
Deadlocks in Datacenter Networks: Why Do They Form,
and How to Avoid Them

Shuihai Hu1,2 Yibo Zhu1 Peng Cheng1 Chuanxiong Guo1 Kun Tan1

Jitendra Padhye1 Kai Chen2

1Microsoft 2Hong Kong University of Science and Technology

ABSTRACT
Driven by the need for ultra-low latency, high throughput
and low CPU overhead, Remote Direct Memory Access (RDMA)
is being deployed by many cloud providers. To deploy RDMA
in Ethernet networks, Priority-based Flow Control (PFC) must
be used. PFC, however, makes Ethernet networks prone
to deadlocks. Prior work on deadlock avoidance has fo-
cused on necessary condition for deadlock formation, which
leads to rather onerous and expensive solutions for deadlock
avoidance. In this paper, we investigate sufficient conditions
for deadlock formation, conjecturing that avoiding sufficient
conditions might be less onerous.

1. INTRODUCTION
In this rather atypical hotnets submission we discuss a

problem that is quite (c)old, albeit one that has re-emerged in
a new context, and admit that we have no idea how to solve it
completely. Our hope is to draw the community’s attention
to this problem, and re-ignite research in this area.

The problem is deadlock formation in lossless networks.
Driven by the need for ultra-low latency, high throughput

and low CPU overhead, major cloud service providers are
deploying Remote Direct Memory Access (RDMA) in their
datacenter networks [17, 24]. Among the available RDMA
technologies, RDMA over Converged Ethernet (RoCE) [1]
is a promising one as it is compatible with current IP and
Ethernet based datacenter networks.

The deployment of RoCE requires Priority-based Flow Con-
trol (PFC) [2] to provide a lossless L2 network. With PFC,
packet loss can be avoided by letting a switch pause its im-
mediate upstream device before buffer overflow occurs. How-
ever, PFC can cause deadlock problem. Deadlock refers to

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotNets-XV, November 09-10, 2016, Atlanta, GA, USA
© 2016 ACM. ISBN 978-1-4503-4661-0/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3005745.3005760

PFC threshold Switch A
buffer

Switch C buffer
PAUSE

PAUSE PAUSE

Packets
AàBàCàA

Switch B buffer
Figure 1: PFC-induced deadlock: simple illustration

a standstill situation: there is a cyclic buffer dependency
among a set of switches. Any switch in the cycle holds all
the buffer needed by its upstream switch, and meanwhile is
waiting for its downstream switch to release some buffer and
resume its packet transmission. A simple scenario is illus-
trated in Figure 1.

It is easy to see that when deadlock occurs, no switch in
the cycle can proceed. Further, throughput of the whole net-
work or part of the network will go to zero due to the back-
pressure effect of PFC pause.

It is often believed that such deadlocks cannot occur in
clos-structured datacenter networks, since a loop cannot form
in such networks with valley-free routing [24]. However,
Guo et al. [10] has shown that deadlocks can indeed occur in
such network. We now believe that deadlocks can also occur
when transient loops form in clos structured networks. In
our datacenters, these can happen as BGP1 re-routes around
link failures. In SDN-based datacenters, transient loops can
occur during updates [12]. While transient loops will disap-
pear by themselves soon, deadlocks caused by them are not
transient. Deadlocks cannot recover automatically even after
the problems (misconfiguration, failures/updates, etc.) that
cause them have been fixed.

Hence some mechanism for handling the deadlock prob-
lem must be used when deploying RDMA in datacenter net-
works. These mechanisms fall in two broad categories. Re-
active mechanisms/systems detect that a deadlock has formed,
and then try to break it by resetting links/ports/hosts etc.
These mechanisms are inelegant, disruptive, and should be
used only as a last resort. We do not consider them further
in this paper. Proactive deadlock prevention is a more prin-
cipled approach to this problem. Prior work on deadlock
prevention can be classified into two categories including 1)
Routing restriction-based approach [7, 21]. The idea of this
1In our datacenters, we use BGP for routing, with each switch be-
ing a private AS.

approach is to ensure that no cyclic buffer dependency ex-
ists in the network by limiting the routing paths used in each
priority class; 2) buffer management (structured buffer pool)
based approach [8, 14]. This approach divides switch buffer
into several buffer classes. A packet is allowed to access
more buffer classes as it travels greater distance in the net-
work. It can be proved that as long as the number of buffer
classes is no smaller than the hop count of the longest rout-
ing path, there will be no cyclic buffer dependency.

