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Abstract

We introduce utility-directed procedures for

mediating the 
ow of potentially distract-

ing alerts and communications to computer

users. We present models and inference pro-

cedures that balance the context-sensitive

costs of deferring alerts with the cost of in-

terruption. We describe the challenge of rea-

soning about such costs under uncertainty via

an analysis of user activity and the content of

noti�cations. After introducing principles of

attention-sensitive alerting, we focus on the

problem of guiding alerts about email mes-

sages. We dwell on the problem of inferring

the expected criticality of email and discuss

work on the Priorities system, centering

on prioritizing email by criticality and modu-

lating the communication of noti�cations to

users about the presence and nature of in-

coming email.

1 Introduction

Multitasking computer systems provide great value

to users by hosting numerous processes and applica-

tions simultaneously. However, the ongoing execution

of multiple applications often leads to environments

fraught with a variety of noti�cations, including mes-

sages from the operating system about the status and

health of computational processes, alerts from the pri-

mary application at focus, and from other applications

being executed in the background.

Beyond traditional sources of peripheral information,

recent work on human{computer interaction highlights

new forms of ongoing background services that can
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provide potentially useful context-sensitive informa-

tion and analysis (Breese, Heckerman, & Kadie, 1998;

Czerwinski, Dumais, & Robertson et al.; Leiberman,

1995; Horvitz, Breese, Heckerman et al., 1998; Horvitz,

1999). Indeed, novel sources of information, as well as

more familiar alerts about incoming email messages,

tips about application usage, and information about

the computer system and network may be valuable.

However, the rendering of auxiliary information under

uncertainty comes at the cost of potentially distracting

the user from a primary task at the focus of attention.

We are exploring utility-directed noti�cation policies

within the Attentional Systems project at Microsoft

Research. We shall describe procedures that can pro-

vide policies to support an automated attention man-
ager that one day might be relied upon by computer

users to mediate the transmission of noti�cations.

We take the perspective that human attention is the

most valuable and scarcest commodity in human{

computer interaction. Rapid increases over the last

two decades in computational power and network

bandwidth, coupled with the explosion in the avail-

ability of online content, stand in stark contrast to

the constancy of limitations in human information pro-

cessing.

Characterizations of the inability of people to handle

more than a handful of concepts in the short-term are

perhaps the most critical results of Twentieth-century

psychology (Miller, 1956; Waugh, 1965). Beyond gen-

eral characterizations of cognitive limitations, psychol-

ogists have explored the in
uence of various forms of

interruption on human memory and planning, start-

ing with the early work of Zeigarnik and Ovsiankina

(Zeigarnik, 1927; Ovsiankina, 1928). The rich body

of work in this realm includes studies centering on the

use of interruptions as a tool to probe the machinery of

memory and problem solving as well as to ascertain the

in
uence of distractions on the e�ciency with which

tasks are accomplished (Gillie & Broadbent, 1989; Van

Bergan, 1968; Posner & Konick, 1966).
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Figure 1: A Bayesian model for inferring the probabil-

ity distribution over a user's attentional focus.

We have been pursuing opportunities to harness in-

ference and decision-making procedures to guide the

rendering of noti�cations about messages of uncer-

tain value. Our approach centers on developing the

means for automatically assessing the expected util-

ity of messages and for continuing to make inferences

about a user's focus of attention by monitoring multi-

ple sources of information.

We shall focus �rst on the use of Bayesian models to

infer a probability distribution over a user's focus of

attention and harnessing such inferences to infer the

expected cost of transmitting alerts to users. Then,

we consider methods for inferring the informational

bene�ts of alerts and the costs of deferring noti�ca-

tion. After discussing principles of alerting based on a

consideration of probability distributions over a user's

attention and the time criticality of alerts, we shall

present selected details of work on developing noti�ca-

tion and forwarding policies for incoming email.

