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1. Introduction

Temporal reasoning in complex environments often involves the
interpretation of evidence under uncertainty. We have been studying the
application of probabilistic reasoning techniques to the problem of temporal-
data interpretation. In this report, we discuss techniques for inferring the
probability of current hypotheses given temporal evidence. After reviewing
the background of the problem, we present our problem-solving approach
and discuss a prototype implementation.

Temporal reasoning has been recognized as an important and difficult area of
artificial intelligence (AI) research. During the last decade, the volume of
temporal-research literature has increased markedly. A good survey of
research up to 1982 is contained in [4]. Key early papers in the field include
[1, 2, 16, 23]; more recent literature can be found in [7, 10, 12, 15, 19, 20, 21,
26, 30, 31, 32]. A common theme in much of this research is the view of
temporal reasoning as logical entailment. Issues of concern include the logical
relationships of different representations (e.g., point-based versus interval-
based), the completeness of particular methods in inferring all possible
temporal relationships from given data, the consistency of those inferences,
and the computational complexity of temporal inference. The ability to
represent and reason with uncertainty is not addressed in these research
projects. However, recent work by Higgins [13], and by Dean and Kanazawa [7]
has focused on temporal probabilistic reasoning. Higgins' system reasons
about the dynamics of probabilistic systems. An acyclic network structure is
used to specify the qualitative dependencies among variables, and probability
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density functions are used to quantify those dependencies. Higgins' system is
limited to a network in which there are directed arcs from evidence to
hypotheses, but no directed arcs from hypotheses to evidence.

Temporal reasoning is particularly important in medical diagnosis and
management. Thus, there have been numerous articles addressing research
on medical systems for reasoning over time. Good reviews are [8, 29].
Previous work of particular note include [9, 11, 14, 17, 18, 24, 27, 28]. This
medical research is often more applied than theoretical. Work described in [3,
8, 22, 33] addresses some temporal uncertainty issues. In particular, Weiss
describes a system, called CASNET, that reasons about probabilistic causal
precedence in performing diagnosis [33]. The system has no notion of the
specific time of events and therefore is severely limited in the type of
temporal reasoning it can perform. Blum has developed a system called RX
that infers causal relationships from a database [3]. RX represents causal
relationships using a simple, restricted form of probabilistic dependency. RX
does not, however, use its knowledge for probabilistic data interpretation.
Long has developed a system that uses qualitative probabilities to simulate a
physiological model over time [22]. The research on IDEFIX by de Zegher-
Geets deals explicitly with temporal probabilistic medical diagnosis by using
temporal probability functions among variables [8]. The inference techniques
in IDEFIX are not normative, however, and instead rely on numerous
heuristics. In summary, there are several medical systems that perform
temporal reasoning under uncertainty, but their representational and
inference capabilities are quite limited.

2. The Complexity of Probabilistic Temporal Reasoning

Reformulating the probabilistic diagnostic problem from an atemporal one to
that of assigning likelihood to alternative hypotheses over time adds
significant complexity. The complexity is affected by (1) how finely time is
divided into discrete perspectives, and (2) how far back in time a reasoner
will consider evidence as potentially relevant to the current belief. The most
general approach to the temporal-reasoning problem would theoretically
require an infinite number of joint probabilities among a set of variables, one
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for each point in (continuous) time. Thus, in the most general case,
probabilistic temporal reasoning is clearly intractable both in computation
time and in knowledge-base storage.

Consider the task of determining the probability of a hypothesis H being true
at time t, given all the evidence E that has been observed before time t. We
denote this probability as P(Hj(t) | E(0, t)), where time 0 is the earliest
possible absolute time at which evidence is available. In general, E must
represent every possible value pattern of the data variables in the system. If
time is continuous, then there is potentially an infinite number of possible
patterns of E that must be stored in the knowledge base.

Assume, however, that there is some minimum granularity of time called Tg;
that is, no time measurement shorter than Tg is of interest; for example, Tg
“ might be one second. Furthermore, suppose that each evidence variable has V
possible values. The value of E(0, t) is some time pattern of the values of the
system evidential variables from time 0 to time t, discretized into time
periods of length Tg. Thus, there are VIE! UTg probabilities to store in the
knowledge base for each hypothesis, where I|El is the total number of
evidential variables. This general case leads to an astronomical number of
states to acquire and store. For example, suppose there are 20 evidential
~variables, Ty is one second, and V is 3 (e.g., the values might be true, false, or
unknown). A system that reasons about a patient's condition in the intensive
care unit (ICU) over a 2-hour (7200 second) period would theoretically
require 320x7200/1 _ 3144,000 = 168,705 temporal patterns of the form
P(Hi(t) t E(0, t)) for each hypothesis H;j(t) about the patient's condition.
Obviously, it is not possible to acquire or store this many probabilities.