Both approaches to deadlock prevention have some im-
portant drawbacks. Approaches based on routing restriction
usually waste link bandwidth and limit throughput perfor-
mance. Buffer management based approach may require
a lot of priority classes and switch buffer for networks of
large diameters, While the commodity switches with shal-
low buffer can support at most 2 lossless traffic classes [10].
These drawbacks can be viewed as the cost of eliminating
cyclic buffer dependency in the network. While avoiding cy-
cle buffer dependency guarantees a deadlock-free network,
it may not be always feasible to pay these costs.

Thus, we take step back and ask: Is cyclic buffer depen-
dency a necessary condition for deadlock formation, or is it a
sufficient condition? If it is only a necessary condition, can
we focus on sufficient conditions, and guarantee deadlock
freedom, without eliminating cyclic buffer dependency?

To answer the above questions, we studied several repre-
sentative deadlock cases. First, we find that cyclic buffer de-
pendency is just a necessary condition for deadlock. In some
sense, this is trivially true: if no flow is sending any data,
there will obviously be no deadlock, regardless of cyclic
buffer dependency. However, there are also several non-
trivial cases where cyclic buffer dependency is met, all flows
are active, but there is no deadlock. Second, we find that
even if all the links in a switch cycle are paused simultane-
ously, deadlock may still not occur. These findings indicate
that prior solutions are too conservative.

So, in this paper, we shall try to understand the sufficient
conditions for deadlock formation, which we conjecture to
be far easier to ameliorate than the necessary conditions. As
mentioned earlier, we do not yet have a precise characteri-
zation of the sufficient conditions. Yet, we have made some
headway, which allows us to sketch a few possible solutions
to the problem.

2. DEADLOCK IN LOSSLESS NETWORK
We now briefly discuss how deadlocks form in lossless

networks, and why we must study the necessary and suffi-
cient conditions of deadlock formation.
Lossless Ethernet relies on PFC. RoCE needs PFC to
provide a lossless L2 network. With the PFC PAUSE mech-
anism, a switch can pause an incoming link when its ingress
buffer occupancy reaches a preset threshold. Properly tuned,
no packet will be dropped due to insufficient buffer space.
Unfortunately, deadlock may occur in such lossless networks.
PFC may lead to deadlock, if paused links form a cycle.

In a PFC-enabled network, if a subset of links simultane-
ously paused by PFC happen to form a directed cycle, no
packets in the cycle can move even if there is no more new
traffic injected into this cycle.

To avoid such deadlock, deadlock-free routing [21] has
been proposed. It guarantees that (if the routing configu-
ration is correct,) any traffic does not cause deadlock.
Unfortunately, achieving deadlock-free routing is ineffi-
cient, and may not even be viable. Deadlock-free rout-
ing is achieved by eliminating cyclic buffer dependency [5].
However, ensuring that there is never any cyclic buffer de-
pendency is challenging.

First, deadlock-free routing largely limits the choice of
topology. For example, Stephens et al. [21] proposes to
only use tree-based topology and routing, and shows that
it is deadlock-free. However, there are a number of other
datacenter topologies and routing schemes that are not tree-
based [3, 9, 19], and do not have deadlock-free guarantee.

Second, due to bugs or misconfiguration, deadlock-free
routing configuration may turn into deadlock-vulnerable. In
fact, recent work has observed a PFC deadlock case in real-
world tree-based datacenter [10], caused by the (unexpected)
flooding of lossless class traffic. This case is a concrete
example to show that even for tree-based topology, cyclic
buffer dependency can still occur if up-down routing is not
strictly followed. Furthermore, there are multiple reports of
routing loops due to misconfiguration in today’s production
datacenters [23, 25]. If lossless traffic encounters any of
these loops, cyclic buffer dependency is unavoidable.

In this paper, we argue that we should accept the fact that
cyclic buffer dependency cannot be completely avoided,2 and
instead try to understand more precise deadlock conditions.
Our findings show that even if there is cyclic buffer depen-
dency, deadlock may not occur (see Section 3). This means
that cyclic buffer dependency is only a necessary but not suf-
ficient condition for deadlock. We show the occurrence of
deadlock is affected by the packet TTL, the traffic matrix,
as well as flow rate. Based on these findings, we propose
several ways to avoid deadlock even in face of cyclic buffer
dependency.

