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Abstract
Online offerings such as web search, news portals, and e-commerce applications face the chal-

lenge of providing high-quality service to a large, heterogeneous user base. Recent efforts have
highlighted the potential to improve performance by introducing methods to personalize services
based on special knowledge about users and their context. For example, a user’s demographics,
location, and past search and browsing may be useful in enhancing the results offered in response
to web search queries. However, reasonable concerns about privacy by both users, providers, and
government agencies acting on behalf of citizens, may limit access by services to such informa-
tion. We introduce and explore an economics of privacy in personalization, where people can opt
to share personal information, in a standing or on-demand manner, in return for expected enhance-
ments in the quality of an online service. We focus on the example of web search and formulate
realistic objective functions for search efficacy and privacy. We demonstrate how we can find a
provably near-optimal optimization of the utility-privacy tradeoff in an efficient manner. We eval-
uate our methodology on data drawn from a log of the search activity of volunteer participants.
We separately assess users preferences about privacy and utility via a large-scale survey, aimed at
eliciting preferences about peoples willingness to trade the sharing of personal data in returns for
gains in search efficiency. We show that a significant level of personalization can be achieved using
a relatively small amount of information about users.

1. Introduction

Information about the preferences, activities, and demographic attributes of people using online
applications can be leveraged to personalize the services for individuals and groups of users. For
example, knowledge about the current locations of users performing web searches can help identify
their informational goals. Researchers and organizations have pursued explicit and implicit methods
for personalizing online services. For web search, explicit personalization methods rely on users
indicating sets of topics of interest that are stored on a server or client. Implicit methods make use
of information collected in the absence of user effort and awareness. Data collected implicitly in
web search can include users locations and search activities, capturing such information as how
people specify and reformulate queries and click, dwell, and navigate on results. Beyond web
search, data collected about users in an implicit manner can be used to custom-tailor the behaviors
of a broad spectrum of online applications from informational services like news summarizers to
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e-commerce services that provide access to online shopping, and that seek to maximize sales with
targeted advertising.

The potential value of harnessing data about people to enhance online services coupled with
the growing ubiquity of online services raises reasonable concerns about privacy. Both users and
the hosts of online applications may benefit from the custom-tailoring of services. However, both
may be uncomfortable with the access and use of personal information. There has been increasing
discussion about incursions into the privacy of users implied by the general logging and storing of
online data (Adar, 2007). Beyond general anxieties with sharing personal information, people may
more specifically have concerns about becoming increasingly identifiable; as increasing amounts
of personal data are acquired, users become members of increasingly smaller groups of people
associated with the same attributes.

Most work to date on personalizing online services has either ignored the challenges of privacy
and focused efforts solely on maximizing utility (c.f., Sugiyama, Hatano, & Ikoma, 2004) or has
completely bypassed the use of personal data. One vein of research has explored the feasibility
of personalizing services with methods that restrict the collection and analysis of personal data to
users own computing devices (Horvitz, 2006). Research in this realm includes efforts to personalize
web search by making use of the content stored on local machines, as captured within the index of
a desktop search service (Teevan, Dumais, & Horvitz, 2005; Xu, Zhang, & Wang, 2007). Rather
than cut off opportunities to make personal data available for enhancing online services or limit per-
sonalization to client-side analyses, we introduce and study utility-theoretic methods that balance
the costs of sharing of personal data with online services in return for the benefits of personaliza-
tion. Such a decision-theoretic perspective on privacy can allow systems to weigh the benefits of
enhancements that come with adaptation with the costs of sensing and storage according to users
preferences.

We characterize the utility of sharing attributes of private data via value-of-information analyses
that take into consideration the preferences to users about the sharing of personal information. We
explicitly quantify preferences about utility and privacy and then solve an optimization problem to
find the best trade. Our approach is based on two fundamental observations. The first is that, for
practical applications, the utility gained with sharing of personal data may often have a diminishing
returns property; acquiring more information about a user adds decreasing amounts to the utility of
personalization given what is already known about the users needs or intentions. On the contrary, the
more information that is acquired about a user, the more concerning the breach of privacy becomes.
For example, a set of individually non-identifying pieces of information may, when combined,
hone down the user to membership in a small group, or even identify an individual. We map the
properties of diminishing returns on utility and the concomitant accelerating costs of revelation to
the combinatorial concepts of submodularity and supermodularity, respectively.

Although the economic perspective on privacy is relevant to a wide spectrum of applications,
and to studies of the foundations of privacy more broadly, we shall illustrate the concepts in ap-
plication to personalizing web search. We employ a probabilistic model to predict the web page
that a searcher is going to visit given the search query and attributes describing the user. We define
the utility of a set of personal attributes by the focusing power of the information gained with re-
spect to the prediction task. Similarly, we use the same probabilistic model to quantify the risk of
identifying users given a set of personal attributes. We then combine the utility and cost functions
into a single objective function, which we use to find a small set of attributes which maximally
increases the likelihood of predicting the target website, while making identification of the user as
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difficult as possible. The challenges of this optimization are in identifying the benefits and costs
of sharing information and grappling with the computational hardness of the analysis. Solving for
the best set of attributes for users to reveal (and hence for the optimal setting of the utility-privacy
tradeoff) is an NP-hard search problem, and thus intractable in general for large sets of attributes.
We shall demonstrate how we can use the submodularity of the utility and supermodularity of pri-
vacy in order to find a near-optimal tradeoff efficiently. To our knowledge, no existing approach
(such as LeFevre, DeWitt, & Ramakrishnan, 2006; Chen, LeFevre, & Ramakrishnan, 2007; Hore &
R. Jammalamadaka, 2007) provides such theoretical guarantees. We evaluate our approach on real-
world search log data, as well as from data collected from a user study with over 1,400 participants
focused on the elicitation of preferences about sharing sensitive information. Our results indicate
the existence of prominent “sweet spots” in the utility-privacy tradeoff curve, at which most of the
utility can be achieved with the sharing of a minimal amount of private information.

The manuscript is organized as follows. In Section 2, we formalize the utility-privacy tradeoff as
an optimization problem and introduce objective functions. Section 3 identifies the submodular and
supermodular structure of the utility and cost functions. In Section 4, we introduce an algorithm
for finding a near-optimal solution, which exploits this combinatorial structure. In Section 6, we
describe the experimental design of our user study. Section 5 describes the experimental setup,
and Section 7 presents empirical evaluation of our approach on real-world search data. Section 8
presents related work. Section 9 reviews approaches to deploying the methodology described in this
paper, and Section 10 presents a summary and conclusions.

2. Privacy-Aware Personalization

We consider the challenge of personalization as diagnosis under uncertainty: We seek to predict a
searcher’s information goals, given such noisy clues as query terms and potentially additional at-
tributes that describe users and their interests and activities. We frame the challenge probabilistically
(as done, e.g., in Dou, Song, & Wen, 2007; Downey, Dumais, & Horvitz, 2007 in the search context),
by modeling a joint distribution P over random variables, which comprise the target intention X ,
some request-specific attributes (e.g., the query term) Q, the identity of the user Y , and several at-
tributes V = {V1, V2, . . . , Vm} containing private information. Such attributes include user-specific
variables (such as demographic information, search history, word frequencies on the local machine,
etc.) and request-specific variables (such as the period of time since an identical query was submit-
ted). We describe the concrete attributes used in this work for the web search context in Section 5.
Additional examples are described by Downey et al. (2007) and Teevan et al. (2005). We shall de-
scribe the use of statistical techniques to learn a predictive model P from training data for frequent
queries. Then, we present methods for trading off utility and privacy in the context of the model.