2 Inference about a User's Attention

Alerts provide potentially valuable information at a

cost of interruption. The cost of an interruption de-

pends on the nature of the interruption and on a user's

current task and focus of attention. In the general

case, a computer system is uncertain about the details

of a user's attention. Thus, we seek to build or learn

probabilistic models that can make inferences about a

user's attention under uncertainty.

We have pursued the construction of Bayesian models

that can infer a probability distribution over a user's

focus of attention. In building probabilistic models

for inferring the context-sensitive cost of distraction,

we consider a set of mutually exclusive and exhaustive

states of attentional focus and seek to identify the cost

of communicating an alert given a probability distribu-
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Figure 2: Extending the Bayesian network to consider

key dependencies over time.

tion over the states of a user's attention. Such states

of attention can be formulated as a set of prototypical

situations or more abstract representations of a set of

distinct classes of cognitive challenges being addressed

by a user. Alternatively, we can formulate models that

make inferences about a continuous measure of atten-

tional focus, or models that directly infer a probability

distribution over the cost of interruption for di�erent

types of noti�cations. In our initial approach to mod-

eling a user's attention, we have Bayesian networks

that can be used to infer the probability of alternate

activity contexts based on a set of observations about

a user's activity and location.

Figure 1 displays a Bayesian network for inferring

a user's focus of attention for a single time period.

States of the critical variable, Focus of Atten-

tion, refer to desktop and nondesktop contexts. Sam-

ple attentional contexts considered in the model in-

clude Situation awareness{catching up, Non-

specific background tasks, Focused content

generation or review, Light content genera-

tion or review, Browsing documents, Meeting

in office, Meeting out of office, Listening to

presentation, Private time, Family{personal

focus, Casual conversation, and Travel.

The Bayesian network speci�es that a user's current

attention and location are in
uenced by the user's

scheduled appointments, the time of day, and the prox-

imity of deadlines. The probability distribution over

a user's attention is also in
uenced by summaries of

the status of ambient acoustical signals monitored in a

user's o�ce; segments of the ambient acoustical signal

over time provide clues about the presence of activity

and conversation. The status and con�guration of soft-

ware applications and the ongoing stream of user ac-

tivity generated by a user interacting with a computer

also provide rich sources of evidence about a user's

attention. As portrayed in the network, the software

application currently at top-level focus in the operat-

ing system in
uences the nature of the user's focus and

task, and the status of a user's attention and the appli-

cation at focus together in
uence the computer-centric



activities. Such activity includes the stream of user ac-

tivity built from sequences of mouse and keyboard ac-

tions (see Horvitz, Breese, Heckerman et al., 1998 for a

discussion of events and event languages for monitor-

ing user behavior) and higher-level patterns of applica-

tion usage over broader time horizons. Such patterns

include Email-centric andWord-processor cen-

tric, referring to prototypical classes of activity in-

volving the way multiple applications are interleaved.

A more comprehensive Bayesian model for a user's at-

tentional focus considers key dependencies among vari-

ables at di�erent periods of time. A dynamic network

model including a set of Markov temporal dependen-

cies is portrayed in Figure 2. In real-time use, such

Bayesian models consider information provided by an

online calendar, and a stream of observations about

room acoustics and user activity as reported by an

event sensing system, and continues to provide inferen-

tial results about the probability distribution a user's

attention.

3 Expected Cost of Interruption

Let us assume that the expected utility of relaying

information contained in an alert to a user can be de-

composed into the expected costs and bene�ts of the

alerting action. For such decomposable utility mod-

els, we can assume that the utility is the di�erence

between the expected costs and bene�ts of the infor-

mation provided by the alert. We focus �rst on the

expected cost of immediate alerting.

Alerts and noti�cations can take the form of audio,

visual, or a combination of audio and visual channels.

Beyond the cognitive cost of the immediate distraction

associated with an alert, visual alerts can obstruct im-

portant content being accessed or referred to as part

of the task at hand. The cost associated with an au-

tonomous noti�cation can depend on the details of the

rendering of the alert. Thus, in the general case, dis-

tinct dimensions of cost associated with di�erent no-

ti�cation designs must be considered in models of in-

terruption.