3. Methods for Obtaining Tractable Inference

To make probabilistic temporal reasoning tractable, we must impose practical
restrictions on the general case introduced in Section 2. In this section, we
discuss three types of restrictions.



3.1 Representing Temporal Conditional Independence

The assumption of conditional independence can simplify temporal
probabilistic reasoning. For instance, if all evidential variables are
conditionally independent given each hypothesis, then only EIV/Tg
probabilities are necessary for each hypothesis, rather than the VIEl UTg
probabilities needed as before. All variables do not need to be conditionally
independent in order to achieve a reduction. The more independence that
exists, the greater the reduction.

3.2 Decreasing the Evidential Time Horizon

In the general case described in Section 2, each set of evidence E was
presumed to influence each hypothesis H; beginning at some distant time O
through the current time t. Often, this assumption is not realistic. Usually,
evidence will have a more bounded, specific span of influence. Let Tp be the
maximum amount of time before t that any evidence can significantly
influence Hj (i.e., Tpis a time horizon). In this case, there are Th/Tg possible
time periods during which evidence must be considered. Thus, with no
assumptions of conditional independence, there are at most VIE! To/Tg possible
" states of evidence bearing on each hypothesis Hj. The temporal horizon
imposes a time window of dependency between past evidence and current
hypotheses. By shortening the time horizon, we shorten the length of the time
period for which past evidence is assumed to influence current hypotheses.
The evidential time horizon, Ty, may depend on both the type of evidence
and the particular hypotheses under consideration. Note that more generally,
each piece of evidence may have its own specific time horizon with respect to
specific hypotheses. We shall return to the issues of evidential time horizons
in our discussion of a particular representation and inference strategy in
Section 5.

3.3 Increasing the Time Granularity

Maintaining a small time granularity Ty for each evidential variable often is
unnecessary. For example, in many areas of medicine, it is sufficient to
maintain a time granularity on many evidential variables that is on the order
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of hours or days, rather than of seconds. Increasing the time granularity can
dramatically reduce the number of states considered. Dynamic changes in the
time granularity, Tg, may be useful. For instance, increasing the granularity as
some function of the age of the evidence might be useful, because the
importance of being precise often decreases with the age of the evidence [9].
For example, over a give 10-minute period, the value of a given piece of
evidence may be important second by second, but its value 3 hours
previously may be important only on a minute-to-minute basis.

4. A General Model for the Interpretation of Temporal Probabilistic
Data

Our problem-solving objective is to compute the current probability of each
hypothesis Hj, given all past relevant evidence. In the previous section we
discussed the complexity of this task, and examined several methods for
rendering the task more tractable. We now introduce a model that facilitates
the application of these methods. The essence of the model is the way in
which evidence and hypotheses are conditioned on each other. The model
attempts to capture a natural form of conditioning that allows the intuitive
expression of subjective probabilities and the efficient application of known
forms of conditional independence. ' '

In this model, we make the following assumptions:

Assumption 1. Time is viewed as discrete and is represented by an integer
that increases by 1 with each incremental increase in time.

We therefore develop models that will use summation. It is possible to
generalize to continuous time and to use integration, but we do not address

this issue in this paper.

Assumption 2. Evidence from before some finite tg is not relevant, and
hypotheses are not considered before tg.

Note that tg equals the current time minus Th.
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Assumption 3. One and only one hypothesis can be true at a given time.

We can generalize Assumption 3 by allowing hypotheses to be defined as
conjunctions of other hypotheses. In the remainder of this paper, we consider
a hypothesis to be either some single patient disease or the absence of all
diseases. Techniques for diagnosing atemporal multiple diseases in the
medical domain can be adapted for temporal multiple-disease diagnosis;
however, temporal, multiple-disease diagnosis is generally much more
computationally expensive than is atemporal diagnosis.