2.1 Utility of Accessing Private Data

Upon receiving a new request Q, and given a subset A ⊆ V of the attributes, we can use the prob-
abilistic model to predict the target intention by performing inference, computing the conditional
distribution P (X | Q,A). Then, we use this distribution to inform the decision of, e.g., which
search results to present to the user. We use the notation #intents to refer to the domain size of X
(e.g., the maximum number of different webpages clicked on by the users). The hope in personal-
ization is that additional knowledge about the user (i.e., the observed set of attributesA) will help to
simplify the prediction task, via reducing the uncertainty in P (X | Q,A). Based on this intuition,
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we quantify the uncertainty in our prediction using the conditional Shannon entropy (c.f., Cover &
Thomas, 1991) associated with the variance in target web sites following queries,

H(X | Q,A) = −
∑
x,q,a

P (x, q,a) log2 P (x | q,a).

Hence, for any subset A ⊆ V , we define its utility U(A) to be the information gain, i.e., expected
entropy reduction achieved by observing A:

U(A) = H(X | Q)−H(X | Q,A)

= −
∑
x,q,a

P (x, q,a) [log2 P (x | q)− log2 P (x | q,a)] .

Such click entropy has been previously been found effective by Dou et al. (2007).

2.2 Cost of Sharing Private Data

Several different models of privacy have been proposed in prior work (c.f., Sweeney, 2002; Machanava-
jjhala, Kifer, Gehrke, & Venkitasubramaniam, 2006; Dwork, 2006). Our cost function is motivated
by the consideration that sets of attributesA ⊆ V should be preferred that make identification of in-
dividuals as difficult as possible. We can consider the observed attributesA as noisy observations of
the (unobserved) identity Y = y of the user. Intuitively, we want to associate high cost C(A) with
sets A which allow accurate prediction of Y given A, and low cost for sets A for which the condi-
tional distributions P (Y | A) are highly uncertain. For a distribution P (Y ) over users, we hence
define an identifiability loss function L(P (Y )) which maps probability distributions over users Y to
the real numbers. L is chosen in a way, such that if there exists a user y such that P (Y = y) is close
to 1, then the loss L(P (Y )) is very large. If P (Y ) is the uniform distribution, then L(P (Y )) is close
to 0. We will explore different loss functions L below. Based on such loss functions, we define the
identifiability cost I(A) as the expected loss of the conditional distributions P (Y | A = a), where
the expectation is taken over the observations A = a1:

I(A) =
∑
a

P (a)L(P (Y | A = a)).

In addition to identifiability, we introduce an additional additive cost component S(A) =∑
a∈A s(a), where s(a) ≥ 0 is a nonnegative quantity modeling the subjective sensitivity of at-

tribute a, and other additive costs, such as data acquisition cost, etc. The final cost function C(A)
is a combination of the identifiability cost I(A) and sensitivity S(A), i.e., C(A) = I(A) + S(A).

2.2.1 IDENTIFIABILITY LOSS FUNCTIONS

There are several ways to quantify identifiability. One approach to representing the loss L is with
the negative entropy of the distribution P (Y ) of the user’s identity Y 2, as used to quantify utility.
However, in the context of privacy, this choice is rather poor: Consider a case where we seek to
quantify the cost associated with the change in identifiability of the user that comes with learning

1. Similarly, we can additionally take the expectation over the request Q
2. Note that instead of the user’s identity (composed of all attribute values) in principle Y could refer to a particular

sensitive attribute (such as, e.g., sexual orientation).
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the searchers gender. Assuming an equal distribution of males and females, learning the gender
of the searcher would halve the space of possible searchers, hence increasing the entropy loss by
one. However, this increase is independent of whether we start with (a) one billion or (b) only two
searchers. In contrast to the influence on utility, where halving the search space of pages to consider
is a very large gain, independent of the number of pages we start with (Dou et al., 2007), such a di-
minishment of anonymity is enormous: In case (a), an adversary trying to identify the searcher based
on knowing their gender has almost no chance of success, whereas in case (b) they would always
identify the person. Motivated by this consideration, we represent the privacy cost in our experi-
ments as the maxprob loss (Chen et al., 2007), Lm(P (Y )) = maxy P (y). This loss function can be
interpreted as follows: An adversary seeks to identify the user Y , and predicts the most likely user,
and receives one unit reward if the user is guessed correctly, and 0 otherwise. The identifiability cost

Im(A) =
∑
a

P (a) max
y

(P (y | A = a))

then is the expected win obtained by the adversary. This objective function makes most sense if we
believe the adversary only has access to the same data sources as we do (and thus the probability
distribution P captures the assumptions about the adversary’s inferences). We also consider the cost
function

I`(A) = −
∑
a

P (a) log
(

1−max
y

(P (y | A = a))
)
.

I` is a “rescaled” variant of the maxprob loss, with the property that certainty (i.e., maxy(P (y |
A = a) ≈ 1) is more severely penalized.

Another criterion for identifiability is k-anonymity (Sweeney, 2002). With this measure, a data
set is called k-anonymous, if any combination of attributes is matched by at least k people. We can
define a probabilistic notion of k-anonymity, Ik, by using the loss function Lk(P (Y )) which is 1 if
P is nonzero for less than k values of Y , 0 otherwise. The identifiability cost is then

Ik(A) =
∑
a

P (a)Lk(P (Y | A = a)).

Ik(A) can be interpreted as the expected number of violations of k-anonymity; a database (empir-
ical distribution over users) is k-anonymous if and only if Ik(A) = 0. See Lebanon, Scannapieco,
Fouad, and Bertino (2009) for a justification of using a decision-theoretic analysis to quantify pri-
vacy and how inferential attacks through side information can be handled.

We experimentally compare the cost metrics in Section 7.1.

2.3 Optimizing the Utility-Privacy Tradeoff

Previously, we described how we can quantify the utility U(A) for any given set of attributes A,
and its associated privacy cost C(A). Our goal is to find a set A, for which U(A) is as large as
possible, while keeping C(A) as small as possible. To optimize utility for users under this tradeoff,
we use scalarization (Boyd & Vandenberghe, 2004), and define a new, scalar objective

Fλ(A) = U(A)− λC(A).
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Hereby, λ plays the role of a privacy-to-utility conversion factor. The goal is to solve the following
optimization problem:

A∗λ = argmax
A

Fλ(A) (2.1)

By varying λ, we can find different solutionsA∗λ. If we choose a very small λ, we find solutions with
higher utility and higher cost; large values of λ will lead to lower utility, but also lower privacy cost.

If the set of attributes V is large, then (2.1) is a difficult search problem, as the number of subsets
A grows exponentially in the size of V . It can be shown that the solution to this problem is hard
even to approximate:

Theorem 2.1. If there is a constant α > (1−1/e) and there exists an algorithm which is guaranteed
to find a set A′ such that F1(A′) ≥ αmaxA F1(A), then P = NP .

The proofs of all theorems are presented in the Appendix. Given the complexity, we cannot
expect to find a solution A∗ efficiently which achieves even slightly more than (1− 1/e) ≈ 63% of
the optimal score. However, we can find a solution which is guaranteed to achieve at least 1/3 of
the optimal value.

2.4 Hard Constraints on Privacy Cost

Instead of optimizing the tradeoff Fλ(A) = U(A)− λC(A), one may be interested in maximizing
the utility U(A) subject to a hard constraint on the cost C(A), i.e., solve

A∗λ = argmax
A

U(A) s.t. C(A) ≤ B, (2.2)

for some value of B ≥ 0. For example, users may be interested in maximizing utility while enforc-
ing k-anonymity (in which case we would constrain Ik(A) ≤ 0). This solution would then provide
per-user guarantees, i.e., k-anonymity is never violated. In principle, one could solve the tradeoff
Fλ (i.e., problem (2.1)) for different values of λ and then, e.g., using binary search, choose λ that
maximizes U(A) among all feasible solutions (i.e., C(A) ≤ B). In a sense, (2.1) can be seen as a
Lagrangian relaxation of (2.2).

