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Abstract

Several areas of research on problem-solving tradeoffs in reasoning
systems are presented. lssues surrounding the valuation of computation in
the context of computational resource constraints are introduced. Areas
of research on problem-solving tradeoffs receiving ongoing attention
include: (1) strategic control, (2) structural control, and (3) the explanation
of computation. In each area, we review the application of utility theory to
the task of controlling problem-solving tradeoffs.

1. Introduction

In this paper, we describe research on computational tradeoffs arising in the design
and implementation of automated problem solvers. We survey several areas of
ongoing research on the application of utility theory and techniques of decision
analysis to the design and control of computational problem solving. After a
discussion of issues surrounding the assignment of utility to attributes of
computation, we describe research on problem-soiving tradeoffs in three areas of

investigation.

First, we explore the application of utility theory and decision analysis to the problem
of strategic control. We use the term strategic control to refer to metareasoning
techniques that address the selection of a strategy from a well-defined set of
discrete reasoning methods. Because numerous strategic control lIssues are
highlighted under conditions of scarce computational resources, we dwell on real-
time problem solving. We examine important considerations in the selection of a
computational strategy or sequence of strategies to solve particular problem
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challenges. We also specify properties desired of strategies for reasoning In
situations where there is wide variation and uncertainty In the amount of computation
time available. Finally, the abstract control Issues are illustrated with examples of
research on value tradeoffs in the realm of strategic reasoning.

Next, we move into a related area of problem-soiving tradeoff research focused at a
more fundamental level of problem solving: We study the application of utility theory
to the detailed configuration of classes of problem-solving strategies. In contrast to
choosing from a set of alternative familles of reasoning strategles, this -area of
investigation addresses techniques for reasoning about tradeoffs at the
microstructure of problem-solving methods. We refer to metareasoning about the
fine details of algorithms as structural control.

Finally, we review a class of computational tradeoffs that arise because of human
cognitive constraints. Specifically, we examine the tradeoffs that arise at the human-
machine interface. Because the value derived from computational problem solving
frequently depends on the understandability of computational behavior, automated
reasoners must consider the constraints on human comprehension of complex
computational inference and results.

2. The Value of Computation

The quantification and formal manipulation of notions of value and preference have
been investigated in the field of decision analysis [Howard 84, Howard 70, Raiffa
68]. An axiomatic framework termed utility theory [von Neumann 53] lies at the
heart of decision theory. Measures of value consistent with the axioms of utility
theqry} are called.utilities. Von Neumann and Morgenstern, the authors of utility
theory, proveq that individuals making decisions consistent with a small set of axioms
behave as if they associate a measure of utility with alternative outcomes and act to
maximize their expected utility [von Neumann 53]. Over the years, decision
analysts have developed useful tools for assessing and applying knowledge about
the utility structure of complex problems. We have been attempting to turn the
power and elegance of these techniques on the process of reasoning and problem

solving itself., . -

2.1. Assigning utility to multiple attributes of problem solving

The value assigned to computational behavior can be directly assessed, or may be
described by a qualitative or more detailed function that represents the reiationships
among costs and benefit associated with alternative outcomes. Such value functions
assign a single-value measure to computation based on the status of an n-tuple of
attributes. For example, the value associated with the use of a medical expert
system in a particular context might he a function of a number of attributes, includ‘ing



speed of computation, accuracy of recommendation, and clarity of explanation. We
have been working with expert physicians in the intensive-care and tissue-pathology
domains to ascertain value models relating measures of utility to multiple attributes of

computation.

We -are not the first to explore the formal use of utility theory in the control of
reasoning. Concurrent research has focused on the usefuiness of assigning utltities
to ‘alternative strategies in-the control of.logical. reasoning [Smith 86, Treitel 86].
The research -presented here differs from the other work In its focus on representing
multiple components of value and on the integration of context-specific_knowledge

concerning human preferences about computational tradeoffs.

To our knowledge, multiattribute utility models were first used in the control of
computational inference and explanation in the PATHFINDER expert system [Horvitz
86a, Horvitz 86b]. A component of PATHFINDER research has been focused on the
investigation -of techniques for the dynamic application of muitilinear utility models to
control computation and explanation. This aspect of PATHFINDER research evolved
into the current PROTOS Project, focused on the development of techniques for
reasoning with knowledge about the value of alternative strategies under real-world

resource constraints.?