3. CASE STUDIES: CYCLIC BUFFER DE-
PENDENCY IS INSUFFICIENT FOR DEAD-
LOCK

Although cyclic buffer dependency is a necessary condi-
tion for deadlock, it is not a sufficient condition. In this
section, we present our case studies in which cyclic buffer
dependency is present, but deadlock formation still depends
on other factors. We demonstrate that 1) a looping flow that
generates cyclic buffer dependency does not always lead to
deadlock. The length of loop, flow rates and packet Time-
To-Live (TTL) affects whether the deadlock forms. 2) Mul-
tiple flows may cause cyclic buffer dependency, but slightly
2In other words, deadlock-free routing may not always apply or
work correctly.

A TX1 B
RX2Flow 1

RX1

RX1

TX1

(a) Topology and flows

A B
RX2

RX1

RX1

(b) Buffer dependency graph

…

r B

B-rd qn q2

q1

(c) Stable state model

Figure 2: Single looping flow creates cyclic buffer dependency but may not create deadlock.

different flow sets lead to different deadlock results. 3) Rate-
limiting can prevent deadlock from happening.

3.1 Case 1: Flow Rate and TTL Determine
Deadlock in a Routing Loop

A routing loop can create cyclic buffer dependency if a
flow is trapped in the loop. The simplest example is a two-
hop loop between two switches, as shown in Figure 2(a)
(RX represents input queue (or port), and TX represents
output queue (or port)). We then plot buffer dependency
graph (Figure 2(b)). Each directed line represents a buffer
dependency from the source RX to the destination RX. For
example, packets buffered in RX1 of switch A will be sent
to RX1 of B, and vice versa. So in Figure 2(b), two directed
lines are drawn between A and B. Switch A’s dependency
on switch B means whether switch A can move the packets
in its receiving buffer RX1 to egress depends on switch B’s
buffer RX1.3 The switches can send packets to the other side
only when the other side’s buffer utilization is under PFC
PAUSE threshold. The deadlock happens when both of the
involved buffers reach the PFC threshold at the same time
and PAUSE the links.

However, this cyclic buffer dependency may not always
turn into deadlock state. The flow rate, the TTL (time-to-
live) of packets and the length of the loop together deter-
mine whether there will be deadlock. In our testbed, we run
a simple experiment on two switches that are connected by
a 40Gbps link and configured with a routing loop. All pack-
ets have initial TTL of 16 and are injected into one of the
switches. We find that, only if the packet injection rate ex-
ceeds 5Gbps, there can form deadlock.

In order to analyze deadlock formation in the cases of
routing loop, we develop a mechanism called boundary state
analysis. It yields accurate prediction of whether deadlock
forms, as shown below.
Boundary state analysis. On any of the switches in the
loop, packets are injected by the previous hop and drained by
the next hop. If the draining rate is smaller than the inject-
ing rate, packets will continuously queue up in the switch
buffers. In a loop, once one switch buffers enough pack-
ets and triggers PFC, the PFC will soon cascade through the
whole loop and forms deadlock. We define boundary state,
in which the injecting rate and draining rate are balanced on
every switch, and any larger injecting rate leads to deadlock
because draining rate cannot catch up.

We build the boundary state model as illustrated in Fig-
3We focus on receiving buffer because PFC PAUSE triggers based
on the occupancy of receiving buffer.

ure 2(c). The variables are described in Table 1.
Table 1: Stable state analysis variables

Variable Description
r Inject rate of new packets.
B Link bandwidth.
rd Packets drain rate caused by TTL expiration.

TTL Initial Time-To-Live value.
n The length of the routing loop.

According to the boundary state definition, the injecting
rate and draining rate must be equal on the first switch:

r +B − rd = B (1)

In addition, we consider the sum of TTL values of all packets
in the system. During the boundary state, it should remain
stable. Therefore, the increase rate and decrease rate of the
sum of TTL should be the same:

n ∗B = TTL ∗ r (2)

Combining Equation 1, Equation 2, and the fact that dead-
lock requires larger injecting rate than that in boundary state,
we derive the necessary and sufficient condition of deadlock
in a routing loop scenario:

r > rd =
nB

TTL
(3)

This matches what we observe in testbed experiment: with
B = 40Gbps, n = 2 and TTL = 16, the flow injecting
rate must be at least 5Gbps to cause deadlock. With larger
bandwidth, shorter loop length or smaller initial TTL values,
the threshold of r can be higher. As long as the flow rate is
smaller than the threshold, no deadlock will form. As shown
in Section 4, we may utilize this property to avoid deadlock,
even if routing loop occurs.