In the following, we will focus on the tradeoff problem (2.1). Using the procedure described
above, our approach may be useful to solve the constrained problem (2.2) in practice (however our
approximation guarantees will only hold for problem (2.1)).

3. Properties of the Utility-Privacy Tradeoff

As mentioned above, we would expect intuitively that the more information we already have about
a user (i.e., the larger |A|), the less the observation of a new, previously unobserved, attribute would
help with enhancing a service. The combinatorial notion of submodularity formally captures this in-
tuition. A set functionG : 2V → R mapping subsetsA ⊆ V into the real numbers is called submod-
ular (Nemhauser, Wolsey, & Fisher, 1978), if for allA ⊆ B ⊆ V , and V ′ ∈ V\B, it holds thatG(A∪
{V ′})−G(A) ≥ G(B ∪ {V ′} −G(B), i.e., adding V ′ to a set A increases G more than adding V ′

to a superset B of A. G is called nondecreasing, if for all A ⊆ B ⊆ V it holds that G(A) ≤ G(B).
A result of Krause and Guestrin (2005) shows that, under certain common conditional indepen-

dence conditions, the reduction in click entropy is submodular and nondecreasing:
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Theorem 3.1 (Krause & Guestrin, 2005). If the attributes V are conditionally independent given
X , i.e., P (V1, . . . , Vm | X) =

∏
i P (Vi | X) then U(A) is submodular in A.

We discussed earlier how we expect the privacy cost to behave differently: Adding a new at-
tribute would likely make a stronger incursion into personal privacy when we know a great deal
about a user, and less if we know little. This “increasing costs” property corresponds with the combi-
natorial notion of supermodularity: A set functionG : 2V → R is called supermodular (Nemhauser
et al., 1978), if for all A ⊆ B ⊆ V , and V ′ ∈ V \ V , it holds that G(A ∪ {V ′}) − G(A) ≤
G(B ∪ {V ′} − G(B), i.e., adding V ′ to a large set B increases G more than adding V ′ to a subset
A of B. In fact, we can prove that the maxprob identifiability cost function introduced in Section 2
is supermodular.

Theorem 3.2. Assume, the attributes V are marginally independent, and the user Y is completely
characterized by the attributes, i.e., Y = (V). Then the maxprob loss Im(A) is supermodular inA.

Note that the attribute sensitivity S(A) is per definition additive and hence supermodular as well.
Thus, as a positive linear combination of supermodular functions, C(A) = I(A) + S(A) is super-
modular inA for I(A) = Im(A). In our empirical evaluation, we verify the submodularity of U(A)
and supermodularity C(A) even without the assumptions made by Theorem 3.1 and Theorem 3.2.

Motivated by the above insights about the combinatorial properties of utility and privacy, we
formulate a general approach to trading off utility and privacy. We only assume that the utility
U(A) is a submodular set function, and that C(A) is a supermodular set function. We define the
general utility-privacy tradeoff problem as follows:

Problem 3.3. Given a set V of possible attributes to select, a nondecreasing submodular utility
function U(A), a nondecreasing supermodular cost function C(A), and a constant λ ≥ 0, our goal
is to find a set A∗ such that

A∗ = argmax
A

Fλ(A) = argmax
A

U(A)− λC(A) (3.1)

Since C(A) is supermodular if and only if −C(A) is submodular, and since nonnegative lin-
ear combinations of submodular set functions are submodular as well, the scalarized objective
Fλ(A) = U(A) − λC(A) is submodular as well. Hence, problem (3.1) requires the maximiza-
tion of a submodular set function.

4. Optimization Algorithms

As the number of subsets A ⊆ V grows exponentially with the size n of V , and the NP-hardness of
Problem (2.1), we cannot expect to find the optimal solutionA∗ efficiently. Theorem 2.1 shows that
it is NP-hard to even approximate the optimal solution to better than a constant factor of (1−1/e). A
fundamental result by Nemhauser et al. (1978) characterized the performance of the simple greedy
algorithm, which starts with the empty setA = ∅ and myopically adds the attribute which increases
the score the most, i.e., A ← A ∪ {argmaxV ′ F (A ∪ {V ′})}, until k elements have been selected
(where k is a specified constant). It was shown that, if F is nondecreasing, submodular and F (∅) =
0, then the greedy solution AG satisfies F (AG) ≥ (1− 1/e) max|A|=k F (A), i.e., the greedy solu-
tion achieves a value of at least a factor of 1−1/e of the optimal solution. Although this result would
allow us to perform such tasks as selecting a near-optimal set of k private attributes maximizing the
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utility U(A) (which satisfies the conditions of the result from Nemhauser et al., 1978), it unfortu-
nately does not apply in the more general case, where the objective Fλ(A) is not nondecreasing.

The problem of maximizing such non-monotone submodular functions has been resolved by
Feige, Mirrokni, and Vondrak (2007). A local search algorithm, named LS, was proved to guarantee
a near-optimal solutionALS , if F is a nonnegative3 (but not necessarily nondecreasing) submodular
function:

1. Let V ∗ ← argmaxV ′∈V F ({V ′}) and init. A ← {V ∗}

2. If there exists an element V ′ ∈ V \ A such that F (A ∪ {V ′}) > (1 + ε
n2 )F (A), then let

A ← A∪ {V ′}, and repeat step 2.

3. If there exists an element V ′ ∈ A such that F (A \ {V ′}) > (1 + ε
n2 )F (A), then let A ←

A \ {V ′}, and go back to step 2.

4. Return ALS ← argmax{F (A), F (V \ A)}.

This algorithm works in an iterative manner to add or remove an element V ′ in order to increase
the score, until no further improvement can be achieved. Feige et al. (2007) prove the following
Theorem:

Theorem 4.1 (Feige et al., 2007). If F is a nonnegative submodular function, then, for the solution
ALS returned by algorithm LS, it holds that

F (ALS) ≥
(

1
3
− ε

n

)
max
A

F (A).

LS uses at most O(1
εn

3 log n) function evaluations.

Hence, LS returns a solution ALS achieving at least 1/3 of the optimal score.

4.1 An Efficient Implementation

The description of Algorithm LS allows some freedom for implementing the search in steps 2 and
3. In our implementation, we select in a greedy manner the element V ′ which most increases the
objective function. Furthermore, to speed up computation, we use lazy evaluation to find the greedy
elements (Robertazzi & Schwartz, 1989).

The algorithm LLS (c.f., Figure 1) performs a sequence of upwards and downwards passes,
adding and removing elements which improve Fλ by at least a factor of (1+ ε

n2 ). The upwards pass
is done in a lazy manner—the increments δV are lazily updated only when necessary. We found
that the lazy computation can reduce the running time by an order of magnitude. The correctness
of this lazy procedure follows directly from submodularity: Submodularity implies that the δV are
monotonically nonincreasing as more and more elements are added toA. The lazy updates can also
be applied for the greedy downward pass. We discovered that Algorithm 1 usually terminates after
one single downwards pass, without removing a single element.