The current time is represented as tpow. All the evidence from tg to thow is
represented as E(tg, thow). Therefore, the objective is to compute for each
disease djthe probability P(di(tnow) ! E(tg, tnow))-

Unfortunately, it is often difficult to acquire subjective probabilities directly
of the form P(dj(tnow) | E(tg, thow)). Furthermore, this form of probabilistic
representation does not take advantage of possible conditional
independencies of the evidence given diseases and in not doing so it may lead
to an intractable representation, as discussed in Section 2. We have therefore
chosen to decompose this complex probability into the following four
probabilities:

a. P(di{tx) | E(tg, tx -1)). The open-bracket notation in dj{tx) means that
disease dj began at ty. That is, di did not exist immediately before tx, and
does exist at ty. Thus, P(di{tx) | E(tg, tx - 1)) represents the probability of d;
beginning at time tx, given the evidence up to (but not including) time tx.
For simplicity, we will consider that Tg = 1. By varying tx, we obtain a
probability distribution on the expected start times of each disease dj
given the eveidence. Note that the start times for a given d; are mutually
exclusive.

b. P(di{tx, thow) | di{tx), E(tg, tx -1)). This term represents the
probability of disease d; extending from time tx until the current time
thow, given that dj began at time tx and given all the past evidence. Note
that this probability does not state that dj ended at the current time tpow,
but only that it exists at thpow. By varying tx, we obtain a probability
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distribution on the expected durations of a hypothesis through tnow. Here
we have used the notation dj{tx, tnhow) to represent the expression dj{tx) A
di(tx, tnow)-

c. P(E(tx, tnow) | di{tx, thow)s E(to, tx -1)). This term represents the
probability that the evidence that is observed from time tx to tnow would
be in fact be observed, given that disease d; began at time ty and
continued until at least the current time, and given all the evidence that is
observed before tx. This probability expresses the chance of observing
recent evidence in the context of an ongoing disease and more distant
evidence.

d. P(E(tg, tx -1)). This term represents the probability of observing all the
evidence that is observed before tx. Later in this section we show how to
compute this probability using probabilities a through c.

Probabilities a through ¢ may appear to be more complex than
P(di(tnow) | E(tg, tnhow)), which they are meant to replace as the focus of
knowledge acquisition. In Section 5, however, we introduce assumptions that
will render the three probabilities more intuitive to assess and more tractable
to use in computing the time-varying probabilities of diseases.

The first step in computing P(di(tnow) | E(tg, thow)) involves using the above
four probability terms to compute P(di{tx, thow), E(to, tnow)) for all d; and all

tx, such that tgp < tx <tyow. The following equation is used to perform this
computation:

P(d{tx, tngw)s Bty tnow) = (1)
P(E(te, tnow) | diltxs tnows Eto, tx-1)) X
P(diltes tnow | di{ty), Bty tx-1)) x
P(dilt) | Bty ty 1)) x

P(E(tp, tx-1))



Note that when tx = tg, Equation 1 becomes:
P(E(tg, tpow ! d;i{tos tnow)) X P(d;i{tg, tnow | dilte)) x P(d;{te))

The joint probability of both observing all the evidence seen through time
thow and having hypothesis di occur at thnow can be calculated from Equation
1 as follows:

P(di( tnow)’ E(tO’ tnow)) = z P(di{tx’ tnow)’ E(to, tnow)) (2)

to<tx<tpow

Equation 2 can be used to compute the marginal probability of evidence from
tO to tnow:

P(E(t0, tnow)) = 2P (ditnow)s E(to, trow)) (3)
dj
Note that Equation 3 uses Assumption 3 — namely, that the diseases are

exhaustive (i.e., every possible disease of importance is represented) and
mutually exclusive (i.e., diseases do not occur simultaneously).

Note also that Equations 2 and 3 can be applied to compute P(E(tp, t;)) for t;
from tg to thow - 1 before it is necessary to compute P(di(tnow), E(t0, tnow)),
using Equation 2 again.

Using Equations 2 and 3, the probability of any given disease dj is computed
as follows: |

P(d;(thow | E(tg, tpow) = P(d;(tpow)s E(to, thow)) “

P(E(tov tnow))




5. A Prototype System

We have implemented a small prototype system to investigate the feasibility
of the reasoning methods discussed in Section 4.

5.1 Additional assumptions

In addition to the three assumptions in Section 4, we make the following
assumptions in implementing the prototype:

Assumption 4, Variables are binary valued.

This assumption is by no means necessary, but it simplifies the program and
focuses our attention in this paper on the most fundamental issues.

Assumption 5. The value of each evidential variable is known for each point
in time from time tg to thow-

General probabilistic inference using a belief network with uninstantiated
variables (i.e., variables with unknown values at some points in time) is NP-
hard [5]. We have chosen currently to concentrate our efforts on issues other
“than the techniques needed for efficient temporal probabilistic inference
given uninstantiated variables.

