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1 Introduction

Growing enthusiasm about the application of autonomous reasoning in high-
stakes domains like medicine and aerospace has stimulated interest in sys-
tems that behave in accordance with a coherent theory of rationality. Within
such domains, the losses associated with suboptimal decisions tend to render
simple satisficing approaches inadequate and provide incentive for attempt-
ing to optimize the utility of computational activity. In pursuing research on
rational agency over the last several years, a number of problems have come
to be highlighted as rich areas for future research. In this paper, we review
promising prospects for future study. The research topics will be motivated
by recent research and preliminary theoretical and empirical results.

At the heart of intelligent behavior is the pursuit of maximal utility by
reasoners with relatively limited representational and inferential abilities.
Constraints on an agent’s reasoning and representation resources lead to
inescapable uncertainties about the problems that may be faced and about
the performance of alternative reasoning strategies in solving the problems.
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Medicine under Grant RO1LM0429. Computing facilities were provided by the SUMEX-
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Almost any interesting work on intelligent problem solving centers on the de-
velopment of techniques that simple artifacts immersed in complex environ-
ments can depend on for sucessful competition with environment challenges
and with threats by other intelligent competitors for precious commodities.
Uncertainty and runs deep at several levels of intelligent foundations in the
complexity of the problems. However, an intelligent reasoner must turn in-
ward and reason about the deep uncertainties about the structure of utility,
about the representations that it must construct, and about the nature of
solving inference problems that are posed by the models.

As background, one focus of activity in our research lab has been the
exploration of decision-theoretic reasoning strategies in medicine. In fact
our initial foray into research on rationality under resource constraints was
motivated by problems with the effective application of decision theory in
expert systems and in intelligent monitors for medicine. Current research fo-
cuses on the control of decision-theoretic inference itself with decision-theory.
However, our research has also dwelled on the decision-theoretic control of
other types of problems, and on foundational problems with computational
approaches to rationality.

2 Bounded Rationality to Bounded Optimality

2.1 Intractability and Heuristics

Qur work has been captured by the pursuit of bounded optimality. Decision
theory has not been a popular tool in machine intelligence research. Notions
of bounded rationality that have been exercised in many discussion of intelli-
gent systems faced with complex problems shun a formal perspective as too
costly[9,7]. The work of Simon, March, and others, in the 1950s pointed out
problems with the complexity of using probabilities and utilities for han-
dling difficult problems. Simon’s was interpreted by many, as a charge to
seek out and study ill-characterized heuristic strategies. And, in fact, that
interpretation still dominates much of AL

2.2 Toward Richer Models of Rational Action

An alternative reaction to problems with the complexity of decision-theory,
is to pursue richer, more reflective decision-theoretic approaches. This has
been our approach. As the term bounded rationality has primarily been used
to refer to heuristic approaches, several of us have used the term bounded op-



timality to refer to the pursuit of rationality under scarce resources through
theoretically sound means.

The normative theory of rational beliefs and actions defined by the ax-
ioms of probability and utility has been the gold standard in many disci-
plines for dictating the behavior of an ideal agent. However, the limited
scope and applicability of this theory is underscored by recent research on
the construction of autonomous agents immersed in complex, competitive
environments. Uncertainty about the value of problem solving and alter-
native physical actions often plagues relatively simple agents immersed in
complex situations.

Rather than reject the pursuit of a theoretical foundation for ideal belief
and action, we seek to extend coherently the principles of normative ratio-
nality to situations of uncertain, varying, and scarce reasoning resources.
We seek to optimize the expected utility of an agent’s behavior given a set
of assertions about a system’s state of knowledge about the problems the
agent may face, about the expected costs of reasoning, and about its capa-
bilities. In the general case, we must consider such knowledge as uncertain
knowledge.