3. If F takes negative values, then it can be normalized by considering F ′(A) = F (A) − F (V), which however can
impact the approximation guarantees.
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Input: Submodular function Fλ
Output: Near-optimal selection A of personal attributes
begin
A ← ∅;
repeat

change = false;
/* Lazy greedy upward pass: */
foreach V ∈ V do δV ← Fλ(A ∪ {V })− Fλ(A); currentV ← true;
repeat

V ′ ← argmaxV ∈V\A δV ;
if currentV ′ = true then

if δV ′ > (1 + ε
n2 )Fλ(A) then

A ← A∪ {V ′}; foreach V ∈ V do currentV ← false
else

break;
end

else
δV ′ ← Fλ(A ∪ {V ′})− Fλ(A); currentV ′ ← true;

end
until δV ′ ≤ (1 + ε

n2 )Fλ(A) ;
/* Lazy greedy downward pass: */
foreach V ∈ A do δV ← Fλ(A \ {V })− Fλ(A); currentV ← true;
repeat

V ′ ← argmaxV ∈A δV ;
if currentV ′ = true then

if δV ′ > (1 + ε
n2 )Fλ(A) then

A ← A \ {V ′}; change = true; foreach V ∈ A do currentV ← false
else

break;
end

else
δV ′ ← Fλ(A \ {V ′})− Fλ(A); currentV ′ ← true;

end
until δV ′ ≤ (1 + ε

n2 )Fλ(A) ;
until change = false ;
return argmax{Fλ(A), Fλ(V \ A)}

end
Algorithm 1: The lazy local search (LLS) algorithm.
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4.2 Evaluating Utility and Cost

To run LLS, we need to be able to efficiently evaluate the utility U(A) and cost C(A). In princi-
ple, we can compute the objective functions from the empirical distribution of the training data, by
explicitly evaluating the sums defining U(A) and C(A) (c.f., Section 2). However, this approach is
very inefficient — Ω(N2) where N is the number of training examples. Instead, we can estimate
U(A) and C(A) by sampling. Krause and Guestrin (2005) show how the Hoeffding inequality (Ho-
effding, 1963) can be used in order to approximately compute conditional entropies. The Hoeffding
inequality allows us to acquire bounds on the number of samples needed in order to determine the
expectation E[Ĥ] of a random variable Ĥ , if Ĥ is bounded. In the case of click entropy reduction,
we use the random variable

Ĥ | [Q = q,A = a] = H(X)−H(X | q,a).

Ĥ is a deterministic function modeling the click entropy reduction if request Q = q and attributes
A = a are observed. SinceQ andA are random variables, Ĥ is random as well. Since Ĥ is bounded
between 0 and log2(#intents), the Hoeffding inequality can be applied, and the following holds:

Lemma 4.2 (Krause & Guestrin, 2005). For any ε > 0 and δ > 0, we need⌈
1
2

(
log2(#intents)

ε

)2

log
1
δ

⌉

samples in order to estimate U(A) to absolute error ε with confidence at least 1− δ.

For the identifiability loss I(A), we can proceed in a similar manner. Both the maximum prob-
ability and the k-anonymity loss are bounded between 0 and 1. Using a similar argument as in the
proof of Lemma 4.2, we have the following result:

Lemma 4.3. For any ε > 0 and δ > 0, we need
⌈

1
2ε2

log 1
δ

⌉
samples in order to estimate C(A) to

absolute error ε with confidence at least 1− δ.

We can generalize Theorem 4.1 to also hold in the case where utility and cost are estimated up
to small constant error. The following theorem summarizes the analysis:

Theorem 4.4. If λ such that Fλ(V) ≥ 0, then LLS, using sampling to estimate C(A) and U(A),
computes a solution ALLS such that

Fλ(ALLS) ≥
(

1
3
− ε

n

)
max
A

Fλ(A)− nεS ,

with probability at least 1− δ. The algorithm uses at most

O

(
1
ε
n3 log n

(
log2(#intents)

εS

)2

log
1
δn3

)
samples.

Hence, the algorithm LLS will efficiently find a solution ALLS which achieves at least a con-
stant fraction of 1/3 times the value of the optimal solution.

642



A UTILITY-THEORETIC APPROACH TO PRIVACY IN ONLINE SERVICES

4.3 Computing Online Bounds

The bounds provided by Theorem 4.4 are offline, in the sense that they can be stated before running
Algorithm 1. We can use the submodularity of U(A) and supermodularity of C(A) additionally for
computing online bounds on the performance of any algorithm.

Theorem 4.5. Let A′ ⊆ V be an arbitrary set of attributes. For each V ∈ V \ A define ηV =
U(A′ ∪ {V })− U(A′)− λC({V }). Let B = {V : ηV > 0}. Then

max
A

Fλ(A) ≤ Uλ(A′) +
∑
V ∈B

ηV .

It is again possible to extend these bounds to the case where the objective function Fλ is evalu-
ated with small absolute error via sampling.

4.4 Finding the Optimal Solution

Although LLS allows us to find a near-optimal solution in polynomial time, submodularity of
Fλ can also be exploited to find an optimal solution in a more informed way, allowing us to by-
pass an exhaustive search through all exponentially many subsets A. Existing algorithms for op-
timizing submodular functions include branch and bound search, e.g., in the data-correcting algo-
rithm by Goldengorin, Sierksma, Tijssen, and Tso (1999), as well as mixed-integer programming
(Nemhauser & Wolsey, 1981). These approaches also do not require nonnegativity of Fλ. The
mixed-integer programming approach by Nemhauser et.al. effectively uses bounds similar to those
presented in Theorem 4.5.

5. Search Log Data and Attributes

We estimate the utility U(A) and cost C(A) of sets of private attributes from data. We use search
log data, based on a total of 247,684 queries performed by 9,523 users from 14 months between
December 2005 and January 2007. The search data was obtained from users who had volunteered
to participate in a public Microsoft data sharing program centering on the use of information about
their search activities to enhance search. The data was filtered to include only those queries which
had been performed by at least 30 different users, resulting in a total of 914 different queries.
For the utility U(A), we compute the average reduction in click entropy (in bits) with respect to
the per-query distribution of web pages chosen, as defined in Section 2. From the demographic
information and the search logs, we compute 31 different user / query specific attributes. In selecting
our attributes, we chose a very coarse discretization. No attribute is represented by more than three
bits, and most attributes are binary. We consider the following attributes, which are summarized in
Table 1.

5.1 Demographic Attributes

The first set of attributes contains demographic information, which were voluntarily provided sep-
arately as part of signing up for a set of online services. The attributes contain gender, age group,
occupation and region, each very coarsely discretized into at most three bits. Gender was specified
by 86% of users, age by 94%, occupation by 57%. 44% of the users specified their gender as male,
42% as female. 8% of users asserted that they are less than 18 years, 53% between 18 and 55, and
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33% 55 and older. Most users were from the US and Canada (53%), followed by 7% from the Eu-
ropean Union and 3% from Asia. Other locations were unspecified. 10% of the searchers specified
that they are students.

5.2 Search Activity Attributes

The next set of attributes contains features extracted from search history data. For each query,
we determine whether the same query has been performed before (AQRY; 70% of the queries are
repeated), as well as whether the searcher has visited the same webpage (ACLK) before (53% of
the clicks). We consider the sequence of websites visited following a query, and associate the
hostname of the first website on which the surfer dwells for at least 30 seconds as the intended
target. The attribute AFRQ describes whether the user performed at least one query each day. 47%
of the searchers performed at least one search per day. We also log the top-level domain (ATLV)
determined by reverse DNS lookup of the query IP address, and used only the domains .net, .com,
.org and .edu. 83% of the queries were associated with one of these domains. We determine if a
user ever performed queries from at least 2 different zip codes (AZIP; true 31%), cities (ACTY; true
31%) and countries (ACRY; true 2%), by performing reverse DNS lookup of the query IP addresses.
For each query, we store whether the query was performed during working hours (AWHR; between
7 am and 6 pm) and during workdays (AWDY; Mon-Fri) or weekend (Sat, Sun), without accounting
for holidays. Workdays account for 73% of the queries, but only 40% of the queries were done
during working hours.