As an example, it may be useful to decompose the cost

of an alert into the cognitive cost associated with an

interruption and the cost of obstruction of important

display real estate. The latter dimension of cost can

depend signi�cantly on the design of the visual alert

and the status of displayed information associated with

the main task at hand.

A design that overlays a graphical noti�cation over

content at the center of a user's attention and that

requires a user to take action to remove the displayed

alert is more costly than an alert that appears and dis-

appears autonomously in a timely and elegant manner.

For simpli�cation, we shall merge the cost of interrup-

tion and the cost of obstruction into a single cost. The

generality of the methods will not su�er from such a

coalescence.

Consider a set of alerting outcomes, Ai; Fj , represent-

ing the situation where a noti�cation Ai occurs when

a user is in a state of attentional focus, Fj . We as-

sess for each alerting outcome, a cost function of the

form Ca(Ai; Fj), referring to the cost of being alerted

via action Ai when the user is in attentional state Fj .

Given uncertainty about a user's state of attention,

the expected cost of alerting (ECA) a user with action

Ai is,

ECA =
X

j

Ca(Ai; Fj)p(Fj jE
a) (1)

where Ea refers to evidence relevant to inferring a

user's attention.

4 Expected Cost of Deferring Alerts

A strategy for reducing the cost associated with alerts

is to suppress the alerts or to defer them until a period

of time when the cost of relaying them is smaller. De-

cisions about deferral must take into consideration the

cost associated with the delayed review of the infor-

mation. We now turn to the expected cost associated

with deferring the review of a noti�cation for some

time t.

4.1 Cost of Delayed Action

We de�ne the criticality of a noti�cation as the

expected cost of delayed action associated with review-

ing the message. The expected cost of delayed action

(ECDA) has been applied in such domains as emer-

gency medicine (Horvitz & Rutledge, 1991; Horvitz &

Seiver, 1997) and time-critical aerospace applications

(Horvitz & Barry, 1995). ECDA is the di�erence in

the expected value of taking immediate ideal action

(action at time to), and delaying the ideal action until

some future time t. Given a probability distribution,

p(H jE), over states of the world H , associated with

di�erent time criticalities, and a time-dependent util-

ity function over outcomes, u(Ai; Hj ; t), the expected

cost of delayed action for noti�cations is,

ECDA =

max
A

X

j

u(Ai; Hj ; to)p(Hj jE)

�maxA
X

j

u(Ai; Hj ; t)p(Hj jE) (2)



ECDA provides a conceptual framework for reasoning

about the cost of the delayed review of noti�cations.

Let us consider the example of decisions about noti-

fying users about the arrival of messages via email.

We must consider the criticality of the email and the

cost of interruption associated with the user's focus

of attention. Noti�cation about email includes desk-

top alerting when the user is working at or near a

computer and noti�cation via a mobile communica-

tion device, such as a cell phone or pager, when the

user is away from a networked computer.

The utility of reading an email message can diminish

signi�cantly with delay in reviewing the message. In a

salient example, delay in reviewing a message that in-

forms a user about a competitive bidding situation can

lead to a costly loss of opportunity. Costs of delayed

review of messages may be high in the context of com-

munications involving coordination. Important meet-

ings and deadlines can be missed with delayed review

of messages. In less severe situations, costs can accrue

with reductions in the amount of time available to pre-

pare e�ectively for a meeting. For such cases, the cost

of delayed review of messages can be represented by

loss functions that operate on the amount of time re-

maining until the meeting being communicated about

occurs. After a meeting has passed, many options for

action are eliminated. Thus, the rate of loss incurred

with delays in the review of a message are typically

smaller for periods of time following the occurrence of

a meeting described in an email message.