2.2. Problem-solving tradeoffs

Computation_in a:world of bounded resources often is associated with cost/benefit
tradeoffs. Working. with expert physicians on the development of expert systems has
highlighted the importance of developing computational techniques that can explicitly
control tradeoffs. With a computational tradeoff, the benefit associated with an
increase in the quantity of one or more desired attributes of computational value is
intrinsically - linked to costs incurred through changes imposed on other attributes.
More specifically, we define a tradeoff as a relationship among two attributes, such
as the immediacy and accuracy of a computational result, each having a positive
influence on the perceived total value of computer performance, such that they are
each constrained to be a monotonically decreasing function of the other over some
relevant range. In the case of our sample tradeoff,

ACCURACY = F(IMMEDIACY), t, < IMMEDIACY < t, (1)

where F is some monotonically decreasing function over the range bounded by
computational time delays t, and t,. This definition can be generalized to the case
where the value aésigned to tuples of a subset of relevant attributes is a
monotonically decreasing function of tuples composed of other atfributes. The

2PF(OTOS is an imperfect acronym for Project on computational Resources and TradeOffs.



tradeoff between the immediacy and the accuracy or precision of a solution is
particularly explicit in methods that incrementally refine a computational result with

time.

Other value tradeoffs encountered in reasoning systems that we have examined
include:

« degree of certainty versus level of abstraction
. 'solving a subproblem versus solving other subproblems
» metareasoning versus object-level reasoning

« inference transparency versus inference optimality

Most reasoning systems have been designed with implicit assumptions about the
handling of problem-solving tradeoffs. The Intent of this research is to develop
methods that ‘enable computer scientists to reason explicitly about tradeoffs in the
engineering "of systems. We are also working to develop tools that will allow
reasoning systems to autonomously apply knowledge about the domain and about
alternative reasoning methods to tailor inference to a range of problem challenges
and contexts. Our research has highlighted the knowledge-intensive nature of
reasoning about value tradeoffs in different contexts.

Our research centers on the application of multipie-attribute utility to for the control
and,'analysis of computational tradeoffs. These techniques, in the contexts of
en'gineering‘_and real-time operation of reasoners, provide a means for controlling
tra_déoffs thfbugh_ the application of knowledge about problem-solving resources and

the preferences of system users.

2.3. Components of computational value

We have found it useful to decompose the value associated with computationat
inference into several components. We assert that the application of an inference
strategy is associated with some net benefit or cost to an agent such as a system
user, a robot, or a computational subsystem, relying on computation for decision
making. We use the term comprehensive value (V) to refer to the net expected
utility associated with the application of a computational strategy. We will see that
this value is.a function of the strategy, of the problem, and of the problem-solving
context. We have found it useful, in studying problem-solving tradeoffs under
pressing resource limitations, to view the comprehensive value as having two
components: the object-level value and inference-related value.

The object-level value (V) is the expected utility associated with computation-based



increases in information about the objects of problem solving. For example, the
object-level value associated with the use of an expert system for assistance with a
complex medical diagnosis problem refers to the costs and benefits associated
solely with the change In information about the entities in the medical problem such
as alternative treatments, likelihoods of possible outcomes, and costs of

recommended tests.

The inference-related value (V;) is the.expected disutility intrinsically associated with
computation, such as the cost a physician might attribute to the delay of a decision
because of the time required by an expert system to generate a recomm:andation. or
the cost associated with his inability to understand the rationale behind a decision

recommendation.

The explicit decomposition of problem-solving utility into object- and inference-
related value is useful in that it focuses attention on the costs as well as benefits
associated with problem-solving activity. In general, we may have to consider
important the dependencies between the object- and inference-related value. We
assume the'e.xistence of a function F that relates Vc to V,, V, and additional
background information about the problem-specific dependencies that may exist
between the two components of value. That is,

Vo = F(Vyo V;, )

where ¢ captures problem-specific background information about possible
dependencies between object- and inference-related value.

2.4. Optimal, broximal, and heuristic reasoning

We refer to a reasoning strategy that has the highest expected value, in the context
of the beliefs of an engineer or automated reasoner as a rational computational
strategy. In ‘reasoning about problem-solving tradeoffs, it is useful to enumerate a
theoretically optimal frame of reference for problem solving. This task can be
viewed as identifying a theory of inference or computational result that would be
desired in a worid of unlimited computational resources. Defining such a basis
provides a framework for reasoning about inference with the greatest expected
value. . We refer.to non-optimal strategies as either proximal or heuristic. Proximal
strategies yield a computational result in conjunction with a well-defined measure of
divergence from an optimal result. In contrast, a computer scientist (or autonomous
agent) may often be uncertain about the behavior of a computational strategy. We
refer to strategies with uncertain performance strategies as heuristic. Thus, we use
the term heuristic to reflect a state of incomplete knowledge about computational
behavior. It is clear that even when the performance of a strategy is well
understood, there may be uncertainty about the utility associated with a strategy.
Thus, proximal strategies often have a heuristic value structure.



