Figures 4b and 4c illustrate this idea. Suppose we already
have paper A in our map, and we need to choose between
papers B and C, whose content is similar. Figures 4b and
4c show the effect of choosing B and C, respectively. Since
B’s descendants have already been covered by A, we would
prefer to choose C. (Note that since our coverage is soft,
choosing B will still provide gains in coverage.)

We now have a way to measure how well a map covers
a single paper. Finally, we want to measure how well a
map covers the entire corpus. Remember, our goal is to
ensure that the map touches upon important aspects of
the corpus. Therefore, we first assign weights λq to each
paper q, signifying the importance of the paper. We model
the amount M covers the corpus as the weighted sum of the
amount it covers each paper:

Cover(M) =
∑

q

λqcoverM(q)

The weights cause Cover to prefer maps which cover im-
portant papers. They offer a natural mechanism for person-
alization: With no prior knowledge about the user’s prefer-
ences, we set all of the weights to 1. This is equivalent to
asking for a map which covers as much of the corpus as pos-
sible. In Section 10 we discuss learning weights from user
feedback, resulting in a personalized notion of coverage.

5. CONNECTIVITY
A map is more than just a set of lines; there is information

in its structure as well. The map’s connectivity should con-
vey the underlying structure of the story, and how different
aspects of the story interact with each other.

In [Shahaf et al., 2012] we simply define connectivity as
the number of lines of Π that intersect:

Conn(M) =
∑

i<j

1(πi ∩ πj 6= ∅)

Unfortunately, this simple objective does not suffice in
the scientific domain. Consider the two chains in Figure 7:
the top chain describes the progress of margin classifiers –
from perceptrons, through linear SVMs, to kernel machines.
The bottom chain describes the progress of face-recognition



Perceptrons
Generalized 

Portrait Method

Kernel

SVM

Kernel 

functions

Optimizing

kernels

Applying 

perceptrons

to facial feature 

location

View-based

human face

detection

Training SVMs 

for face 

detection

Face 

recognition 

by SVM

Automatic

extraction of

face features

Figure 7: Two coherent chains (theory of SVMs, appli-

cation of SVM to vision). The chains do not intersect,

yet are related: the application chain uses tools from the

theory chain. Dashed gray lines indicate impact.

challenge problems in vision: from facial feature location,
through face detection, to face recognition. Both chains are
clearly related; the vision papers use techniques from the
theory chain. However, there is no way to find an article
that would belong to both chains, unless we sacrifice co-
herence considerably. As a result, maps that optimize the
aforementioned connectivity notion are often disconnected.

Finding papers that would belong to both chains may be
difficult, but we can easily find theory papers that have had
a big impact on vision papers. For example, some of the
vision papers in Figure 7 directly cite papers from the theory
chain. These citations are depicted as dashed lines.

Figure 7 motivates us to prefer a softer notion of inter-
section. Rather than requesting that the lines intersect, we
also accept lines which are related to each other:

Conn(M) =
∑

i<j

1(πi ∩ πj 6= ∅) + γ · cover(πi, πj)

where cover(πi, πj) is the maximal coverp(q) for p ∈ πi, q ∈
πj , or vice versa. We choose to use the maximum (instead
of sum) in order to encourage connections between as many
pairs of lines as possible. Scoring all the connections between
πi and πj may lead to maps where only a few lines are
very well-connected, and the rest are disconnected. The
parameter γ is chosen empirically.

This softer notion of intersection is especially suited to
scientific literature. Publications offer a rich palette of inter-
action possibilities, such as affirmation, criticism, contrast,
methodology, and related work. Exposing the relationships
between two lines of research can prove extremely valuable
to researchers.

6. JOINT OBJECTIVE FUNCTION
Now that we have formally defined our three properties,

we can combine them into one objective function. We need
to consider tradeoffs among these properties: for example,
maximizing coherence often results in repetitive, low-coverage
chains. Maximizing connectivity encourages choosing sim-
ilar chains, resulting in low coverage as well. Maximizing
coverage leads to low connectivity, since there is no reason
to re-use an article for more than one line.