Some of the earliest discussion on the explicit integration of the costs
of inference within the framework of normative rationality was by Good
[2], who made the distinction between what he referred to as Type I and
Type II rationality. Good defined Type I rationality as inference which is
consistent with the axioms of decision theory without regard to the cost of
inference. Type II rationality refers to behavior that includes the costs of the
effort of reasoning. Good proposes Type III rationality—reasoning about
the costs of reasoning at the Type II level. Good generalized the notion to
Type N rationality where N refers to the particular level of analysis. After
defining these classes of rationality, Good did little to enumerate a number
of problems associated with subscription to the richer notions of rationality
under resource constraints.

Although it is straightforward to describe such a probabilistic problem-
solver in the abstract, critical problems arise in attempting to automate
rational behavior. We will focus, in the proposed paper and presentation, on
issues that challenge classical notions of rationality in the context of scarce
resources and uncertain challenges. These fundamental problems motivate
the extension of the classical model of rationality.



2.3 Goals of Research on Limited Rationality

Often the pursuit of bounded-optimal behavior is countered by reaction
from the more traditional halls of Al, that there is no need to worry about
rationality at all, that approximations and heuristic methods perform ade-
quately. However, it is clear that, in many applications, rational approaches,
by definition will be equivalent to, if not better than the ill-characterized
approaches. Even small changes in performance can be important. Relative
minor changes in performance can be crucial in arenas with high-stakes deci-
sion making such as medicine, in situations where it is important to consider
behavior over a long period of time, and in competitive situations, where,
in the long term slight advantages can accrue.

In addition to seeking better performing reasoners, we wish to elucidate
general principles of reasoning under scarce resources. Attempting to con-
struct rational creatures has already given us intuitions about the mental
world of effective bounded-resource agents.

2.4 Problem and Opportunity Areas

There are opportunities for the development of flexible reasoning and repre-
sentation strategies. There are a set of problems with the rational control of
inference that are currently wide-open. We'll get to those in a few minutes.
Other problem and opportunity areas include the compilation of reasoning
verses dynamic computation of results, issues surrounding distributed and
parallel problem solving, the dynamic reformulation of models, and problems
with characterizing preference, performance and environment.

3 Components of Problem-Solving Value

We view the utility of a reasoner to be a function of the status of inference-
level and object-level attributes that may or may not be represented. Object-
level attributes are dimensions of a result or outcome associated with the
value of action in the world. These attributes include such dimensions as
accuracy and precision of a result. We use u sub o to represent object-level
utility. We say that object-level value is a function of a multiattribute vector
v that describes a result.

We use u;(r) to refer to the inference-related cost. This component is
a function of a vector 7 representing relevant attributes of computational
cost. Such attributes include dimensions of computational resource such as
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Figure 1: The utility of an agent in a context of challenges can be decom-
posed into object-level, inference-level, and comprehensive utilities.

the area of a VLSI chip, the available memory, or most commonly the time,
it takes to generate a result. The object-level value, u,(%), is a function of
a multiattribute resource vector v. These object-level attributes include the
cost

We say that the comprehensive utility, u., associated with an agent in
the context of a problem is a function of the object-level and inference-level
attributes. There is almost always uncertainty in the object level vector that
results from the expenditure of resources. Thus, in the general case we must
sum over a probability distribution of object-level attributes to generate an
expected comprehensive utility.

4o = 3 uo(@, ) p(717)

It is often difficult to reason about the comprehensive utility directly. It
can be useful to reason about the incremental changes in a result or action
given additional expenditures of resource. Thus, the value of continuing to
compute—or the value of computation is the change in the comprehensive
utility. This is just the increase in object-level utility minus the cost of the



additional computation.
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4 Flexible Inference and Representation