The definition of heuristic, as dependent on the state of knowledge about the
behavior of a computational strategy, implies that new knowledge can lead to the
reclassification ot a heuristic strategy as a proximal strategy. For example, a heuristic
strategy may become a proximal one for solving well analyzed classes of problems.
There have been examples of the successful analytic characterization of heuristics
[Pearl 84]. For example, work on developing e-approximate algorithms has
demonstrated worst-case error bounds for particular heuristic methods [Papadimitriou

82].

A strength of applying the theory of utility to computation is its ability to explicitly
handle the consistent assignment of value for uncertain as well as certain outcomes.
Thus, utility values can be assigned to uncertain heuristic strategies as well as to
formal Iinference techniques. The assignment of utility to inference strategies,
whether through analysis or direct subjective assignment, establishes a conceptual
continuum between formal and the more poorly characterized heuristic approaches to

reasoning.

3. Strategic Control

One of our chief research focuses has been the study of problem solving under
varying limitations in the amount of resource available for reasoning. We are
particularly interested in determining useful "optimal,” proximal, and heuristic
strategies in the context of uncertain and varying constraints on the amount of
resources available for representation, inference, and metareasoning about inference.
| have been studying techniques for endowing systems with knowledge about the
costs, benefits, and uncertainties associated with various computational approaches
in alternative contexts. This requires consideration of the expected value of
co‘mpu'tatidn and the cost of resources required for reasoning. In the past, numerous
value issues central in the design and implementation of problem solvers have
remained ill-defined and implicit. Our research centers on identifying and making
issues surrounding informational needs and computation availability explicit in the
design, representation and inference in automated reasoners.

3.1. Problems, methods, and reasoning resources

The amount of time available for computation in systems that must perform in
complex real-time environments varies greatly depending on the urgency of the
situation. Likewise, the computation required for problem solving may vary
depending on the task at hand. We are interested in inference strategies that can
respond flexibly to wide variations in the availability of resources, and metalevel
reasoning techniques that can balance the costs of approximate or incomplete
analyses with the benefits of more tractable computationai methods.



The importance of tailoring representations and accompanying inference methods to
problem demands and resource availability is lllustrated by the use of different
methods in the physical sciences for reasoning about the same fundamental physical
phenomena. The application of quantum mechanics is the most precise method for
reasoning about chemistry; however, real-world chemistry problems often do not
require the precise results that are theoretically computable from quantum theory.
More parsimonious, classical representations of chemical interaction frequently
produce useful answers at a-fraction of the quantum reasoning cost.

Within automated problem solving, It can be similarly important to fit '.a probiem-
solving method to the needs and resources avallable. Let us now explore
approaches to handling computational resource limitations through endowing
reasoning systems with formal tools for making decisions about the value of
computational problem-solving in alternative contexts.

Resource-constraint issues can be especially salient in the context of real-time
requirements. In the real world, delaying an action is often costly. Thus,
computation about belief and action often incurs inference-related costs. The time
required by a reasoning system for inference varies depending on the complexity of
the problem at hand. Likewise, the costs associated with delayed action vary
depending on the stakes and urgency of the decision context. The real-time
problem is additionally complicated by the existence of uncertainty in the functional
form of the cost functions associated with delayed action. We are studying
reasoning strategies that can respond flexibly to wide variations in the availability of
resources. The intent of our research is to develop coherent approaches to
generating and selecting the most promising strategy for particular problem-solving
challenges.

3.2. Toward a continuum of value: Partial results

Let us now focus on the properties of proximal and heuristic problem-solving
methods that would be useful under varying resource constraints. Classical
approaches to computational problem solving have focused on the determination of
final answers. Complexity theorists have focused almost exclusively on proving
results about the time and space resources that must be expended to run algorithms
to termination [Garey 78, Aho 83, Papadimitriou 82]. In the real world, strict
limitations and variations on the time available for problem solving suggest that the
focus on time complexity for al’gorlthic termination is limited; analyses centering on
how good a solution can be found in the time available for computation are of

importance.