The objective of [Shahaf et al., 2012] applies to the sci-
entific domain as well. We include it here for completeness.
For a full discussion, please refer to the paper.

Problem 6.1. Given a set of candidate documents D, find
a map M = (G, Π) over D which maximizes Conn(M) s.t.
Coherence(M) ≥ τ and Cover(M) ≥ (1 − ǫ)κ, where κ is
the maximal coverage across maps with coherence ≥ τ and
ǫ is given.

There are several ways to restrict the size of M; we chose
to restrict M to K lines of length at most l. Alternatively,

since some stories are more complex than others, one may
prefer to add lines until coverage gains fall below a threshold.

7. ALGORITHM
In this section, we outline our approach for solving Prob-

lem 6.1. We adapt the algorithm of [Shahaf et al., 2012] to
solve the problem. In the following we review the algorithm,
highlighting the main differences.

We start by addressing the coherence constraint: In Sec-
tion 7.1 we represent all coherent chains as a graph. In Sec-
tion 7.2 we use this graph to find a set of K chains that
maximize coverage; in Section 7.3, we increase connectivity
without sacrificing coverage.

7.1 Representing all coherent chains
In order to pick good chains, we first wish to list all pos-

sible candidates. However, representing all chains whose
coherence is at least τ is a non-trivial task. The number
of possible chains may be exponential, and therefore it is
infeasible to enumerate them all, let alone evaluate them.

The algorithm of [Shahaf et al., 2012] employs a divide-
and-conquer approach to the problem, constructing long
chains from shorter ones. This allows us to compactly en-
code many candidate chains in a graph structure which we
call a coherence graph. G is a compact representation of the
graph displayed in Figure 6. Vertices of G correspond to
short coherent chains, and there is a directed edge between
each pair of vertices which can be conjoined and maintain
coherence. Importantly, this property is transitive: every
path in G, no matter how long, represents a coherent chain.

The only change in the algorithm lies in the computa-
tion of influence. Direct influence and ancestor influence are
instances of the k-terminal reliability problem [Ball, 1986],
which is #P -complete, so we cannot hope for a polynomial-
time solution. Instead, we apply approximations.

In BKS, the authors presented a deterministic, linear-time
dynamic programming heuristic for calculating direct influ-
ence. This heuristic is based on the assumption that the
paths between two nodes are independent of each other. Un-
fortunately, this assumption is too strong for ancestor influ-
ence. The paths between p1, p2, and possible ancestors are
often dependent, and treating them as independent results
in significant errors. Instead, we employ a simple Monte
Carlo sampling method with theoretical guarantees (BKS
also proposed a similar sampling approach).

In order to calculate m values with (ǫ, δ)-approximation
guarantees (where ǫ and δ denote the upper bound of rel-
ative error and failure probability), we need O( 1

δ2 log(m
δ

))
samples. m is the number of document-pairs with a common
ancestor in the graph. In the worst case, m is quadratic in
the number of papers (in practice, it is often much smaller).
Therefore, the number of samples needed is logarithmic in
the number of papers. Also note that influences can be pre-
computed once and stored for future use.

7.2 Finding a high-coverage map
After representing all coherent chains as a graph G, we

wish to find a set of chains which maximize coverage, subject
to map size constraints.

Problem 7.1. Given a coherence graph G, find paths π1, ..., πK

in G, |docs(πi)| ≤ l that maximize Cover(docs(
⋃

i πi)).

We use the coverage-maximization algorithm of [Shahaf
et al., 2012] to find a high-coverage map. The proof relies
on formulating the problem in terms of orienteering. Ori-
enteering problems are motivated by maximizing a function



Figure 8: Part of the map computed for the query ‘Reinforcement Learning’. The map depicts multiple lines of

research (see legend at the bottom). Interactions between the lines are depicted as dashed gray lines, and relevant

citation text appears near them.
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Figure 9: A segment of a map computed for the query

SVM/ Support vector machine, showing the intersection

of two lines: multi-class SVMs and large-scale SVM. In

the interest of space, we condensed the timeline.

of nodes visited during a tour, subject to a budget on tour
length. The [Shahaf et al., 2012] coverage notion is submod-
ular, so we applied the Submodular orienteering algorithms
of [Chekuri and Pal, 2005] to the problem.