3.2 Case 2: Traffic Matrix Affects Deadlock
Multiple flows may create a cyclic buffer dependency even

if there is no routing loop. Figure 3(a) shows a simple ex-
ample with four switches A, B, C and D. Flow 1 starts at a
host (not shown) attached to A, passes through B and C, and
ends at a host attached to D. Flow 2 starts at a host attached
to C, passes through D and A, and ends at a host attached to
B. Similar to the previous case, we can draw the dependency
lines between switches. As shown in Figure 3(b), there is a
cyclic buffer dependency among the four switches, i.e., de-
pendencies from RX1 of A to RX1 of B, then to RX1 of C,
then to RX1 of D, and finally back to RX1 of A.

In this example, the boundary state analysis does not yield
meaningful results. Because the flows do not have any rate
limiting, one can easily analyze that the stable throughput
of each flow is B/2. However, it is not easy to tell whether

A TX1 B

D C

RX1

RX2 RX1

TX1

TX2

TX1 RX2

RX1TX1

TX2 RX1

L1

L2

L3

L4

Flow 1

Flow 2

(a) Topology and flows

A B

D C

RX1

RX2

RX1

RX2

RX1

RX1

(b) Buffer dependency
graph

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

Time/ms

P
au

se
 E

ve
nt

Pause event at link L1
Pause event at link L2
Pause event at link L3
Pause event at link L4

(c) Pause events at four links

0 2 4 6 8 10
0

20

40

60

80

Time/ms

In
st

an
t b

uf
fe

r
oc

cu
pa

nc
y/

K
B

Buffer occupancy of flow 2 at RX1
PFC threshold

(d) Buffer occupancy at switch A

0 2 4 6 8 10
0

20

40

60

80

Time/ms

In
st

an
t b

uf
fe

r
oc

cu
pa

nc
y/

K
B

Buffer occupancy of flow 1 at RX1
PFC threshold

(e) Buffer occupancy at switch B

0 2 4 6 8 10
0

20

40

60

80

Time/ms

In
st

an
t b

uf
fe

r
oc

cu
pa

nc
y/

K
B

Buffer occupancy of flow 1 at RX1
PFC threshold

(f) Buffer occupancy at switch C

0 2 4 6 8 10
0

20

40

60

80

Time/ms

In
st

an
t b

uf
fe

r
oc

cu
pa

nc
y/

K
B

Buffer occupancy of flow 2 at RX1
PFC threshold

(g) Buffer occupancy at switch D

Figure 3: There is no deadlock even though two flows create cyclic buffer dependency among four switches.

deadlock will form. For example, one may suspect that switch
A’s RX1 will generate PFC PAUSE, and these PAUSE frames
may cascade from A to D, then to C, B and finally back to
A, thus creating deadlock. To understand such scenarios, we
must analyze and simulate them at packet level.

Simulation setup: To create a well-controlled experimen-
tal environment, we simulate the scenario in Figure 3(a) us-
ing packet-level NS-3 simulations. In our NS-3 simulator,
we implement the PFC protocol (i.e., IEEE 802.1 Qbb proto-
col). For each ingress queue, the switch maintains a counter
to track the bytes of buffered packets received by this ingress
queue. Once the queue length exceeds the preset PFC thresh-
old, the corresponding incoming link will be paused.

In our simulations, we configure static routing on all switches
so that flow paths are enforced. Both flows are UDP flows
with infinite traffic demand. Link capacity of all links is
40Gbps. All the switches have 12MB buffer. PFC threshold
is statically set to 40KB for each ingress queue. These pa-
rameters affect how fast deadlock forms (if any), but do not
affect whether deadlock forms.