Let us first explore opportunities for innovation with the generation of fiexi-
ble strategies. There are often uncertainties and variations in the amount of
resource, such as time available for computation — thus, in general, strate-
gies that are relatively insensitive to small variations in resource can be
extremely valuable. A couple of years back, we enumerated several desired
properties of strategies for reasoning under scarce resources. These include
properties of flexibility. Two such properties are value continuity and value
convergence. Value continuity refers to the notion that we wish strategies
to generate results with continuous degrees of object-level utility with the
expenditure of resource. Tom Dean and Mark Boddy have also highlighted
the strategies exhibiting these properties. Value convergence says that we
desire, continuous response strategies to converge on a result with optimal
object-level value, given the availability of a a quantity of resources that is
required for our best available method for completely solving a problem.
For example, classical normative reasoning has been based on a single
model constructed as a static basis and acted upon by a single inference
strategy. Simple examples demonstrate the value of reformulating a decision
praoblem, considered ideal in a world of abundant resources, for situations
of limited resources. In the general, the difficulty of a decision problem,
the value of solving the problem, and the costs of computation may vary
greatly. We have found tremendous opportunity in the area of reformulating
traditional all-or-nothing approaches to flexible strategies. Several of you are
familiar with our work on probabilistic inference and on sorting. We will
review several examples from recent research for additional motivation.

4.1 Desiderata of Bounded-Resource Computation

Previous work has focused on elucidating desirable properties of problem-
solving under ranging limitations in reasoning resources[3][1]. As an exam-
ple, we wish to implement representation and inference methodologies that
allow the most relevant processing to occur early on. Also, as many real-
world applications involve reasoning under large variations in the amount
of time available for inference, it is desirable to design inference strategies
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Figure 2: Strategies that show a continuous response in object-level value are
useful for reasoning in contexts of uncerain and varying resource limitations.

that are insensitive to small changes in the amount of committed computa-
tion time. In particular, the development of flexible strategies that generate
customized approaches over a wide range of resource availabilities is crucial.
Such flexibility can be especially useful in light of uncertain deadlines and
challenges. We will discuss fundamental aspects of flexiblity and will de-
scribe recent work on representation and inference strategies that configure
knowledge and processing in a manner that allows for flexible responses to
a range of computational resource availabilities[5].

1. Value continuity. We desire the comprehensive value of computation,
the object-related utility, and the inference-related utility of a strategy to
be continuous functions of the resource fraction as it ranges from zero to
one. That is,

lim Ve(S, P,rs,€) = Va(S, P,ry, £)

Ty,

where r} > ry and V(S, P,rs,£) is the expected value of computation as-
sociated with an agent’s applying inference strategy S to problem P with
resource fraction ry. We refer to the continuous decrease of object-related
value with decreasing allocation of resource over ranges that show a net
positive value of computation as graceful degradation.

2. Convergence. We desire strategies that demonstrate convergence on
the optimal object-related value as the resource fraction approaches one.
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Figure 3: A representation of the problem of sorting a file of records that
highlights the traditional all-or-nothing approach to computational problem
solving.

That is, the object-related utility of a reasoning method should gracefully
revert to ideal object-level rationality as the resources converge on r..

rl!iLnl Vo(S, P, 75,6) = [VI(P)

4.2 Multiple Dimensions of Partial Results

The Protos/algo project has explored the value of flexible reasoning with
some classic computer science problems. This figure represents the tradi-
tional approach to sorting. On the left-hand side, we represent a randomly
mixed file of records as a cloud of points in a two-dimensional space. The
x-axis represents the file position and the y axis represents the sorting key.
Sorting algorithms, fueled by time and memory, convert such a disheveled
array into a final sort, with each item in its correct position. However, un-
der varying and uncertain resource constraints we may not have time to
complete our computation.

Several existing sorting algorithms generate different patterns of partial
results with the expenditure of resource. For example, on the left we see the
typical pattern of selection sort; on the right, the pattern of refinement of
Shellsort is portrayed.

As we reported at AAAI last year, we can tease out useful dimensions
of object level value in a partial sort, and can build multiattribute utility
functions that tell us how much different partial sorts are worth to us. We
can use this information in determining which algorithm to apply and how
long to apply it before halting in different contexts.

An interesting highlight of this work was the demonstration of different
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Figure 4: Different sorting algorithms produce different patterns of prob-
lem-solving behavior over time. The selection sort is pictured on the left.
Shellsort is shown at right.
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Figure 5: By focusing on human preferences, we can reason about the rel-
ative value of different partial results. This figure shows us several compo-
nents of a partial sort.

problem solving trajectories that can be taken through a multiattribute
space. In this picture the xy plane represents two attributes of a sort. The
z axis represents time. Different algorithms fly different paths through this
space.