5.3 Topic Interests

We looked up all websites visited by the user during 2006 in the 16 element top-level category
of the Open Directory Project directory (www.dmoz.org). For each category, we use a binary
attribute indicating whether the user has ever visited a website in that category (acronyms for topics
are indicated with prefix T). Topic classification was available for 96% of the queries.

6. Survey on Privacy Preferences

Although identifiability can be an important part of privacy, people may have different preferences
about sharing individual attributes (Olson, Grudin, & Horvitz, 2005). We set out to assess prefer-
ences about cost and benefits of the sharing of different kinds of personal data. Related work has
explored elicitation of private information (c.f., Huberman, Adar, & Fine, 2005; Wattal, Telang,
Mukhopadhyay, & Boatwright, 2005; Hann, Hui, Lee, & Png, 2002). We are not familiar with a
similar study for the context of web search. Our survey was designed specifically to probe pref-
erences about revealing different attributes of private data in return for increases in the utility of a
service (in this case, in terms of enhanced search efficiency). As previous studies by Olson et al.
(2005) show, willingness to share information greatly depends on the type of information being
shared, with whom the information is shared, and how the information is going to be used. In de-
signing the survey, we tried to be as specific as possible, by specifying a low-risk situation, in which
the “personal information would be shared and used only with respect to a single specified query,
and discarded immediately thereafter.” Our survey contained questions both on the sensitivity of
individual attributes and on concerns about identifiability. The survey was distributed within Mi-
crosoft Corporation via an online survey tool. We motivated people to take the survey by providing
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Figure 1: Willingness to share attributes
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Figure 2: Sensitivity of individual attributes (with 95% confidence intervals)

participants with a lottery where they could win a media player via a random drawing. The survey
was open to worldwide entries, and we received a total of 1,451 responses. Again, we use acronyms
to refer to the personal attributes, as defined in Table 1.
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6.1 Questions about Individual Attributes

First, we assessed attributes that participants would be willing to share with the search engine if
revealing these attributes would “double search performance.” Interestingly, for all attributes probed,
more than 50% of study participants asserted that they would agree to share the information given
the promised efficiency gain. Also, the sharing rates are very similar to those estimated in the survey
(78% for gender, 82% for age, and 64% for occupation). The least willingness to share (54.4%
and 52.6% respectively) was exhibited for marital status (DMTL) and whether the participant has
children (DCHD), closely followed by occupation (63.9%). Most participants (92.7%) would rather
share their region than share that their interests include news-related webpages (TNWS). Figure 1
presents the results for this question. We also asked the participants to classify the sensitivity of
the attributes on a Likert scale from 1 (not very sensitive) to 5 (highly sensitive). The order of the
questions was randomized. Figure 2 presents the results. The frequency of search engine usage
(AFRQ) as well as very general topic interests, e.g., in news pages (TNWS), are considered to
be of low sensitivity. Interestingly, we found that there are significant differences in preferences
among participants even for sharing with a service interests in different topics; participants showed
significantly greater sensitivity to sharing their interest in health or society related websites (THEA,
TSOC) than in news or science-related pages (TNWS, TSCI). The biggest “jump” in sensitivity
occurs between attributes ACLK, referring to sharing a repeated visit to same website, and ACRY,
referring to having recently traveled internationally. We found that participants were most sensitive
to sharing whether they are at work while performing a query (AWHR).

6.2 Questions about Identifiability

We also elicited preferences about sharing personal data at different degrees of precision and with
different levels of identifiability. First, we sought to identify changes in the sensitivity associated
with sharing personal data at increasingly higher resolution. More specifically, we inquired about
the sensitivities of participants to sharing their ages at the level of groups of 20, 10, 5, and 1 years,
and their exact birth dates. Similarly, we asked how sensitive participants would be to sharing
their location at the region, country, state, city, zip code, or address levels of detail. Figures 3(a)
and 3(b) present the mean sensitivity with 95% confidence intervals for this experiment. We also
assessed participants sensitivities to having their search activity stored in different ways. More
specifically, we asked users to assess their sensitivity about storing only a topic classification of
the visited websites (i.e., whether a news- , business-, health-related etc. site was visited), storing
all searches for 1 or 3 years, or storing all searches indefinitely. Lastly, we asked the participants
how sensitive they would be, if, in spite of sharing the information, they would be guaranteed to
remain indistinguishable from at least k other people (thereby eliciting preferences about k of k-
anonymity). Here, we varied k among 1, 10, 100, 1,000, 10,000, 100,000 and 1 million. Figure 3(c)
presents the results of these experiments.

We draw a number of conclusions about the preferences of the population studied. First, storing
search activity is generally considered more sensitive than sharing certain demographic information.
For example, even storing only the topic classification of visited web pages is considered signifi-
cantly more sensitive than sharing the city or birth year of a user. This result indicates that logging
search activity is considered at least as threatening to privacy as sharing certain demographic infor-
mation. The survey also shows that study participants have strong preferences about the granularity
of the shared information. As explained below in Section 7.2, we can use the information obtained
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Figure 3: Sensitivity of sharing age (a) and location (b) under different levels of discretization.
(c) Sensitivity of storing searches for varying amounts of time. (d) Sensitivity of k-
discriminability levels (right). Plots show 95% confidence intervals.

from this experiment to explicitly take into account peoples’ preferences when trading off privacy
and utility.

6.3 Questions about Utility

In addition to assessing the sensitivity of sharing different kinds of personal information, we asked
the participants to assess the degree of improvement they would require in order to share attributes
of a given sensitivity level. More specifically, we asked: “How much would a search engine have to
improve its performance, such that you would be willing to share information you consider 1/2/...”.
As response options, we offered average improvements by 25%, 50%, 100%, as well as the outcome
of immediately presenting the desired page 95% of the time (which we associated with a speedup
by a factor of 4). We also allowed participants to opt to never share information at a specified
sensitivity level. These responses, in conjunction with the earlier sensitivity assessments, allowed
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Figure 4: Which attributes are currently stored?

Figure 5: Using sensitivity as a common currency

us to establish sensitivity as a common currency of utility and cost. Figure 5 presents the median, 25
and 75-percentiles of the responses for the k-discriminability question and the above utility question.

6.4 Questions about the Current State

Additionally, we assessed the current understanding of the state of privacy in search. More specifi-
cally, we asked, whether the participants believe that most current search engines store the following
attributes: DGDR, DAGE, DOCC, DZIP, ASEA, DCRY, TNWS, DEML. We found that most par-
ticipants (96%) assume that search engines know the country (DCRY) a searcher is from. Also,
most participants (86%) assume that all searches are stored by the search engines. Fewer partici-
pants believe that demographic information such as occupation (16%), age (28%) or gender (34%)
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Figure 6: Utility (average click entropy reduction in bits) according to greedy ordering

Figure 7: Cost according to greedy ordering

are known to the search engine. This result is an important baseline in order to understand the
sensitivity classification of the individual attributes.

7. Results

We now describe our empirical results on calibrating and optimizing the utility-privacy tradeoff.

7.1 Computing Utility and Cost

We use the empirical distribution of the data described in Section 5, and evaluate utility and cost by
sampling. Each sample is a row picked uniformly at random from the search logs. We then find all
queries matching the selected attributes (A = a), and compute the conditional entropy of the click
distribution, as well as the identifiability loss function. In order to avoid overfitting with sparse data,
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Figure 8: (a) Tradeoff-curve for varying λ. (b) Calibrating the tradeoff.

we applied Dirichlet smoothing. In our experiments, we use 1000 independent samples in order to
estimate U(A) and I(A).