We could attempt to group messages into classes in-

dexed by the types of action indicated at progressively

later times and endeavor to formulate a set of out-

comes associated with ideal actions at di�erent delays

in reviewing the messages. With such a representation,

Equation 2 could be used to compute an expected cost

of delayed review directly. Alternatively, we can sim-

plify ECDA by considering the probability that a mes-

sage is a member of one of several criticality classes,

given features of the messages. We associate with each

criticality class a time-dependent cost function, de-

scribing the rate at which losses accrue with delayed

review of the message. We take to to be the moment

that email arrives and compute the expected cost for

delays in reviewing the message until time t. In the

general case, the costs of delayed review for messages

in each criticality class may be a nonlinear function of

delayed review.

The complexity and scope of communications among

people makes the certain identi�cation of the critical-

ity of email messages di�cult. It is more feasible to

pursue inference about a probability distribution over

the criticality of a message given evidence gleaned from

attributes of the message, including information con-

tained in the header and body of email messages.

We shall return to explore in detail methods for learn-

ing the criticality of email messages in Section 5. For

now, let us assume that each message is a member of

one of n criticality classes. We further assume that

each class is associated with a criticality-class{speci�c

constant rate of loss that describes the cost of delayed

review. Using Cd to represent a time-dependent rate

of loss with delay, we can reduce Equation 2 to an

expected cost of delayed review (ECDR),

ECDR =
X

i

(t� to)C
d(Hi)p(HijE

d) (3)

where to represents the time a message arrives, t is the

time the message is reviewed, and Ed is evidence used

to infer a probability distribution over the criticality

class, H , of a new incoming message at hand. We refer

to the constant rate of loss associated with delayed

review as the expected criticality (EC) of a message,

EC =
X

i

Cd(Hi)p(HijE
d) (4)

4.2 Ideal Alerting about New Messages

Users typically review email periodically even when

their computing systems are con�gured to suppress the

active emission of alerts about incoming email. To de-

velop ideal alerting policies, we consider the cost of

delayed review of information incurred in a world ab-

sent of noti�cations. The cost of delay in such settings

depends on the criticality of the message and the time

passing before a user reviews a message without exter-

nal prompting.

The expected delay in the review of messages in an

alert-free setting can be inferred from information

about the frequency that users will attend to unread

messages without prompting. Beyond considering the

frequency that users will review messages on their own,

we can consider expected delays associated with a pol-

icy of relaying noti�cations to users when the cost of

interruption is inferred to be negligible. With such

a policy in force, the delay until new messages are

reviewed can be inferred from information about the

expected time before a user's attentional resources will

become freed to review the messages.

We refer to the time between periods of reviewing new

messages in the absence of explicit alerts as the inspec-
tion interval, I . The inspection interval is in
uenced

by multiple factors including the user's focus of at-

tention and location. A user's inspection interval is

typically reduced when they are at a distance from

networked computers.



The Bayesian networks presented in Figure 1 and 2

include a variable representing the inspection interval.

As displayed by the dependency structure of the mod-

els, the variable Inspection Interval, is in
uenced

by User's Attentional Focus and Application

Usage Pattern.

Given a probability distribution over the inspection

interval, the expected loss associated with reviewing

messages in an alert-free setting, ECDR', is

ECDR0 =
X

j

p(Ij)(tI
�1

+ Ij � to)
X

i

Cd(Hi)p(HijE
d)

(5)

where tI
�1

is the time of last access, to is the time a

message has arrived, and Ij is the inspection interval.

The expected value of transmitting an alert (EVTA)

about a message at some time t before a user reviews

the email is the increase in the expected utility with

being informed about the message at t versus at the

time we expect the user to access the email in the

absence of an alert. That is,

EVTA =X

j

p(Ij)(tI
�1

+ Ij � to)
X

i

Cd(Hi)p(HijE
d)

�

X

i

(t� to)C
d(Hi)p(HijE

d) (6)

A system should relay information about a message

when the net value of the alert (NEVA) is positive.