In order to adapt the algorithm to the scientific domain,
we changed only the way coverage is computed (see Section
4). Note that the new coverage notion is submodular. Fig-
ure 4 provides the intuition for that: adding a paper to a
smaller set of papers helps more than adding it to a larger
set (diminishing returns). Therefore, we can use the same
submodular orienteering algorithm with the new coverage
notion, and achieve the same guarantees.

7.3 Increasing connectivity
We now know how to find a high-coverage, coherent map.

Our final step is to increase connectivity without sacrificing
(more than an ǫ-fraction of) coverage.

In order to increase connectivity, we apply a local-search
technique. It starts from map M0, and takes steps in the
search space by applying local moves. Each local move re-

places a single line in Π. At iteration i, we consider each
path p ∈ Πi−1. We hold the rest of the map fixed, and try
to replace p by p′ that increases connectivity (Section 5) and
does not decrease coverage. At the end of the iteration, we
pick the best move and apply it, resulting in Mi. The full
details of the algorithm are in [Shahaf et al., 2012].

8. EXAMPLE MAPS
Figure 8 shows a part of a map computed for the query

‘Reinforcement Learning’. As can be seen, the map de-
picts multiple lines of research: MDPs, robotics and control,
multi-agent cooperation, bounds and analysis, and exploration-
exploitation tradeoffs. The map shows how the MDP line af-
fects the multi-agent and robotics lines, and how the exploration-
exploitation line interacts with the analysis line. Those rela-
tions are depicted as gray dashed paths. Note that the map
does not capture all the interactions; for example, connec-
tions between MDPs and the analysis line are not captured.

As mentioned in Section 5, intersection is rare for broad
queries. Figure 9 shows one such intersection between two
lines in the SVM map. One line is about large-scale SVMs,
the other is about multi-class SVMs. The lines intersect at
Keerthi’s paper about large scale multi-class linear SVMs.

9. USER STUDY
In our user study, we evaluated the effectiveness of metro

maps in aiding users navigate, consume, and integrate dif-
ferent aspects of a specific, multi-faceted information need.

Evaluating metro maps in the scientific domain poses some
significant challenges. Since the metro-map output is unique,
we cannot conduct a double-blind comparison study, as sub-
jects inevitably differentiate between the different systems.
Therefore, we cannot have a within-subject study, but are
instead forced to choose a between-subject design. This de-
sign, in itself, causes a new problem: since we need a differ-
ent group of participants for each condition tested (metro-
map or competitor), we cannot tailor the query to users.



Rather, we have to find a single domain such that all of our
participants will (1) be able to read scientific publications in
that domain and (2) not know the domain well in advance.

We recruited 30 participants from our university. All par-
ticipants were graduate students with background in Ma-
chine Learning or related fields. The domain we chose was
Reinforcement Learning. The machine learning background
of the participants was enough to make them comfortable
with the subject, but none of them had conducted research
in the field or studied it extensively.

We asked participants to imagine themselves as first-year
graduate students embarking on a research project in Rein-
forcement Learning. The participants were asked to conduct
a quick literature survey. In particular, they were asked to
update a survey paper from 1996: identify up to five re-
search directions that should be included in the updated
survey, and list a few relevant papers for each direction. We
recorded participants’ browsing histories, and took a snap-
shot of their progress every minute. We limited their time
to 40 minutes to simulate a quick first pass on papers.

We used the ACM dataset to compute a map for the query
‘Reinforcement learning’. The dataset contains more than
35,000 papers from ACM conferences and journals. As the
number of papers is relatively small, scalability was not an
issue. We extracted features as described in [El-Arini and
Guestrin, 2011]. We had two conditions, GS and MP+GS: In
GS, participants were allowed to use Google Scholar 1, a
search engine that indexes scholarly literature. In the second
condition (MP+GS), participants were given the pre-computed
metro map, and asked to pretend that they stumbled upon
it; they were not instructed how to use the map. In addition
to the map, the participants could access Google Scholar.