Assumption 6. Discrete time is measured at a fixed granularity Tg.

Assumption 7. P(di{tx) | E(tg, tx -1)) = P(dj{tx)).

According to Assumption 7, the probability of a disease starting at time tx is
dependent only on tx, and not on any past evidence. Typically, to might be the
time of birth of the patient, and thus tyx is the patient's age. We are assuming
that evidence is not predictive of when a disease will begin, but rather is only
a consequence of the disease once the disease has begun. This assumption is a
particularly restrictive one that we made to simplify the development of the
initial prototype system.



Assumption 8. P(di{tx, tnow) | di{tx), E(tg, tx -1)) = P(di{tx, thow) | di{tx)).

Assumption 8 states that the duration of a disease is not dependent on past
evidence. Each disease, however, can have a different distribution of its
duration (e.g., pneumonia generally persists longer in the elderly than in
young adults).

Assumption 9. P(E(tx, thow) | di{tx, thow), E(t0, tx -1)) = P(E(tx, thow) ! di{tx, thow))-

According to Assumption 9, the probability of observing particular evidence
during a period of time is dependent on only the disease that is occurring
during that period of time and not on earlier evidence before that time
period. Thus, evidence is conditioned only on a. possible ongoing disease. Like
Assumption 7, this assumption is particularly restrictive.

Assumption _10. The sum in Equation 2 needs to be taken over only thow -
horizon(d;) € tx < thow, Where horizon is. a function that returns the maximum
amount of time that disease d; can possibly exist.

Assumption 10 improves the efficiency of the calculation of Equation 2 by
using knowledge about the maximum possible duration of each disease. We
define th to be thow - horizon(dj). Although currently horizon is not context-
sensitive, this restriction is by no means necessary.

5.2 The Prototype Model
Applying Assumptions 7 through 10 to the terms in Equation 1 and

substituting this into Equation 2, we derive the following equation, which
forms the basis of our prototype system:
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P(dl( tnow), E(tO’ tnow)) = (5)

T P(E(te tnow ! diltes thow) X P(di{ty, tnow | di{t)) x P(di{t)) x P(E(to, t,-1))

th <txS<tnow

Equation 4 is then applied as before to calculate P(di(tnow) | E(to, thow)) for
each d;.

The assumptions embodied in Equation 5 impose restrictions on the
application of the general technique; their validity for any given domain must
be evaluated. Note that there is a sliding scale from the general model
represented by Equation 2 to the much more restricted implementation
represented by Equation 5. In any given application, we need to assess the
particular set of assumptions that seem most appropriate for that domain.
The tradeoff is between the complexity of a relatively high-fidelity system
with few assumptions and the simplicity of a relatively lower-fidelity system
with many assumptions. Finding the appropriate tradeoff is key. The | general
formulation in Section 4 provides a basis for considering these tradeoffs
explicitly. '

5.3 Expression' of Conditional Independencies

The term P(E(tx, thow) | di{tx, thow)) in Equation 5 provides the opportunity to
. introduce additional independences in the form of conditional independence
of evidence given a disease. In particular, this term can be calculated using a
belief network [25] that contains variables with a temporal dimension. To see
this result, we first transform the term as follows:

P(E(t,, tnow) l di{txv tnow)) = (6)

H P(ej( ty tnow) le 1( Ly tnow)’ om0y ej-l( tx tnow)’ di( tx tnow))

1<j<n
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where e€j(tx, thow) represents the values from tx to tnow of event ej, which is
one of n events in E.

Often, it is not necessary to condition the probability of each ej(tx, thow) in
Equation 6 on all of the events ej(tx, thow), --- » €j-1(tx, thow), because
ej(tx, thow) may be conditionally independent of many of these events given
di{tx, thow). For the case in which each evidence variable is completely
conditionally independent of the others (given di{tx, thow)), Equation 6
becomes

P(E(tx’ tnow) l di[tx’ tnow)) = H P(eJ(tX’ tnow) l di(tx’ tnow)) (7)
1<j<n

Although the global assumption of conditional independence in Equation 7 is
extreme, for simplicity we assume it in the prototype. More typically, events
will be partially dependent on some other events given a disease, but not on
all other events. By selectively including only the conditioning events of
relevance to the probability of each ej(tx, thow) we form a belief-network
architecture. Note that a more general formulation than the one we address
in the prototype would allow e€j(tx, thow) to be conditioned on events
preceding tx. ' ' '

To recap, the probabilities that we now .must obtain to construct a complete
probabilistic temporal model of disease are the probabilities on the right hand
sides of Assumptions 7 and 8 and Equation 7, as summarized here:

P(dj{tx)): the prior probability distribution of the initiation of a disease.