The major rationale for the focus on the time complexity of algorithmic termination
seems to reside in the simplifying notion in algorithms research that a computer-
generaed resuit can_be assigned only one of two measures of utility: either a



solution Is found and is of value, or a solution is not found and Is therefore
valueless. However, It is often possible to enumerate representations and Inference
techniques that can provide partial solutions of varying degrees of value. Algorithms
that generate partial results incrementally refined with additional computation can be
extremely useful because of the great variation and uncertainty in the functions
describing inference-related costs.

3.3. Example: Sorting and searching under resource constraints

We have been working to adapt classic searching and sorting algorithms to a partial-
result paradigm through identifying intermediate states and applying value functions
that capture preferences about partial results. Our research in this area is focused
on investigating fundamental issues and useful control architectures for real-time
reasoning. In addition to enumerating tradeoffs, we are studying the relevance of
classes of immediacy versus goodness-of-answer tradeoffs being uncovered In
recent computational theory research. In addition to our theoretical work, we have
been exploring the empirical behavior of alternative sorting and searching strategies
under plausible valuation models within the PROTCS system testbed. One insight
gained from this work is that an interleaving of strategies--where one sorting or
searching routine is handed the partial result of previously applied procedures--may
have a higher expected value than any one strategy.

3.4. Example: Diagnosis under varying resource constraints

The example of sorting or searching under resource constraints yields useful insights
about bounded-resource problem solving within more sophisticated applications.
Much of our research effort has dwelled on diaghostic reasoning under varying
resource bounds. Diagnosis refers to the problem of finding the most likely
explanation for a set of findings. More comprehensively, diagnbstic problem solving
describes the process of making a sequence of decisions about the best tests to
perform and revising the belief in hypotheses as test results become available. As
reasoning under uncertainty is unavoidable for most realworld diagnosis problems, we
seek a base theory for diagnosis under uncertainty. Investigators have been
exploring a number of formal and informal approaches to reasoning and decision
making under uncertainty [Zadeh 83, Shortliffe 75, Shafer 76, Cheeseman 85, Horvitz

86¢].

A frame of reference for optimal diagnostic reasoning is the classical normative basis
for inference. The basis, enumerated in middle-twentieth century [von Neumann
53, Howard 84, Pratt 65, Raiffa 68], is commonly referred to as decision theory and
is based on two sets of axioms. The first set of axioms defines the theory of
probability. The second set defines the theory of utility introduced above. The use
of probability theory for assigning belief to alternative hypotheses and the use of



utility theory for making decisions about the best tests to undertake has been
viewed as a normative basis for dlagnosis. That lIs, the properties of probabllity
theory and utility theory have been accepted in several disclplines as deflning
rational inference [Horvitz 86¢, Heckerman86]. Our research on diagnosis, has thus
centered on applying a rational framework for metareasoning about the task of

controlling a rational framework for diagnosis.

3.4.1. Diagnosis in the real world

The theoretically optima!l basis for diagnostic reasoning has performed Wéll on small
problems but ‘there have been difficulties associated with its use in problems of
realistic complexity. More so than for any other reason, researchers in artificlal
intelllgence have looked beyond the normative basis for diagnosis because of its
assocnated computatlonal complexity and demand for the representation of large
amounts of knowledge [Gorry 73, Davis 82, Szolovits 82].

While the normative basis may provide a gold standard for diagnostic inference with
sufficient 'reso"urce's,' it is clear that engineering and computation costs have impact
on its optimality. For example,'the inference-related cost associated with the delay
required for 'computation, often renders the comprehensive value of decision-
theoretic inference worthless. Clearly, a physician seeking expert advice on a life
threatening’ brob'lem‘ may not find .a theoretically optimal recommendation to be
"optimal" for his needs when he must wait several hours for the result.

Most importantly,' straightforward implementations of the base strategy have becen
fragile to swings in the amount of computation time; they have been of little value if
t'h_e amount of 'availa‘b_le computational resource dips below the amount required for
sblving an énti_re problem. Classical implementations of the base strategy can only
reépond with.the' maximum object-level value, given sufficient resources. If the
allocated cdmputé}tion time falls short by even a few milliseconds, the value of
computation is zero for the decision at hand.