We also included two simulated conditions in the study, MP
and WK: In MP, we pretended our map was the user’s output,
and listed all of its papers. In WK, we used references from
the Wikipedia article about reinforcement learning.

We decided to compare against Wikipedia and Google
Scholar since they represent two of the most popular starting
points for research queries today. Other systems we consid-
ered including in the comparative analysis were either un-
available for download, or very restricted in the span of the
scientific domain represented.

Before grading, we discarded data from four participants.
One did not understand the task, and wrote a (nice) essay
about reinforcement learning. The others, despite visiting
many web pages, listed less than 5 papers when time ran
out.

We had an expert judge evaluate the results of the rest of
the participants. We combined all of the papers that users
had entered into one list. Each entry includes the paper’s
information and URL. In addition, we listed the labels that
the users supplied for each paper. The judge did not know
the method used to find the papers.

Our expert judge scored the papers on a 3-point scale:
0 – Irrelevant, 1 – 1: Relevant, 2 – Seminal. Each label was
given a 0-1 score, based on whether it was a good match to
the paper. The results are summarized below.

9.1 Results and Discussion

9.1.1 Information collection patterns
Avg: Pages visited Papers listed Visited/Listed

GS 46 12.2 4.51
MP+GS 36.3 9.75 3.79

1http://scholar.google.com

The table shows the average number of web pages visited
throughout the session, the average number of papers listed
by the user, and the average ratio of pages visited to papers
listed. GS users visited more pages and listed more papers on
average. However, when looking at the average ratio, only
one out of 4.5 pages visited by GS users was added to their
list, while MP+GS added one out of 3.8. In other words, the
map users were more focused: they may have visited less
pages, but they found these pages satisfactory.

9.1.2 Precision
Users’ satisfaction level is important, but the real test

is the expert’s opinion. The next table shows the average
normalized scores given by the judge: For each user, we
calculate the average paper score and average label score.
Then, we average over the users in each condition:

Avg: Normalized Score Normalized Label Score

GS 74.2% 71.6%
MP+GS 84.5% 80.2%

Both the paper and label scores of MP+GS users are higher
than the scores of GS users (the median scores exhibit simi-
lar behaviour). In addition, the average number of seminal
papers discovered by GS users was 1.2 , while MP+GS users
have discovered on average 1.62 seminal papers.

The simulated Wikipedia user WK did not do well: out
of 15 references, only four qualified for the study (papers
published after 1996), and only two were deemed relevant.
In Wikipedia’s defense, the other references included seminal
books, which could have been useful for our hypothetical
first-year student.

Finally, let us examine the map (MP) user performance.
Comparing the map directly to user output is challenging as
the map contained 45 papers, many more than the average
user. Out of these papers, seven were deemed seminal, and
21 were deemed relevant. Interestingly, many of the papers
that were deemed irrelevant were used as bridges between
relevant (or seminal) papers in the map.

The finding that many of the map users did not identify
the seminal papers in the map is somewhat concerning. A
possible explanation may be that the users were instructed
to focus on at most five lines of research, while the seminal
papers were spread among more lines. Note that despite
this fact, the average normalized score of MP+GS users is still
higher than the score for the map. In any case, this phe-
nomenon highlights the need for more targeted research on
locating and visualizing important nodes in the map.

9.1.3 Recall
In addition to measuring precision (the fraction of re-

trieved papers that are relevant), we also tested user’s recall
(the fraction of relevant papers retrieved). It is not enough
for the users to find good papers; rather, it is also important
that they do not overlook important research areas.

In order to measure recall, we have composed a list of the
top-10 subareas of reinforcement learning by going over con-
ference and workshop tracks and picking the most frequent
topics. Each user had to list up to five research directions;
for each user, we computed the fraction of these directions
that appeared in our top-10 list. GS users received an av-
erage score of 46.4%, while MP+GS users outperformed them
with an average score of 73.1%.