In Figure 3(c), we plot the PFC pause events at four links
L1, L2, L3 and L4. If link Li, (i = 1, 2, 3, 4) is paused at
time t, we plot a point at location (t, i). Pause events at dif-
ferent links are plotted with different colors and of different
heights. As we can observe, links L2 and L4 are paused
continuously, while the other two links L1 and L3 never get
paused. In this case, deadlock will never form as no packet
will be paused permanently.

To understand the pause pattern, we sample the instanta-
neous buffer occupancy of both flows at RX1 queues of A, B,
C and D every 1us. In Figure 3(d), we draw the instant buffer
occupancy of flow 2 at RX1 of A. Similarly, in Figure 3(e),
Figure 3(f) and Figure 3(g), we draw the instant buffer oc-
cupancy of interested flows at RX1 queues of B, C and D,
respectively. As flow 1 and flow 2 are symmetric, we only
present the analysis for Figure 3(d) and Figure 3(e) to show

why Link L4 is paused continuously but link L1 never gets
paused. As shown in the figures, buffer occupancy of flow 2
at RX1 of A fluctuates between 10KB and 55KB around the
PFC threshold, so link L4 will get paused intermittently. In
contrast, buffer occupancy of flow 1 at RX1 of B is well be-
low the PFC threshold (fluctuates between 0KB and 18KB),
hence link L1 never gets paused.

The takeaway is that, we cannot simply predict deadlock
based on the existence of cyclic buffer dependency and flow-
level stable state analysis. This is because we cannot pre-
dict the instantaneous buffer occupancy (and whether PFC
is triggered) from flow-level analysis that only focuses on
average flow throughput.
Slightly different traffic matrix leads to deadlock: as
shown in Figure 4(a), based on the previous scenario, We
add another flow (flow 3) which enters the network at switch
B and leaves at switch C. All the three flows are UDP flows
with infinite traffic demand. Buffer dependency graph is
drawn in Figure 4(b). Compared with previous scenario, one
additional dependency from RX2 of B to RX1 of C is added,
but it is outside the cyclic buffer dependency. The cyclic
buffer dependency itself remains unchanged.

Pause events at four links L1, L2, L3 and L4 are plot-
ted in Figure 4(c). As we can see, in this case four links
are all paused. To check whether deadlock will form in this
case, we stop the three flows after a sufficient long period
(1000ms). We find that pause events are continuously gen-
erated at all the four links even after three flows stop sending
new packets. This means that a deadlock has been created
among the four switches.

The bizarre thing is, if we apply the stable state flow anal-
ysis based on PFC fairness,4 it is easy to see that all flows
should have 20Gbps throughput. Particular at switch D, the

4PFC ensures per-hop per-port fairness. If packets from two ingress
ports go to the same egress port, each ingress port gets half of the
egress bandwidth.

A TX1 B

D C

RX1

RX2 RX1

TX1

TX2

TX1 RX2

RX1TX1

TX2 RX1

L1

L2

L3

L4

Flow 1

Flow 2

Flow 3

RX2

TX2

(a) Topology and flows

A B

D C

RX1

RX2

RX1

RX2

RX1

RX1

RX2

(b) Buffer dependency graph

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Time/ms

P
au

se
 e

ve
nt

Pause event at link L1
Pause event at link L2
Pause event at link L3
Pause event at link L4

(c) Pause events at four links

Figure 4: Slightly different traffic matrix leads to deadlock, even though the flow-level analysis shows that the average
throughput of flow 1 and flow 2 should not be affected.

A TX1 B

D C

RX1

RX2 RX1

TX1

TX2

TX1 RX2

RX1TX1

TX2 RX1

L1

L2

L3

L4

Flow 1

Flow 2

Flow 3

RX2

TX2

Rate limiting=2Gbps

(a) Topology and flows

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Time/ms

P
au

se
 e

ve
nt

Pause event at link 1
Pause event at link 2
Pause event at link 3
Pause event at link 4

(b) Pause events at four links

0 2 4 6 8 10
0

20

40

60

80

Time/ms

In
st

an
t b

uf
fe

r
oc

cu
pa

nc
y/

K
B

Buffer occupancy of flow 1 at RX1
PFC threshold

(c) 2Gbps rate limiter, no dead-
lock

0 2 4 6 8 10
0

20

40

60

80

Time/ms

In
st

an
t b

uf
fe

r
oc

cu
pa

nc
y/

K
B

Buffer occupancy of flow 1 at RX1
PFC threshold

(d) 3Gbps rate limiter, deadlock

Figure 5: Different rate limiting determines whether the deadlock forms.

stable ingress and egress rate of flow 1 and flow 2 should
remain the same as the previous case (Figure 3). However,
now switch D starts to generate PFC at RX1 towards switch
C, as opposed to no PFC generated in the previous scenario.