P(di{tx, thow) | di{tx)): the probability distribution over the duration of a
disease.

P(e;j(ty, thow) | di(tx, thow)): the probability of observing a particular pattern
of evidence during a particular episode of a disease.

12



5.4 Implementation of the Prototype System

The temporal probabilistic-reasoning algorithm discussed in Section 5 has
been implemented as an INTERLISP program on a Xerox Lisp workstation. We
shall describe the knowledge base, and then shall present several sample
runs.

We created a small initial knowledge base of abstract diseases and evidence.
Although this knowledge base is rudimentary, it does demonstrate useful
concepts. In particular, we have investigated the issues of event precedence
and event lag (i.e., the degree to which events are expected to occur together
temporally).

Consider two evidential events, e; and ez, that may occur in the context of
three different diseases, diseasej, diseasez, and diseases. In diseasej, e
typically precedes ez, and these two events generally do not occur close
together in time. In diseasez, event e; again typically precedes event ez, but
in contrast to diseasez, €2 generally occurs soon after ej. In diseases, e>
typically occurs soon before ej.

The knowledge base uses a probability function that is based on a simple
_truncated Gaussian distribution. More sophisticated (and  typically more
realistic) distributions, could be used to implement time-precedence and
time-lag relationships probabilistically. In the context of a given disease, our
current distribution function contains a mean and standard deviation of the
lag between two variables. For example, the mean lag between e; and e3 in
the context of diseasej is 5 time units, whereas in the context of diseasej it is
only 1 time unit.

The probability distribution on the duration of each of the three diseases is a
simple uniform distribution. Currently, all three diseases are given the same

uniform distribution function.

The temporally varying prior probability of each of the diseases is different.
In particular, diseasej typically occurs early, disease3 generally occurs late,
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and diseasey is generally intermediate between disease; and disease3. A lag
function is used to compute these time-varying prior probabilities.

5.5 Sample Runs of the Prototype System

Figure 1 demonstrates the probability of the diseases over time in the
absence of any positive evidence. As expected, based on prior probabilities
alone, disease; generally occurs before diseasep, which typically occurs before
diseases.

Figure 2 contains some positive evidence. This evidence was entered in the
lower window using a mouse; only evidence (events) e; and ez are relevant to
the examples we discuss here. In general, the user can add, modify, and
delete evidence, then instruct the system to generate an interpretive plot of
the probabilities of the diseases over time given the evidence. In this
particular example, the pattern favors disease; over diseasep, because €1 and
e2 occur far apart in time and diseasej already has a high prior probability in
this time region. Figure 3 contains evidence over an interval in which diseasep
becomes more likely (relative to the situations in Figures 1 and 2) due to the
short time lag between ej and ej.

Figure 4 shows a pattern of evidence that again favors diseasep. Figure 5
demonstrates the opposite precedence pattern, in which e; occurs before ej,
which favors diseasez relative to diseasej.

These simple experiments with our prototype are encouraging, albeit only
preliminary. It will be important to test the code more exhaustively and to
construct a more complex knowledge base. We can use this more extensive
system to evaluate further the key issues of the expressiveness of the
representation and the computational efficiency of the probabilistic inference
algorithm.
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KEY: 1 = disease;

DISEASE 2 = diseasey
PROBABILITY 3 = discase;
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Figure 1. The probability distribution of the diseases over time in the absence

of any evidence.
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KEY: 1 = disease;
DISEASE : 2 = disecase,
PROBABILITY 3 = diseases
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Figure 2. A pattern of evidence characteristic of disease;, due to the high
prior probability of disease; in this time region, and to the long time lag from

e1 to ez
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L KEY: 1 = disease;
DISEASE 2 = diseasey
PROBABILITY 3 = discase;
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Figure 3. A pattern of evidence characteristic of diseasez, in which e is
quickly followed by the occurrence of ej.
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PROBABILITY 3 = disease;
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Figure 4. A pattern of evidence favoring diseasep, because e; occurs before e2,
and the two events occur close together.
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Figure 5. A pattern of evidence favoring disease3, because ez occurs before e,

i
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