3.4.2. Bounded-resource inference for diagnosis

Classic normative diagnosis has centered on the precise calculation of probabilities.
That is, the traditional approach to queries of the form "P(X | Y) = 2" has been to
calculate point-probability values. The intractability of general probabilistic inference
can make the calculation of point probabilities impractical within the time available for
decision maklng _This intractability has been seen as supporting the view that
probablluty is an lmpractlcal theory for reasoning under uncertainty in the real world.
This. . perspectlve is based on the assumption that computationai strategies for
probabllustlc mference are of no value until a final point-probability assignment is
calculated. The view is countered by the enumeration of inference strategies that
can mcrementally refine probabilistic assignments. Such strategies can generate
partlal solutions with increasing degrees of value with computation.



Examples of strategies that generate partial results in diagnostic reasoning are
stochastic simulation [Pearl 86], probabilistic bounding [Cooper 84], completeness
modulation [Horvitz 87a], and abstraction modulation [Horvitz 87a]. These
approaches can frequently generate partlal solutions through trading oft a gain In
efficiency tor a decrease In the resulting precision or accuracy of Inference. More
details of research on these strategies and on applying decision theory to controlling
decision-theoretic inference under ranging resource constraints Is discussed in
[Horvitz 87a]. '

3.4.3. Application: Decision-support in the intensive-care unit

Respiratory
Status

Delay
Decision |

Computation \\¢—"—
Result

Intubate? Cardiac

Status

Figure 1: Diagnosis under resource constraints in the intensive-care unit.

We have been exploring diagnostic decision~support under resource bounds within
the intensive-care-unit application area. Figure 1 shows an influence diagram
representation of the problem facing a physician who must decide whether or not to
put a patient showing signs of respiratory distress on an artificial respirator
(intubation). Arcs and nodes in an influence diagram have a well-defined decision-
theoretic semantics [Heckerman 87]. For the sake of this brief overview, it is
important only to note that the arcs indicate dependency between propositions
represented by nodes. The figure relays that the value of an outcome depends, in
part, on a decision about whether or not action should be delayed to gain computed
diagnostic support about a patient's status. While waiting may give a physician useful
information about whether a patient should be intubated, the delay can be costly: If



the patient is in respiratory distress, a delay raises the probability of cardiac fallure.
Thus, the benefits of waiting for computed advice must be balanced with the costs
of delay. Depending on the specific value structure of the situation, different
bounded-resource diagnostic methods and delays will optimize the expected value of
the situation for the patient. This example is discussed in greater detail in [Horvitz

87a].

4. Structural Control

In addition to studying methods for choosing the best strategy from a number of
alternative strategies, we are using decision analysls for determining optimal
configurations of the structure of problem-solving methods. The goal of structural
control is to customize algorithmic problem-solving approaches to specific value
functions and resource availability.

4.1. Reasoning about the structure of algorithms

As an example, consider the issues surrounding the discretization of variables
manipulated by a reasoning system. To optimize the usefulness of a strategy under
resource constraints, it is often necessary to reason about the granularity with which
knowledge is represented and processed. The size of a computational problem can
vary depending on the coarseness with which Important variables are represented.
The coarser the variables are, the fewer discrete objects must be handled by a
system under resource pressures. It is often important to study the value tradeoffs
that arise from balancing the benefits of tractability associated with increases in the
granularity of inference (or representation) with the losses based in a decreased
precision or accuracy of a problem solution.

With an explicit value model, a system designer may vary the granularity of the
intervals considered over such metrics as distance or time in an algorithm to
optimize the value of a reasoning strategy. Different variables may be assigned
different optimal levels of 'granularity. In cases of computational complexity and
severe resource constraints, such problem-solving optimization can mean the
difference between valuable and worthless inference.

4.2, Example: Configuration' of divide-~and-conquer algorithms

More sophisticated manipulation of the structure of problem solving may be carried
out at the fine details of algorithms. As an example, we consider the general form of
divide-and-conquer algorithms. A divide-and-conquer algorithm can be divided into a
set of inference-related costs associated with



1. Decomposition of comprehensive problem statement into subproblems

2. Solution of subproblems

3. Recomposition of solved subproblems into the complete solution

Divide-and~-conquer algorithms can be converted from traditional invariant approaches
to methods with flexible problem-solving dimensions. -We . have been experimenting
with techniques for reasoning about the configuration of a class of .divide-and-
conquer algorithms to optimize the expected value of reasoning glven a problem and

resource context [Horvitz 86d].
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Figure 2: Reasoning about the structure of divide-and-conquer
algorithms through considering costs of decomposition,
subproblem solution, and recomposition.