Finally, further analysis of the snapshots taken through-
out the study provides anecdotal evidence of the utility of
the map. Several MP+GS users started by composing a short



list of research directions; throughout the session, these users
have progressively added papers to each direction. GS users,
in contrast, did not exhibit this ‘big picture’ behaviour.

9.2 User Comments
After the study, we asked the map users to tell us about

their experience. Below are some of their comments:

Positive: “Helpful... gave

me keywords to search for” /

“I noticed directions I didn’t

know about... Haven’t heard

of predictive state representa-

tions before” / “Useful way to

get a basic idea of what sci-

ence is up to” / “That was a

great starting point” / “Easy

to identify research groups...

in this context, this guy is

good”/“Timeline is very use-

ful”

Negative: “Takes a while

to grasp” / “For a begin-

ner, some papers are too spe-

cific... may be more use-

ful after I read some more”

/ “Legend is confusing if you

do not know the topic in ad-

vance” / “Didn’t necessarily

understand the logic behind

edges... why don’t you draw

words on edges?” / “It is hard

to get an idea from paper title

alone”

Most importantly, many participants found the map use-
ful in making sense of the field. Some of the participants
had trouble interpreting elements of the map, or felt like the
map was more suited for researchers with deeper background
knowledge. We found that many of the negative comments
could be addressed by improvements in the design of the
user interface.

10. A NOTE ON PERSONALIZATION
When we defined our coverage notion (Secion 4), the weight

of each paper was set to 1. In other words, the objective was
to cover as much of the corpus as possible. However, some
parts of the corpus may be more important to the user than
others. In order to be useful, the model must be capable of
representing the user’s interests.

In this section, we rely on user feedback in order to learn
their preferences and adjust the maps accordingly. We use
the interaction algorithm of [Shahaf et al., 2012]. This algo-
rithm lets the user provide feature-based feedback. Feature-
based feedback is a very natural way for specifying prefer-
ences. We show the user a tag cloud describing the papers
of the map. Clicking on a word lets the user adjust its im-
portance. For example, importance of 0.9 implies that 90%
of the documents in which the word appears are interesting
to the user. The relative transparency of the model allows
users to make sense of feature weights.

Feature-based feedback is especially useful in the research
domain, as users can employ it to indicate which authors and
venues they trust. In addition, since our coverage notion
is biased against newer papers (new papers did not have
enough time to make a big impact), the users can indicate
their preferences for new, state-of-the-art papers.

When we increase the weight of the years 2005-2008 in
the reinforcement learning map, the resulting map contains
chains about more recent topics, such as hierarchical rein-
forcement learning. When biasing for AAMAS (a conference
on autonomous agents and multiagent systems), the result-
ing map includes a new chain about robot soccer.

In the future, it may be interesting to formulate a notion of
baseline personalization, where default weights are set based
on authors’ reputations: if an author has written many high-
impact papers, his new paper is likely to be important. We
may also explore other notions of personalized coverage, such
as [El-Arini and Guestrin, 2011; Yue and Guestrin, 2011].

11. CONCLUSIONS AND FUTURE WORK
In this paper, we have devised a method for constructing

metro maps of science. Given a query, our algorithm gener-
ates a metro map: a concise structured set of research lines
which maximizes coverage of salient pieces of information.
Most importantly, metro maps explicitly show the relations
between the research lines.

We conducted promising pilot user studies, comparing
our system to two systems that dominate today’s research-
related queries. The results indicate that our method can
help users acquire knowledge efficiently.

In the future, we plan to experiment with richer forms
of input, output, and interaction models. Promising direc-
tions include edge-annotation based on citation function, no-
tions of coverage that combine structure and content, paper-
based and line-based feedback mechanisms, and the integra-
tion of higher-level semantic features. We have also cre-
ated a website that allows interactive visualization of metro
maps, which we hope to launch soon. We believe that metro
maps hold the potential to become effective tools to help re-
searchers cope with information overload.
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