Flow-level stable state analysis cannot capture such be-
havior. We can only get answers from the packet-level anal-
ysis. Unfortunately, we have not yet found any analytic tools
that can precisely describe the PFC behaviors in these two
examples. Looking at the packet traces, we only roughly
know that after adding flow 3, flow 1 has to share the band-
width of link L2 with flow 3 and this may cause different
PFC patterns on link L1 without affecting the average through-
put of flow 1 and flow 2. But this change in pattern makes
PFC cascade towards L4 and finally L3.

Once all the four links are paused simultaneously, there is
a chance that no link can get resumed. For example, it is
possible that when simultaneous pause happens, at switch A
and switch B, the first packet buffered in the head is a packet
of flow 1, and meanwhile, at switch C and switch D, the first
packet buffered in the head is a packet of flow 2. Once this
condition is met, PFC deadlock occurs.
Summary: In the above multi-flow scenarios, cyclic buffer
dependency can be created without a routing loop. However,
it is again not a sufficient condition for deadlock. The anal-
ysis of sufficient condition is complicated. Stable flow state
analysis does not apply. A slightly different matrix that does
not significantly affect stable flow state may lead to very dif-
ferent packet-level behavior, thus different deadlock results.
Though packet-level simulations help us understand these
scenarios, we so far do not find any analytic tools that are at
packet-level and work for above examples.

3.3 Case 3: Rate Limiting Mitigates Deadlock
In the last deadlock example (Figure 4), if we additionally

limit the rate of flow 3, deadlock may be avoided. As shown
in Figure 5(a), we add a rate limiter to switch B’s ingress port
RX2. While the buffer dependency graph remains the same
as Figure 4(b), slower flow 3 means that the congestion on
switch B is reduced, PFC is less frequent and deadlock may
be avoided. The question is, what is the maximum rate that
can avoids deadlock?

Again, using flow-level stable state analysis, we cannot
get the answer. We use packet-level simulator to test differ-
ent rate limiting values. We find that when the rate of flow
3 is no more than 2Gbps, there is no deadlock even though
all links have frequent PAUSE (Figure 5(b)). Note that, af-
ter zoom in Figure 5(b), we can see that four links are never
paused simultaneously at packet level. Why is 2Gbps differ-
ent from higher rate, like 3Gbps?

We plot the buffer occupancy of RX1 at switch B, and
compare when we limit the rate of RX2 to 2Gbps (Figure 5(c))
and 3Gbps (Figure 5(d)). Interestingly, the buffer occupancy
always fluctuates between 0 and a little above PFC thresh-
old5 with 2Gbps rate limiter. While with 3Gbps rate limiter,
after some fluctuation the buffer goes into deadlock, even
though the peak buffer usage is the same as 2Gbps case. Un-
fortunately, we cannot find any existing analysis tools that
explain what we have observed.

In short, while rate limiting mitigates deadlock, packet-
level analysis is required for understanding the actual thresh-
old. We are currently working on analysis tools, e.g., a fluid
model that can describe PFC behavior, and will report it in
future work.
Summary: From all the examples in this section, we sum-
marize that cyclic buffer dependency is a loose condition for
5It takes some time for PFC PAUSE to arrive the other side and
become effective after PFC threshold is reached. The switch buffers
additional packets due to this delay.

deadlock. The traffic demand matrix, TTL and flow rates
all affect the deadlock formation. While we cannot obtain
the tightest condition (i.e., necessary and sufficient condi-
tion), we know that a tighter condition should include those
factors, and that these factors can be utilized for deadlock
mitigation. In Section 4, we discuss potential deadlock mit-
igations in addition to avoiding cyclic buffer dependency.