Figure 2 depicts fundamental'components of divide-and-conquer problem solving.
With such algorithms, a problem is decomposed into a set of subproblems. After the
subproblems are solved, component solutions are recomposed Into a final answer.
The decomposition typically entails some computational cost (IT,) that is dependent
on the number of subproblems created. The cost of solving all of the subproblems
is the sum over the separate subproblem solution costs (I1). The cost of solving a
particular subproblem is some function of the size of subproblems. Subproblem size
is dependent on the decomposition. Finally, the cost of assembling the solution (/1)
is a function of the number of subproblems. These costs comprise the inference-
related cost associated with the application of a divide-and-conquer algorithm.



The inference-related cost can be minimized by varying independent parameters of a
divide-and-conquer approach. We have begun to analyze prototyplcal descriptions
of divide-and-conquer problems in which the number and average size of
subproblems can be varied. In many cases, functions can be enumerated that relate
the number of subproblems, the size of subproblems, and the expected costs
associated with problem decomposition, solution, and recomposition. In such cases,
we have used the expected inference-related costs to determine the optimal
decomposition .configuration given a specific problem. Similar techniques can be
applied to more complicated problem-solving methods. For example, a set of
problem solving parameters can be considered simultaneously.

5. Explanation

A third area of our research on computational tradeoffs focuses on problems with the
comprehension of inference strategies and results. The transparency of inference
has been considered a definitive component of expert systems, distinguishing them
from numerical programs and other kinds of reasoning systems in artificial
intelligence [Buchanan 82]. The comprehension of strategies and results of
automated reasoning has also been identified as an important factor in the
acceptance of expert systems [Teach 81]. Most explanation research has centered
on the refinement of knowledge used by expert systems [Swartout 81, Wallis
82, Patil 81]. In contrast, we have been studying the enumeration and control of
explanation tradeoffs under constraints in cognition and time.

Research in cognitive psychology on the limited ability of humans to comprehend
complex information in the short term [Bruner 56, Miller 56, Waugh 65] underscores
the need for managing the complexity of explanation in expert systems. Our
experiences and several psychological studies® have confirmed the existence of
significant tradeoffs between the benefits of completeness in transmitting all possible
relevant information and the costs incurred in the time, effort, and losses in
comprehension. We have investigated explanation tradeoffs in the context of
explaining formal diagnostic inference and complex biological simulations. The
tradeoffs and reasoning issues that arise with the imposition of cognitive constraints
on an unconstrained problem solver, are similar to those based in resource

constraints.

The explicit control of explanation tradeoffs in diagnosis has been performed within
the PATHFINDER Project [Horvitz 86a, Horvitz 86b]. PATHFINDER .explanation

3For example, classic studies have demonstrated that the decision-making performance of humans
begins to degrade as the quantity of relevant pieces of information presented increases beyond a

relatively small number of iten:s.



research has focused on the enumeration and control of a tradeoff between the
transparency of diagnostic inference and the optimality of inference. We discovered
that, although recommendations were "optimal” within the limited scope of the formal
theory used for recommending tests, users frequently found recommendations to be
unnatural and opaque. Applying human-oriented problem-~solving hierarchies to
simplify the system's reasoning produced recommendations that were more
transparent, but informationally suboptimal. Thus, cognitive constraints can be viewed
‘as imposing -inference-related costs in the context of complex and unnatural
artificial reasoning strategies. Further work has focused on the automated selection
of a strategy from a set of alternative simplification strategies with value functions
that represent knowledge about a user's preferences about trading-off optimality for
clarity. We refer readers interested in explanation under bounded cognitive

resources to [Horvitz 87b].

6. Toward a Science of Limited Rationality

Our-research on application of .decision-analytic techniques to metareasoning about
problem solving under realistic constraints is motivated by an attempt to integrate
and apply problem-solving methods developed over the last three decades within the
disciplines of: operations research, decision science, and artificial intelligence. The
explicit consideration of knowledge about value considerations and resource
availability is. essential in relating alternative reasoning methods to one another and
to the endeavor of constructing problem solvers that perform under real-world

constraints.

We -have been pursuing the development of a science of problem solving under
resource constraints. It is not clear yet whether there is enough regularity in
relations among components of problem-solving methods to warrant belief that such
a science is. possible. Whether reasoning under well-specified constraints evolves
into. a science or. remains a focus of engineering design, it is clear that the
identification and control of common, inescapable, problem-solving tradeoffs will play
an important role in the pursuit of automated intelligence.
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