This is the case when the EVTA dominates the imme-

diate ECA for the type of alert under consideration,

NEVA = EVTA� ECA (7)

4.3 Chunking Messages and the Value of

Alerting

The grouping together of information from multiple

messages into a single compound alert can raise the

value of the content revealed under the guise of a sin-

gle, but potentially more complex, distraction. Re-

viewing information about multiple messages in an

alert can be more costly than an alert relaying infor-

mation about a single message. We represent such

increases in distraction by allowing the cost of an alert

to be a function of its informational complexity.

Let us assume that the EVA of an email message is

independent of the EVA of other email messages. We

use EVTA(Mi; t) to refer to the value of alerting a user

about a single message Mi at time t and ECA(n) the

expected cost of associated with relaying the content

of n messages. We can modify Equation 7 to consider

multiple messages by summing together the expected

value of relaying information about a set of n new mes-

sages,

NEVA =

nX

i=1

EVTA(Mi; t)� ECA(n) (8)

We note that assuming independence in the value of

reading distinct messages may lead to an overestima-

tion of the value of the multiple-message alert because

strings of messages received in sequence may refer to

related content.

Given inferred probability distributions over a user's

attentional focus and inspection interval, an assess-

ment of the costs of distracting a user with alerts,

and the time criticality of incoming messages, we can

employ NEVA to continue to reason about the costs

versus the bene�ts of alerting users with summariz-

ing information about the content of newly arriving

email messages. We now turn to the task of auto-

matically assigning measures of expected criticality to

email messages.

5 Assigning Criticality to Messages

Building a real-world system for exploiting NEVA to

control alerting hinges on an ability to automatically

assign a measure of expected criticality to incoming

messages. Given the challenge and importance of mak-

ing inferences about the criticality of alerts, we shall

dwell on details of inferring the expected criticality

of email messages. Such methods have application to

other classes of noti�cations.

We have developed an automated criticality classi�er

for email by leveraging and extending learning and in-

ference methods developed for performing text classi-

�cation. The methodology employs several phases of

analysis including: (1) selection of features, (2) con-

struction of a classi�er, (3) mapping classi�er outputs

to the likelihood that an email message is a member

of each criticality class, and (4) the computation of an

expected criticality from the probability distribution

over criticality classes for email messages.

Text classi�cation is an active area of research and de-

velopment (see Dumais, Platt, Heckerman et al, 1998

for a review of recent e�orts. Machine learning meth-

ods employed in text classi�cation include decision

trees (Lewis & Ringuette, 1994), regression (Yang &

Chute, 1994), Bayesian models (Lewis & Ringuette,

1994; Sahami, 1996; Sahami, Dumais, Heckerman et

al., 1998), and Support Vector Machines (Joachims,

1998; Scholkopf, Burges, & Smola, 1998).

Our group has been studying the characteristics and

performance of several text classi�cation methodolo-

gies for classifying email including procedures based on



Bayesian network learning procedures (Sahami, Du-

mais, Heckerman et al., 1998) and the Support Vector

Machine learning methodology (Vapnik, 1995; Platt,

1999a). Our studies of standard test corpora (e.g.,
Reuters corpora of business articles) and a variety

of text classi�cation tasks demonstrated that speci�c

forms of SVM strategies dominated naive Bayes clas-

si�cation procedures developed to date for text classi-

�cation (Dumais, Platt, Heckerman et al, 1998).

Our current implementation of criticality assignment

for email is based on a linear Support Vector Machine

training methodology developed by Platt called Se-

quential Minimal Optimization (Platt, 1999a). Sup-

port Vector Machines build classi�ers by identifying a

hyperplane that separates a set of positive and neg-

ative examples with a maximum margin (see Platt,

1999a for details). In the linear form of SVM that

we employ to assign criticality classes to email, the

margin is de�ned by the distance of the hyperplane to

the nearest positive and negative cases for each class.

Maximizing the margin can be expressed as an opti-

mization problem and search and optimization thus lay

at the core of di�erent SVM-based training methods.