We first apply the greedy algorithm to select an increasing number of attributes, maximizing
the utility and ignoring the cost. Figure 6 presents the greedy ordering and the achieved entropy re-
ductions. The greedy algorithm selects the attributes DOCC, ATLV, DAGE, ACTY, AQRY, ACLK,
AWHR, TADT, AWDY, THOM, TCIN, DGDR, TGMS, TREG, in this order. After selecting these
attributes, the utility does not increase significantly anymore. The entropy reduction levels off at
roughly 1.92 bits. Figure 6 underscores the diminishing-returns property of click entropy reduction.

Similarly, we generate a greedy ordering of the attributes, in order of minimum incremental
cost. Figure 7 presents the results of this experiment, using the maxprob cost metric. As expected,
the curve looks convex (apart from small variations due to the sampling process). The cost ini-
tially increases very slowly, and the growth increases as more attributes are selected. This behavior
empirically corroborates the supermodularity assumption for the cost metric.

Figure 9 compares the three cost metrics, as more and more attributes are selected. All three
metrics initially behave qualitatively similarly. However, the k-anonymity metric flattens out after
25 out of 31 attributes have been selected. This is expected, as eventually enough personal informa-
tion is available in order to (almost) always reduce the candidate set of people to less than k = 100.
At this point, adding more attributes will not dramatically increase the cost anymore. However,
when trading off utility and privacy, one is interested in solutions with small cost, and in this critical
region, the cost function behaves supermodularly as well.

7.2 Calibrating the Tradeoff with Assessed Preferences

We now use the scalarization (3.1) to trade off utility and cost. For this optimization, we need to
choose the tradeoff parameter λ. Instead of committing to a single value of λ, we generate solutions
for increasing values of λ. For each such value, we use LLS to find an approximate solution, and
plot its utility and cost. Figure 8(a) shows the tradeoff curve obtained from this experiment. We can
see that this curve exhibits a prominent knee: For values 1 ≤ λ ≤ 10, small increases of the utility
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Figure 9: Cost comparison according to greedy ordering

lead of big increases in cost, and vice versa. Hence, at the knee, we can achieve near-maximal utility
at near-minimum cost.

To integrate peoples’ preference in the analysis of the tradeoff, we perform the following cal-
ibration procedure. From the search log data, we determined how increasing the resolution of a
person’s location increases the privacy cost. We vary the location granularity from region (coarsest)
to zip code (finest). For example, we compute the values Im({zip code}), Im({city}), etc. from
data. As explained in Section 6.2, we had asked the subjects to assess the sensitivity of sharing their
locations at different levels of precision. This approach also allows us put the identifiability cost
I(A) and sensitivity S(A) into the same units.

Similarly, we assessed the amount of improvement in search performance that would be required
in order to share attributes of a given sensitivity. We associate a number of bits with each level
of improvement: A speedup by a factor of x would require log2 x bits (i.e., doubling the search
performance would require 1 bit, etc.). We then concatenat the mappings from location granularity
to sensitivity, and from sensitivity to utility (bits), and compute the median number of bits required
for sharing each location granularity. Using this approach, we can put sensitivity S(A) and utility
U(A) into the same units. Thereby, we effectively use sensitivity as a common currency between
utility and cost. This procedure is (up to discretization) invariant of the particular scale (such as 1
to 5) used to assess sensitivity.

We perform a linear regression analysis to align the cost curve estimated from data with the
curve obtained from the survey. The least-squares alignment is presented in Figure 8(b), and ob-
tained for a value of λ ≈ 5.12. Note that this value of λmaps exactly into the sweet spot 1 ≤ λ ≤ 10
of the tradeoff curve of Figure 8(b).

7.3 Optimizing the Utility-Privacy Tradeoff

Based on the calibration described above, our goal is to find a set of attributes A maximizing the
calibrated objective Fλ(A) according to (3.1).

First, we use the greedy algorithm to obtain an ordering of the attributes, similarly to the cases
where we optimize utility and cost separately. Figure 10 presents the results of this experiment.
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Figure 10: Greedy solutions for calibrated objective

Figure 11: Comparison with heuristics

Instead of using the greedy algorithm, we can use LLS to approximately solve this optimization
problem. The algorithm terminates after two upward and downward passes, with solution AFRQ,
ATLV, AWDY, AQRY, ACLK, DAGE and TSPT. Note that the first element selected during the
initial greedy upward pass is DOCC (the occupation), but it is discarded in the first downward pass
again, since its individual sensitivity is quite high (c.f., Figure 2), and the additional information
provided over the remaining 6 attributes is not high enough to warrant its presence in the optimal
solution.

We also compared the optimized solutionAopt to the results of various heuristic procedures. For
example, we compared it to the candidate solutionAdem where we select all demographic attributes
(all attributes starting with D); Atopic where we select all topic interest attributes (starting with T);
Asearch including all search statistics (ATLV, AWDY, AWHR, AFRQ); AIP , the entire IP address
orAIP2, the first two bytes of the IP address. Figure 11 presents the results of this comparison. The
optimized solutionAopt obtains the best score of 0.83, achieving a click entropy reduction of≈ 1.4.
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Figure 12: Running times

The search statistics Asearch performs second best, with a score of 0.57, but achieving a drastically
lower utility of only 0.8. Demographic information Adem achieves higher utility of 0.95, but much
higher cost, and hence an even lower total score of 0.3. Perhaps surprisingly, the collection of topic
interests, Atopic results in negative total score of -1.73, achieving less utility than the optimized
solution. We believe that the reason for this is that knowledge of the exact topic interest profile
frequently suffices to uniquely identify a searcher. As expected, the IP address (even the first 2
bytes) are quite identifying in this data set, and hence has very high cost. This experiment shows that
the optimization problem is non-trivial, and the optimized solution outperforms heuristic choices.

We also measured the running time of the algorithms, on a standard desktop PC (3 GHz) using
a C#-implementation. Figure 12 presents the running times for the greedy and local search algo-
rithms, both with and without the lazy evaluation trick. We note that the local search algorithm is
not much slower than the greedy algorithm; frequently, only a single upward and downward pass
are necessary, and only a small number of attributes have to be considered for elimination in the
downward pass. We also note that using lazy evaluations drastically speeds up the running time—
from 522.1 minutes without to 225.7 with lazy evaluations. To obtain a tradeoff curve like the one
in Figure 8(b), the algorithm has to be run for each value of λ; hence any improvement is important.
We also estimated the running time required for exhaustive search. Here, we considered only sets
of size at most 8 (assuming that the optimal solution is of similar size as the approximate solution).
Even this very optimistic estimate would require 50.1 years of computation time.