4. POTENTIAL DEADLOCK MITIGATIONS
Since cyclic buffer dependency is just a necessary con-

dition for deadlock, there are mitigation mechanisms that
avoid deadlock even if cyclic buffer dependency is present.
The examples and analysis in Section 3 inspire us with some
of the following potential deadlock mitigations.
TTL-based mitigation for deadlock caused by loops. In
a routing loop, deadlock formation becomes less likely with
smaller TTL (see Equation 3). Thus, the most straightfor-
ward mitigation is to reduce packets’ initial TTL values. For
example, in an N -hop routing loop, if the initial TTL is not
larger than N , no deadlock will form because the deadlock
threshold for r is B, which can never be exceeded.

In practice, we may not be able to guarantee that initial
TTL values are always smaller than the size of the loop.
However, by proper switch buffer management, we may make
class-specific TTL much smaller than the actual TTL values.
For example, if we assign packets that have different TTL
values by at least X to different priority classes, the effective
TTL becomes X within a priority class. Since PFC PAUSE
operates based on priority classes, the deadlock threshold of
injecting rate r is effectively increased.

In worst-case scenarios, the effective TTL may still be
larger than the size of loop, meaning that some r smaller
than B leads to deadlock. We may consider rate limiting to
keep r below the threshold NB/TTL, as discussed below.
Rate limiting. Commodity switches support bandwidth
shaping for each priority class or even particular flows. This
can mitigate deadlock caused by both routing loops and multi-
flow buffer dependency, as shown in Section 3. If we are able
to predict the rate threshold for deadlock, we may bound the
individual flow rate by that threshold on switches that are in-
volved in cyclic buffer dependency. However, this requires
intelligent rate limiting schemes to avoid over-punishing in-
nocent flows. We leave this to future work.
Limiting PFC pause frames propagation: PFC is well
known for its HoL blocking problem. The damage of HoL
and the potential deadlock caused by PFC is significant be-
cause the pause frames are generated near the destination
or in the middle of the network, where network congestion
usually happen. Hence if we can limit the PFC pause frame
propagation – or just generate them near the source, we can
reduce the damage of both deadlock and HoL blocking.

Here we describe several possible ways of doing so: first,
we can assign different PFC thresholds to the ports of a
switch based on their position in the topology. Ports connect-
ing to the downstream (i.e towards leaf) get smaller thresh-

old, whereas ports connecting to the upstream get larger thresh-
old. Second, we can use switches with larger threshold val-
ues at the higher tiers so that they can absorb small bursts in-
stead of generating PFC pause frames. Third, again, we may
classify packets with different TTL into different classes and
assign them different PFC thresholds. Unfortunately, these
solutions may lead to other issues including the unfairness
between long (across different high tier switches) and short
(e.g., within the same rack) flows. This trade-off requires
further study.
Preventing PFC from been generated. The recent trans-
port protocols, DCQCN [24] and TIMELY [17] are designed
to reduce the possibility of PFC generation. But due to the
feedback latency of end-to-end delay, neither algorithm can
detect congestion instantaneously, and thus they cannot com-
pletely prevent PFC from been generated.

One possible way to further reduce PFC is to integrate DC-
QCN together with phantom queuing, like [4]. By reacting
to the phantom queues that assume lower link speed, con-
gestion signals are generated much earlier.
Other possible mechanisms. In future work, a deeper
understanding of tighter conditions for deadlock may lead to
more deadlock mitigation mechanisms – this is the focus of
our ongoing work.

5. RELATED WORK
RDMA in datacenters. RDMA has been used for im-
proving distributed application performance, like in-memory
key value store [6, 13, 16], Hadoop RPC [15] and HBase [11].
It has been recently deployed inside modern datacenters [10,
17, 24], based on RoCE (RDMA over Converged Ethernet),
which relies on PFC to create a lossless Ethernet. Recent
work [17, 24] discusses congestion control for RoCEv2 net-
works. The issue of deadlock is mentioned in these papers,
but not directly addressed. In this paper, we aim to get
deeper understanding on deadlock and possible mitigations.
Deadlock-free routing. To avoid deadlock in lossless
networks, previous work [14, 18, 20–22] has focused on
deadlock-free routing: i.e. deadlock freedom regardless of
traffic pattern etc. It has also been proven that that elimi-
nating cyclic buffer dependency is a necessary and sufficient
condition for deadlock-free routing [5]. However, deadlock-
free routing is difficult to implement in practice – since it is
challenging to eliminate cyclic buffer dependency in face of
arbitrary bugs and failures. Our work explores how we may
control the flows, packet formats and switch configurations
to avoid deadlock even if routing is not deadlock-free.