The elucidation and characterization of different problem solving trajec-
tories can be extremely useful in real-world problem solving, such as robot
planning.

4.3 Object-level Innovation through Reformulation
4.3.1 Modulating completeness of problem solving

Although the sorting application has been instructive, we are most interested
in decision theory under resource constraints. There is much opportunity for
the development of well-characterized flexible strategies. Here is an influence
diagram representation of a decision problem that focuses on the costs and
benefits of placing a patient that is showing some signs of breathing difficulty
on an automated respirator. In an influence diagram, and in decisionless
belief networks, nodes represent propositions of interest and arcs represent
dependencies among belief in the nodes. In our medical decision systems,
we often must deal with large, multiply connected networks. We know that
the complexity of inference within belief networks is NP-hard.

10
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Figure 6: Different algorithms take different trajectories through a multiat-
tribute space representing different dimensions of value of partial results.
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Figure 7: A representation of the decision of whether to place a patient on a
respirator. Often, we must calculate the belief in a relevant proposition, such
as the respiratory status of patient, by applying a complex belief network.

Example: Bounded cutset conditioning Here is a belief network, rep-
resenting distinctions and relationships of importance for reasoning about a
patient’s health status in an intensive care unit. This was constructed by
Ingo Beinlich, a doctoral student in our program, who also happens to be
an experienced intensive-care-unit physician.

Just as we can apply sorting algorithms that generate partial sorts, we
can design and apply strategies for doing flexible inference. As opposed
to generating exact probabilities about a proposition of interest, we seek to
generate distributions or logical bounds on a probability. We have worked on
the generation of new types of flexible inference strategies, including those
that are centered on the modulation of completeness and abstraction.

12
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Figure 8: A belief network representing relevant distinctions, and proba-
bilistic relationships in the intensive care unit.

As an example, we have examined the gracefulization of cutset-conditioning
through modulating the completeness of analysis. In Pearl’s method of cut-
set conditioning loops, in a belief network, are broken by a cutset, creating a
set of subproblems or instances. All instances are solved to generate a final
probability. The number of instances that must be solved are 2 to the size
of the cutset. This can be quite large.

In bounded-cutset conditioning, we sort the instances by importance,
and solve the problem sequentially. A bounding calculation reports the
final bounds on a probability of interest as instances are solved. Here is an
example of how the algorithm performs on the ICU network. We found that
the bounds decay at rate that can be described with a negative exponential.
This allows us to reason about the decay and half-life of bounds. This is
useful in our work on the control of inference that we’ll describe below.

4.3.2 Modulating abstraction of problem solving

Another approach to generating flexible inference is through modulating
the level of abstraction at which reasoning occurs. In practice, a set of
distinctions, viewed as optimal, is reformulated into more abstract entities
at progressively greater levels of abstraction.

13



Figure 9: The application of the method of conditioning is based on the
breaking of dependency cycles through determining a cutset that converts
the belief network inference problem into a set of singly connected network
subproblems.

David Heckerman and I have applied this abstraction modulation in the
Pathfinder expert system for tissue pathology diagnosis.

Pathfinder uses such hierarchies of abstraction to control the level of
detail at which value of information decisions are made.

There is much opportunity for the development of flexible inference
strategies. This work focuses on the identification of continous dimensions of
solution value, the the generaion of strategies that can refine results along
these dimensions. The pursuit of optimal flexible strategies will also un-
doubtely capture fundamental tradeoffs between object-level value and ap-
plied resources.