8. Related Work

This paper is an extended version of a paper that appeared at the 23rd Conference on Artificial Intel-
ligence (AAAI) (Krause & Horvitz, 2008). The present version is significantly extended, including
several additional experimental results, a detailed discussion of our LLS algorithm as well as new
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Label Type bits Description
DGDR Demographic 1 Gender
DAGE Demographic 2 Age group (<18, 18-50, >50)
DOCC Demographic 3 Occupation (6 groups of related jobs)
DREG Demographic 2 Region (4 geographic regions)
DMTL Demographic 1 Marital status (*)
DCHD Demographic 1 Whether the searcher has children or not (*)
AQRY Activity 1 Performed same query before
ACLK Activity 1 Visited same website before
AFRQ Activity 1 User performs at least 1 query per day on average
AZIP Activity 1 User performed queries from at least 2 different zip codes
ACTY Activity 1 User performed queries from at least 2 different cities
ACRY Activity 1 User performed queries from at least 2 different countries
AWHR Activity 1 Current query performed during working hours
AWDY Activity 1 Current query performed during workday / weekend
ATLV Activity 2 Top-level domain of query IP address (.com, .net, .org, .edu)
TART Topic 1 User previously visited arts related webpage
TADT Topic 1 User previously visited webpage with adult content
TBUS Topic 1 User previously visited business related webpage
TCMP Topic 1 User previously visited compute related webpage
TGMS Topic 1 User previously visited games related webpage
THEA Topic 1 User previously visited health related webpage
THOM Topic 1 User previously visited home related webpage
TKID Topic 1 User previously visited kids / teens related webpage
TNWS Topic 1 User previously visited news related webpage
TREC Topic 1 User previously visited recreation related webpage
TREF Topic 1 User previously visited reference related webpage
TREG Topic 1 User previously visited webpage with regional content
TSCI Topic 1 User previously visited science related webpage
TSHP Topic 1 User previously visited shopping related webpage
TCIN Topic 1 User previously visited consumer information webpage
TSOC Topic 1 User previously visited society related webpage
TSPT Topic 1 User previously visited sports related webpage
TWLD Topic 1 User previously visited world related webpage

Table 1: 33 Attributes used in our experiments. Attributes marked (*) were not available in search
log data. Total number of bits = 38.
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theoretical bounds (Section 4.3). We now review work related to the key concepts and methods
presented in this paper.

8.1 Personalized Search, Probabilistic Models for Search

The problem of personalized search has received a great deal of attention (c.f., Xu et al., 2007 for
an overview of recent work). Teevan et al. considered the use of local term frequencies for re-
ranking web search results (Teevan et al., 2005). The personal data is kept private as the analysis
of personal information for re-ranking occurs entirely on the client. Recently, Xu et al. considered
the problem of privacy preserving web search. Based on local information, a user profile is built,
which is used for personalization. Two parameters called minDetail and expRatio are used to specify
preferences about privacy. While similar in spirit, their approach does not tradeoff cost and benefit
for sets of attributes as our approach does. Moreover, their approach does not consider the aspect of
discriminability across users.

There have been efforts to employ probabilistic models in web search, e.g., for predicting rele-
vance. Examples include the techniques proposed by Downey et al. (2007). The methods proposed
in this paper can use any such probabilistic model, which allows to answer questions like “how
much would my uncertainty decrease if I knew the searcher’s gender”.

8.2 Value of Information in Probabilistic Models

Optimizing value of information has been a cornerstone of principled approaches to information
gathering (Howard, 1966; Lindley, 1956; Heckerman, Horvitz, & Middleton, 1993), and was pop-
ularized in decision analysis in the context of influence diagrams (Howard & Matheson, 1984).
Several researchers (van der Gaag & Wessels, 1993; Cohn, Gharamani, & Jordan, 1996; Dittmer
& Jensen, 1997; Kapoor, Horvitz, & Basu, 2007) suggested myopic, i.e., greedy approaches for
selectively gathering observations. These algorithms typically do not have theoretical guarantees.
Heckerman et al. (1993) propose a method to compute the maximum expected utility for specific
sets of observations. They provide only large sample guarantees for the evaluation of a given se-
quence of observations, and use a heuristic without guarantees to select such sequences. Krause
and Guestrin (2009) develop dynamic programming based algorithms for finding optimal sets of
observations. However, their algorithms only apply to chain structured graphical models. Krause
and Guestrin (2005) show that under certain conditional independence assumptions, the informa-
tion gain is a submodular function, an observation that we build on in this paper. To our knowledge,
this paper provides the first principled approach for efficiently, nonmyopically trading off value of
information and privacy cost.

8.3 Valuation of Private Information

The problem of estimating sensitivity or monetary value of private information has been studied ex-
tensively, e.g., in the economics literature. Huberman et al. (2005) propose a second-price auction
for estimating the sensitivity of demographic attributes. In a more application specific approach,
Wattal et al. study, whether the inclusion of names or personal product preferences can enhance
the effectiveness of email marketing (Wattal et al., 2005). Hann et al. (2002) study how economic
incentives affect individual’s preferences with different privacy policies, quantifying the value of
disallowing the use of personal information. Kleinberg, Papadimitriou, and Raghavan (2001) quan-
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tify the value of private information using the Shapley value of a coalitional game. This approach
provides an alternative, theoretically well-motivated way of eliciting the subjective cost of sharing
a set of personal information, and could potentially be combined with our approach to optimize a
utility-privacy tradeoff.

8.4 Mathematical Notions of Privacy

The field of mathematical (or cryptographic) privacy has been studied extensively (c.f., Adam
& Wortmann, 1989 for a survey on early work). A pioneering result was the definition of k-
anonymity, and the development of algorithms for maintaining this indiscriminability guarantee
(Sweeney, 2002). Follow up work has led to other notions of indiscriminability, such as l-diversity
(Machanavajjhala et al., 2006) etc. These notions describe properties of databases in isolation,
and are sometimes called non-interactive (Dwork, 2006). Often, inference attacks using auxiliary
knowledge are problematic in this context. Lebanon et al. (2009) consider decision theoretic vari-
ants of k-anonymity and related notions. Their approach allows to quantify the risk in (partially)
releasing sanitized records. While they consider approaches to quantifying privacy cost, they do not
present efficient algorithms with guarantees for trading off utility and privacy as we do in this paper.

Another important class of cryptographic approaches to privacy consider protection of privacy
in the context of interactive analyses. In these approaches, a database contains an arbitrary amount
of private information, which is securely guarded. Access to this database is enabled via a limited
form of queries, which guarantee privacy. One prominent example of such techniques is the no-
tion of differential privacy (Dwork, 2006). This notion quantifies the risk for each user incurred
by participating in a database. Intuitively, queries are only allowed, if the corresponding results
do not significantly depend on the presence or absence of individuals in the database. Blum et al.
(2008) show how differential privacy (and a stronger variant called distributional privacy) can be
achieved even in a non-interactive setting. However their approach is efficient only for a limited
class of queries that, e.g., does not allow to estimate click probabilities as considered in this paper.
Although these approaches provide crisp mathematical definitions of privacy, they are not designed
with a specific notion of utility in mind. Rather, a specific privacy requirement is formulated, and
analyses show the limits of data usage that are consistent with the requirement. We believe that
the utility-theoretic approach to privacy is complementary to the cryptographic definitions of pri-
vacy. While our approach can be used to develop a privacy-aware design, existing techniques such
as differential privacy can, e.g., be used to guard access to the private information. The utility-
theoretic analyses also allow for new scenarios, such as identifying the value of specific private data
for a specific context, and requesting this data in real time, for short-term usage. Such applications
bypass the assumption of long-term, large-scale storage of private data that are explored within
cryptographical analyses of privacy.

8.5 Utility-Privacy Tradeoff

Algorithmic approaches for optimizing the tradeoff have been considered in the area of privacy-
preserving data publishing, which focuses on anonymization techniques. In these settings, a con-
straint on privacy is typically specified (in terms of k-anonymity, Sweeney, 2002, or l-diversity,
Machanavajjhala et al., 2006) and then a recoding scheme is applied which maximizes a speci-
fied quality metric. Recent work involves the development of a greedy algorithm (LeFevre et al.,
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2006) and branch and bound search (Hore & R. Jammalamadaka, 2007). To our knowledge, these
algorithms have no performance and approximation guarantees.

Our approach is different, in that we explicitly quantify both utility and cost in the same units,
and optimize a single scalar value of information problem. Moreover, we use an application specific
utility function, rather than a distortion metric. Furthermore, our algorithm is guaranteed to provide
near-optimal solutions to the optimization problem.

9. Discussion

The proposed methodology could be implemented in a variety of ways. The most critical design
choices are where and when the utility-privacy tradeoff is optimized. In the following, we shall
explore these parameters in the context of personalized search.