6. CONCLUSION
In this paper, we study the problem of deadlock in data-

center network. We demonstrate a few case studies in which
deadlock formation depends on factors other than cyclic buffer
dependency. In light of these examples, we discuss poten-
tial deadlock mitigation mechanisms including TTL-based
schemes, rate limiting and reducing PFC propagation.

7. REFERENCES

[1] RDMA over Converged Ethernet (RoCE).
http://www.mellanox.com/page/products_dyn?
product_family=79.

[2] IEEE. 802.11qbb. Priority-based flow control, 2011.
[3] Hussam Abu-Libdeh et al. Symbiotic routing in future

data centers. In Proc. of SIGCOMM, 2010.
[4] Mohammad Alizadeh et al. Less is more: Trading a

little bandwidth for ultra-low latency in the data
center. In Proc. of NSDI, 2012.

[5] W.J. Dally and C. L. Seitz. Deadlock-free message
routing in multiprocessor interconnection networks.
C-36(5):547 –553, may 1987.

[6] Aleksandar Dragojevic, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast remote
memory. In Proc. of NSDI, 2014.

[7] Jose Flich, Tor Skeie, Andres Mejia, Olav Lysne,
Pierre Lopez, Antonio Robles, Jose Duato, Michihiro
Koibuchi, Tomas Rokicki, and Jose Carlos Sancho. A
survey and evaluation of topology-agnostic
deterministic routing algorithms. IEEE Transactions
on Parallel and Distributed Systems, 2012.

[8] Mario Gerla and Leonard Kleinrock. Flow control: A
comparative survey. IEEE Transactions on
Communications, 1980.

[9] Chuanxiong Guo et al. BCube: a high performance,
server-centric network architecture for modular data
centers. In Proc. of SIGCOMM, 2009.

[10] Chuanxiong Guo et al. RDMA over commodity
ethernet at scale. In Proc. of SIGCOMM, 2016.

[11] Jian Huang et al. High-performance design of hbase
with rdma over infiniband. In Proc. of IPDPS, 2012.

[12] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi,
Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Jennifer Rexford, and Roger Wattenhofer. Dynamic
scheduling of network updates. In Proc. of
SIGCOMM, 2014.

[13] Anuj Kalia, Michael Kaminsky, and David G.
Andersen. Using rdma efficiently for key-value
services. In Proc. of SIGCOMM, 2014.

[14] Mark Karol, S Jamaloddin Golestani, and David Lee.
Prevention of deadlocks and livelocks in lossless
backpressured packet networks. IEEE/ACM
Transactions on Networking, 2003.

[15] Xiaoyi Lu, Nusrat S. Islam, Md. Wasi-Ur-Rahman,
Jithin Jose, Hari Subramoni, Hao Wang, and
Dhabaleswar K. Panda. High-performance design of
hadoop rpc with rdma over infiniband. In Proc. of
ICPP, 2013.

[16] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using one-sided rdma reads to build a fast,
cpu-efficient key-value store. In Proc. of ATC, 2013.

[17] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,

Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the
datacenter. In Proc. of SIGCOMM, 2015.

[18] Jose Carlos Sancho, Antonio Robles, and Jose Duato.
An effective methodology to improve the performance
of the up*/down* routing algorithm. IEEE
Transactions on Parallel and Distributed Systems.

[19] Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking data
centers randomly. In Proc. of NSDI, 2012.

[20] Tor Skeie, Olav Lysne, and Ingebjørg Theiss. Layered
shortest path (lash) routing in irregular system area
networks. In Prof. of IPDPS, 2012.

[21] Brent Stephens, Alan L. Cox, Ankit Singla, John
Carter, Colin Dixon, and Wesley Felter. Practical dcb
for improved data center networks. In Prof. of
INFOCOM, 2014.

[22] Jie Wu. A fault-tolerant and deadlock-free routing
protocol in 2D meshes based on odd-even turn model.
IEEE Transactions on Computers.

[23] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar
Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown,
and Amin Vahdat. Libra: Divide and conquer to verify
forwarding tables in huge networks. In Proc. of NSDI,
2014.

[24] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale
RDMA deployments. In Proc. of SIGCOMM, 2015.

[25] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and Haitao Zheng.
Packet-level telemetry in large datacenter networks. In
Proc. of SIGCOMM, 2015.