5 Rational Control of Problem-Solving

Let us now move to explore problems and opportunities with metareasoning.
Given a set of approximation strategies, and varying costs of resources, we
wish to rationally choose a strategy or set of strategies, and reason about.
how long to apply it. Some of the fundamental problems of metareasoning
are the same, whether we are trying to control sorting, searching, or decision-
theoretic inference. These problems pose exciting areas of research.
Applying a portion of available reasoning resources to consider the util-
ity of alternative inference strategies or the value of continuing to refine a
result before acting enables a computational agent to generate customized

14
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Figure 10: The peformance of bounded cutset conditioning on a specific
updating of belief in the intensive care unit network. Convergence of the
upper and lower bounds is pictured. The middle curve represents the mean
at each point in the updating process.
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Figure 11: An abstraction hierarchy employed by physicians in reasoning
about hematopathology diseases. The hierarchy represents a descent from
the most abstract to more detailed classes of disease hypotheses.
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Figure 12: The Pathfinder system allows a user to probe a problem from
different perspectives by making available different abstraction hierarchies.
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Figure 13: Fundamental principles and problems of controlling problem solv-
ing are the same, whether we wish to sort a file of records, search through
a tree of alternative actions, or wish to perform probabilistic inference.

approaches to a wide variety of problems and time pressures. Such flexibil-
ity can be especially useful in light of uncertain costs and challenges. There
has been recent work on the application of decision-theoretic metareasoning
to decision-theoretic inference itself[3], as well as to game-playing search[8)
and sorting[4].

5.1 A Model of Normative Reasoning Under Scarce Resources

Let me first introduce our work on the control of decision-theoretic inference.
Our model of normative rationality is the application of decision theory to
control decision theory itself. Thus we have attempted to build tractable
representations of the control problem. We wish to reason about the costs
and benefits of applying alternative strategies given uncertain knowledge
about inference in an object-level decision problem.

We have worked to build an architecture that has a strategy base, con-
taining knowledge about the expected performance of different reasoning
strategies to refine different attributes, given different problem instances, a
utility base that contains inference information about the combination of at-
tributes into object-level utility, and a resource base that contains knowledge
about the resource costs. Let’s focus on the goal of the strategic reasoner.

18
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Figure 14: A model of normative inference, composed of an object-level in-
ference problem and a control problem that focuses on the costs and benefits
of alternative types and extents of object-level inference.
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Figure 15: Fundamental components of an architecture for bounded-resource
problem solving, centered on the separation of object-level performance,
inference-related costs, object-level preferences, and a strategic reasoner that
makes use of these classes of knowledge.
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Figure 16: A central task in the iyﬁipfémentation of decision-theoretic con-
trol is the construction of 3 mechanism for reasonmg about the value of
additional computation. :

5.2 Valuating Future Computation

Our reasoner must determine the value of applying a strategy. Our approach,
and almost all other approaches to date, have almost invariably sought to
simplify the metalevel analysis by reasoning about the incremental benefit
of applying a strategy. The problem is simplified by reasoning about the
value of computing for another x seconds, and the identification of models
that enable us to generate closed—form solut.lons to estimation of the value
of computation. :

Specifically, the task is focused on'the construction of value of compu-
tation estimators that take as arguments, the current context, the amount
of proposed reasoning resource, the current comprehensive utility, and a
parameter that partially characterizes problem-solving performance. Such
parameters serve as the "evidence” on the value of additional computation.

In the case of decision-theoretic inference, we tell our value of computa-
tion estimator about the decision problem, the object-level utility function,
the current comprehensive value, and a parameter that represents belief
about future belief, given a strategy and belief network instance.

This approach, and similar approaches, for the sake of tractability, makes
a myopic, or greedy assumption. Qur system only looks ahead to the next
phase of computation.

5.3 Toward Richer Characterizations of Future Computation

There is also opportunity for elucidating, collecting, and applying richer
predictors of the value of computation. In most work, we have used relatively
simple measures such as the convergence of a probability or a distribution
over utility. A

21



Figure 17: For the valuation of additional computation in reasoning about
problems of belief and action, we must consider the current problem, the ob-
ject-level, and inference-level utilities, and a parameter capturing the future
belief that will be calculated with additional computation.
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Figure 18: Most strategies explored to date make a myopic assumption in
reasoning about the value of future computation.