9.1 Location of private information

Private information can be either located at the client (i.e., the recipient of the service, e.g., the web
searcher), the server (i.e., the service provider, e.g., the search engine), or in the channel.

9.2 Client-side Private Information

In a client-side setting, private information is stored locally, and never shared with the network; this
configuration has been considered by Teevan et al. (2005) and Xu et al. (2007). With such an ap-
proach, private information is used to re-rank search results locally, and never transmitted across the
network, avoiding the risk of misuse or unintended release. However, the private information does
not (easily) migrate with the user across multiple machines, and privacy concerns are effectively
replaced by security concerns, requiring that the local machine not be compromised. The proposed
methodology could be useful in mitigating security concerns; client services might be optimized to
acquire and store only the most relevant information.

9.3 Server-side Private Information

On the server side, designs for privacy, especially with regard to the storage and usage of behavioral
data, is of critical importance to services and their users.

The methods described can be used to balance user sensitivity and service utility, and to address
such questions as which data should be logged, and which anonymization techniques should be used
(c.f., Adar, 2007 for a discussion of the difficulties and possible options in anonymizing web search
logs). Furthermore, specific personal (e.g., demographic) information could be voluntarily made
available by the web searcher to the web service in form of, e.g., a user profile. In both settings, the
proposed methodology could potentially be used to trade off privacy and utility.

9.4 Channel-side Private Information

We also foresee applications where private data is transmitted on a per-request basis. In this setting,
the proposed methodology can be used to design which private “bits” to transmit to maximize utility
while minimizing the privacy risk.
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9.5 A Priori vs. Dynamic Tradeoff Optimization

Another important design parameter is when the tradeoff between privacy and utility is made.

9.5.1 A PRIORI TRADEOFF OPTIMIZATION / PRIVACY-AWARE SERVICE DESIGN

One option is to apply the proposed methodology a priori, i.e., before the system is being used.
Here, the utility-privacy tradeoff would determine which information is being logged, collected in
local profiles, or which private bits are made part of the protocol used to transmit service requests.
This approach has the advantage that always the same private bits are used, and inference attacks
combining private information from different requests are not possible.

9.5.2 DYNAMIC OPTIMIZATION

As we mentioned earlier, systems can be endowed with the ability to make dynamic recommenda-
tions to users or take actions in accordance with user preferences in the course of online activities.
Dynamic variants of the methods we have presented can be used to identify the best subset of pri-
vate information for sharing so as to optimize utility for a user. With web search, depending on
the query, different kinds of personal information may be most helpful for disambiguation. The
utility-theoretic approach to privacy could be used to determine needs in real time. Challenges with
implementing such a real-time, interactive approach, include grappling with the possibility that in-
ference attacks can combine the bits from different requests. Anonymization procedures can be
designed to resist such challenges. Another challenge is computational efficiency, as solving an
optimization problem may be required for each service request. The main advantage of employing
a dynamic approach is that the average number of private bits (and hence the identifiability cost) per
request could be lower than in the a priori privacy-aware design. The a priori design requires a col-
lection of private bits which help disambiguating all queries versus context-specific situations. This
interactive approach would additionally allow users to share private information on a per-request
basis. Such interactive decisions also require considerations of how preferences about tradeoffs
and private information are acquired from users—and will rely on the design of user interaction
models and interfaces to provide users with awareness about opportunities for enhancing the value
of services and controls for guiding the revelation of private information. Recent developments
in adaptive submodularity may provide the methods necessary to achieve such dynamic, adaptive
optimization of tradeoffs (Golovin & Krause, 2010).

9.6 Other Applications

The increasing cost property which characterizes the identifiability cost potentially arises in other
contexts as well. For example, for many algorithms, the computational cost scales superlinearly in
the number of dimensions / attributes considered. In such cases, the problem of trading off informa-
tion (such as the click entropy reduction) and computation cost have the same combinatorial struc-
ture as the utility-privacy tradeoff addressed in this paper. Some of the algorithmic/computational
considerations presented in this paper, such as the lazy local search algorithm, or sample complexity
analyses, apply to such contexts as well.
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10. Conclusions

We presented an approach for explicitly optimizing the utility-privacy tradeoff in personalized ser-
vices such as web search. We showed that utility functions like click entropy reduction satisfy
submodularity, an intuitive diminishing-returns property. In contrast, privacy concerns show super-
modularity; the more private information we accrue, the faster sensitivity and the risk of identifiabil-
ity grow. Based on the submodular utility and supermodular cost functions, we demonstrated how
we can efficiently find a provably near-optimal utility-privacy tradeoff. We evaluated our methodol-
ogy on real-world web search data. We demonstrated how the quantitative tradeoff can be calibrated
according to personal preferences, obtained from user study with over 1,400 participants. Overall,
we found that significant personalization can be achieved using only a small amount of information
about users. We believe that the principles and methods employed in the utility-theoretic analysis
of tradeoffs for web search have applicability to the personalization of a broad variety of online
services. The results underscore the value of taking a decision-theoretic approach to privacy, where
we seek to jointly understand the utility of personalization that can be achieved via access to infor-
mation about users, and the preferences of users about the costs and benefits of selectively sharing
their personal data with online services.
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Appendix A. Proofs

Proof of Theorem 2.1. Let n = |cV |. We prove the result for a choice of I(A), where I(A) = 0 if
|A| < n/2 and I(A) = 2∗M∗(|A|−n/2) otherwise, whereM = U(V) is the maximum achievable
utility. In this case, F1(A) = U(A) ≥ 0 if |A| ≤ n/2, and F1(A) < 0 if |A| > n/2. Hence,

argmax
A

F1(A) = argmax
A:|A|≤n/2

U(A).

However, Krause and Guestrin (2005) show that if there were a polynomial time algorithm which is
guaranteed to find a set A′ such that U(A′) ≥ (1− 1/e) maxA:|A|≤n/2 U(A), then P = NP .

Proof of Theorem 3.2. Let Y = (A,B) (i.e., V is partitioned into A and B). Then,

Im(A) =
∑
a

P (a) max
b

P (b | a) =
∑
a

P (a) max
b

P (b)

= max
b

P (b) = max
b

∏
i

P (bi) =
∏
i

max
bi

P (bi) =
∏
i

wi

where wi = maxbi P (bi). Now, Im(A) is nondecreasing in A. Furthermore, for subsets A,A′ ⊆ V
and B = A ∪ A′, it holds that Im(B) = αIm(A) for α ≥ 1. Furthermore, if V ∈ V \ B and
w = maxv P (V = v), then Im(B ∪ {V }) = w−1Im(B) and Im(A ∪ {V }) = w−1Im(A). Hence,

Im(B ∪ {V })− Im(B)
Im(A ∪ {V })− Im(A)

=
α(w−1 − 1)
w−1 − 1

= α ≥ 1,
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which proves the supermodularity of Im(A).

Proof of Theorem 4.4. Additive error carries through Lemma 3.3. and subsequently through the
proof of Theorem 3.4. of Feige et al. (2007). In order to guarantee the confidence 1 − δ, we apply
the union bound. The sample complexity then follows from Lemma 4.2 and Lemma 4.3.

Proof of Theorem 4.5. Let C be an optimal solution. Since U is nondecreasing,

F (C) = U(C)− λC(C) ≤ U(A′ ∪ C)− λC(C)

≤ U(A) +
∑
V ∈C

[U(A ∪ {V })− U(A)]− λC(C)

≤ U(A) +
∑
V ∈C

[U(A ∪ {V })− U(A)− λC({V })]

= U(A′) +
∑
V ∈C

ηV ≤ U(A′) +
∑
V ∈B

ηV .
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