22



In many cases, it will undoubtedly prove useful to collect problem-solving
trajectories and representing long-term trends. However, in cases, where
we have an explosion of the number of trajectories, we can abstract the
information into classes—and build value of computation estimators that are
hungry for this type of knowledge. Such characterizations of the performance
of classes of reasoning strategies on classes of problems may be more useful
than using the simpler parameters.

There are other classes of evidence about performance. There is oppor-
tunity for collecting knowledge about the value of alternative configuations
of problem solving—for example, the value of adding another metalevel in
a situation. Another kind of evidence is conditioned on current problem-
solving progress. Useful intuition about how future computation will go
might be gleaned from the recent history of progress.

5.3.1 Toward a Tractable Economics of Computation

There is quite a bit of research opportunity at moving to more global analy-
ses. This work involves encoding expected solution trajectories. By making
assumptions (hopefully valid) about the object-level utility with the expen-
diture of resource, and about the nature of the costs, we can do tractable
global analyses. For example, if we have an object level utility function that
is monotonically increasing and convex and a linear cost function, we can
easily determine an optimal halting time.

In fact, we can apply well known theoroms from economics to reason
about the production of utility for an agent, and optimal values for halting
given changes in the criticality of a context.

‘We can also prove dominance of whole sets of strategies over other strate-
gies with ease.

5.4 Controlling control: Reasoning About Analytic Regress

So far, we have assumed that we will be able to do tractable metareasoning.
However, our attempts to simplify the metareasoning problem, as discussed
above, will not always pay off. Let me turn to that age old problem of
infinite analytic regress. If indeed, adding a metalevel is so useful, why not
add another to assist with the first metareasoning problem? Where do we
stop? We see this as a rich problem area for bounded resource inference-and
an important one for generating truly bounded-optimal reasoners.

There is an urgent need for understanding the costs and benefits of in-
creasing numbers of metalevels. Promising areas include bounding the num-
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Figure 19: Notions of marginal production from work in economics allows
us to reason more globally about the optimal quantity of resource to expend
in solving a problem.
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Figure 20: We can apply economic analyses to determine how changes in
the criticality of a context will change the optimal quantity of resource to
apply to a problem and the expected comprehensive value of computation.
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Figure 21: There is opportunity for the application of proofs of dominance
in the selection of best strategy for the context at hand.
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Figure 22: The problem of analytic regress becomes important in situations
where the metalevel analysis of problem solving requires significant quanti-
ties of computational resource.
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ber of metalevels and reporting a level of error on incomplete meta-analysis.
Other areas of interest include performing sensitivity analyses on the worth
of additional metalevels. As an example, in certain problem areas, and for
specific metalevel configurations, we will be able to prove convergence on an
estimate of the value of computation.

In summary, there is rich research ahead for moving beyond myopic
analyses, for enriching the evidence used in value of computation reasoning,
and in seeking sound approaches to analytic regress.

6 Reasoning about Decision Models

The process of constructing and valuating alternative decision models is a
crucial part of decision making under limited and uncertain resources. De-
cision theory says nothing about the construction, selection, and updating
of alternative decision models. There are different approaches to the con-
struction and metalevel valuation of decision bases. We will describe several
approaches. We will examine the difficulty of valuating alternative models
arising in complex interactions between decision models and the preferred
methods for solving specific models.

7 Dynamic Computation verses Compilation

We have only begun to study the rich interrelationships between the dynamic
computation of results on the one hand and the use of default reasoning and
compiled knowledge, on the other. The development of techniques and of
general architectures for utilizing a spectrum of default and pre-computed
results will have great payoft.

We often have quite a bit more time to solve a problem in the design
phase, than we do when we immerse our agents in some chaotic enviroment.
Also, in many areas, it is safe to say that an agent will spend most of its
time in an offline state. Why not build our agent’s to be anxiety-ridden
critters that worry about expected problems — much as we mortals do.

Recent work by Herskovits has focused on the analysis of the usefulness
of speeding up inference by building a tree of cached probabilities ahead
of time. A tree of cases is constructed by doing simulation weighted by
utility. We are now working to grant access of such knowledge to a metarea-
soner. The metareasoner will have access to a large tree that can be easily
searched, and to knowledge about what can be found in the tree. If a search
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Figure 23: There is much opportunity for storing compiled belief or action
and reasoning about the relative value of precomputation and caching verses
computing a response to a problem challenge.

is unsuccessful, the reasoner can lick its wounds and begin to do inference.
Given limitations in memory and time, a number of interesting questions
arise about when to throw out a probability—or to restructure a tree. Thus,
there are interesting research problems on the control of learning.

For example, if we store the probability that a probability or compiled
action recommendation is stored in the cache, we can reason about the
expected value of searching the tree for the probability. We just multiply
the probability of finding the result by the utility of having the result at
time (searchtime) and subtract the utility of computing the result with the
expected time that it will take to do inference.

The savings in utility storing a compiled result in the cache verses per-
forming inference can be used to control the original instantiation of the
cache. We wish to first store rules or probabilities that we know will have
utility greater than the cost of memory.

8 Concurrent and Distributed Strategies

There is also quite a bit of opportunity for innovation with parallel and
distributed approaches. To date, we have worked primarily on a single
processor model. That is, computation must be separately focused either
on metareasoning, on obect-level problem solving, or on the performance of
an action.
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8.1 Concurrent Metareasoning, Reasoning, and Action

Concurrency for these tasks will undoubtedly have great payoff in many
problem areas. Given the ability of a metareasoner to fundamentally change
the entire course of reasoning, having it available at all times to monitor the
problem-solving situation and to continue to reason, can have a great lever-
aging effect on performance. Also, there are opportunities for distributed
control. Jon Doyle has been especially interested, —and has done interesting
work in this area.

8.2 Object-level Innovation through Concurrency

Finally, there may be great payoffs for concurrent flexible inference. We
have experimented with concurrent problem solving with the bounded cutset
conditioning.

In this case, we show the effect of concurrent analyses with two different
cutsets of a problem with the I[CU problem. We could see that with two
bounding algorithms running side by side, that we get faster tightening of
the bounds.

The last area we’ll address is that of problems with preferences and
performance. Understanding the structure of utility is central to reasoning
about the optimality and relative optimality of agents in different contexts.
It is clear that as we move from simple ”one-shot” decisions, as Mike Well-
man has referred to those gems of common decision analysis, to long-term
behavior, that it becomes more difficult to characterize performance. Ques-
tions about what it is that our agents, or that we, as their clients, are trying
to optimize arise.

9 Preference, Performance, and Environment

The summarization of our preferences about complex histories of behavior
ahead of time can be extremely difficult. There has been extremely little
work on the valuation of anything except abstract "endpoints” of analysis.In
the context of short-term optimization of utility within complex environ-
ments, verification of simple notions of bounded optimality will generally
rely on partial analyses at design-time. It is important to come up with
models of utility sumnmarization so that we design and reason about the
relatve performance of our agents.

The determination of true bounded optimality requires proving tight
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lower-bounds on the solution of problems given the informational and com-
putational constraints at hand. In the absence of theoretical limits, we can
reason about the relative bounded optimality of agents limited to a dis-
tinct set of reasoning strategies. This perspective is useful, given current
research on the solution of probabilistic-inference problems with alternative
approximation strategies.

So to reason about the relative optimality of different problem solvers,
we will need to characterize-and agree upon our characterizations of utility
and environment. We have worked a bit on this, for example, proposing
an independent challenge model where the relative optimality of a robot is
gauged in the context of the distribution and frequencies of independent
challenges over time.

As an example, we shall define a form of bounded optimality that is
framed in terms of an agent limited to a distinct set of reasoning strategies.
This statement of bounded strategic optimality is relevant to current research
on the solution of probabilistic inference problems with alternative inference
approximation strategies.

e Bounded Strategic Optimality We desire a reasoning system to apply
strategies from its repertory of strategies such that its expected utility is
a maximum, given probability distributions over the costs and benefits of
applying alternative strategies. A tuple of strategies S should be selected
such that the agent’s comprehensive value is maximized. That is,

* = arg m;.x[mgx Ve(S, P, r,£)]

Strategies available to an agent include that of ceasing computation and tak-
ing physical action. A system seeking to satisfy bounded strategic optimality
captures notions of limited rationality under resource constraints in terms
of a specific problem instance. Such a reasoner would attempt to optimize
the comprehensive value of its computation and physical activity, regardless
of the method lying at the foundations of its inference. We could modify
the definition of strategic optimality by adding additional constraints. For
example, we might impose a bound on the proportion of reasoning resources
an agent could apply to real-time metalevel reasoning.

We can extend the local nature of bounded strategic optimality by con-
sidering the expected utility associated with solving a distribution of prob-
lems, expected over a period of time. Such a perspective can be useful in
comparing the effectiveness of agents, with different compositions and abil-
ities, immersed in distinct problem contexts. For example, given a set of
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requires the characterization of the environment in which they are to be
immersed.

perspective can be useful in comparing the effectiveness of agents, with dif-
ferent compositions and abilities, immersed in distinct problem contexts.
The value associated with the use of a reasoning system over a period of
time ¢, V,(?), is

Vi) = 31t fr e VIS (B )] - Vi

=1

where fp, is the frequency of problem challenge P;, S*(P;,£) is the best
computation strategy available to an agent, and V}, is the cost associated
with the hardware that comprises the reasoning system.! We have separated
the expense of the commodity that is required to construct the problem-
solver’s hardware from computation-based resources such as time. In this
challenge model, we assume independence among problems, and consider
the distribution of problems as independent of the type of agent, and of
the agent’s abilities to solve problems. The description also assumes that
the utility assigned to the performance of an agent in solving a challenge
is independent of the time the challenge is posed. This description, and
other definitions of agency preference, can be useful in reasoning about such
factors as the relative performance of different agents in specific contexts,

IWe are assuming no maintenance costs; inclusion of timewise maintenance costs can
be represented as a cost function over time.
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the value of learning in a domain, and the utility of adding a new capability
to an agent’s problem-solving repertory.

As agents of different constituencies may have different "best” default
reactions before engaging an explicit computation strategy §, it can be useful
to consider the available pattern of default responses that may be further
refined with computation. Thus, we say

Va(t) = Xt fpi * [Va(Pi, ) + AV(S*[P,E])] = Va
i=1

where V; is the expected value associated with an agent taking default action
in response to a problem challenge, and AV, is the expected net value of the
best strategy available to the agent, given the default response. Work on
the compilation of beliefs and actions, as described above, can increase the
value of the default responses, usually associated with additional expense of
Vi associated with larger memory caches.

Value of Agency It can be useful to consider the fundamental benefit
of introducing an intelligent agent into some environment. We define the
value of agency, V,(t), over a time period ¢, as the difference in the value
of a system, V,(t), defined above, and the value of some simple non-agent
policy, Sg, that would be undertaken in the absence of a reasoner, such as
‘never acting, or acting randomly,

Va(t) = Va(t) - Va(t)

where

n

Va(t) = >t fp * Vo[ Sp(P)]
i=1
Although our goal is to prove bounded optimality, it can be important

to compare relative optimality of two different agents. For example, given
a set of agents, an environment C, and time horizon ¢, we may prefer to
employ an agent, A*,

A(C,t) = argmax Yt fr, (C)+[Vi(A, Pu)+ AVi(SA, P €])] — Vh(A)

=1

where fp,(C) is the frequency of problem type P; in context C; V; is the
expected value associated with an agent taking default action in response
to a problem challenge, and AV, is the expected increase in value generated
by the best strategy available to the agent.
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nally, we mentioned that it is of crucial importance that we decide what it is
that we are trying to optimize given multiple decisions in complex contexts.
This will take reflection about our own utilities over time and through a
history of challenges, as well as the construction of usable models that can
mathematically represent such utility.
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