Traditionally, SVM training methods yield classi�ers

that output a score describing the strength of member-

ship in a category. Platt has extended SVM methods

by developing a methodology that provides an esti-

mate of the probabilities that items are members of

di�erent classes (Platt, 1999b). The procedure em-

ploys regularized maximum likelihood �tting to pro-

duce estimations of posterior probabilities. We har-

nessed this approach to learn classi�ers that output

the probability that an email message is a member of

di�erent criticality classes.

In practice, we create a set of criticality classes and as-

sess time-dependent cost functions for each class. We

obtain a training set by manually partitioning a cor-

pus of sample messages into distinct criticality classes.

Given a training corpus of messages labeled by criti-

cality, we �rst apply feature-selection procedures that

attempt to �nd the most discriminatory features for

the set of target classes, using several phases of analy-

sis including a mutual-information analysis (Koller &

Sahami, 1996; Dumais, Platt, Heckerman et al., 1998;

Sahami, Dumais, Heckerman et al., 1998). We refer

readers to the text-classi�cation literature for details

on practical and theoretical issues in feature selection.

Feature selection procedures for text classi�cation can

operate on single words or higher-level distinctions

made available to the algorithms, such as phrases and

parts of speech tagged with natural language pro-

cessing. Basic feature selection algorithms for text

classi�cation typically perform a search over single

words. Beyond the reliance on single words, we can

make available to feature selection procedures domain-

speci�c phrases and high-level patterns of features,

including general expressions that operate on classes

of words and other features in email messages. We

found that providing such special tokens to text-

classi�cation procedures can enhance classi�cation sig-

ni�cantly(Sahami, Dumais, Heckerman et al., 1998 ).

In investigating the construction of classi�ers for email

criticality, we identi�ed special phrases and other

classes of observations that we suspected could be of

value for discriminating among email messages assoc-

iated with di�erent time criticalities. The handcrafted

features are considered during feature selection. To-

kens and patterns of value in identifying the criticality

of messages include such distinctions as:

� Sender: Single person versus an email alias, peo-

ple at a user's organization, organizational rela-

tionship to user, names included on a user con-

structed list, people user has replied to

� Recipients: Sent only to user, sent to a small num-

ber of people, sent to a mailing list

� Time criticality: Inferred time of an implied meet-

ing, language indicating cost with delay, including

such phrases as \happening soon," \right away,"

\as soon as possible," \need this soon," \right

away," \deadline is" \by time, date," etc.

� Past tense: Phrases used to refer to events that

have occurred in the past such as, \we met,"

\meeting went," \took care of," \meeting yester-

day," etc.

� Future tense: Phrases used to refer to events that

will occur in the future including \this week,"

\Are you going to," when are you," etc.

� Future dates: Days and times representing future

dates.

� Coordination: Language used to refer to coor-

dinative tasks such as \get together," \can we

meet," \coordinate with," etc.

� Personal requests: Phrases associated with direct

requests for assistance, including sentences ending

with question marks, \will you," \are you," \can

you," \I need," \take care of," \need to know,"

etc.

� Importance: Language and symbols referring to

importance including the presence of an explicit

high or low priority 
ag, and such phrases as \is

important," \is critical," etc.
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Figure 3: Discriminatory power of an email criticality

classi�er. The curve indicates the probability of mis-

classi�cation at di�erent decision thresholds for a test

set of hand selected messages in high and low critical-

ity classes.

� Length of message: Size of new component of a

message (excluding the forwarded thread)

� Presence of attachments: Noting the inclusion of

documents in the email

� Time of day: The time a message was composed.

� Signs of Junk email: patterns such as percent

nonalphanumeric characters, and pornographic

content, marketing phraseology such as \Free!,"

\Only $," \Limited o�er," etc.

We found that the coupling of an SVM classi�er with

criticality-speci�c tokens can e�ectively classify email

into criticality classes and into overall estimates of

expected criticality. In an evaluation, a criticality clas-

si�er was trained from approximately 1500 messages,

divided into approximately equal sets of low and high

priority email messages. A curve showing the ability

of the classi�er to classify messages from a test corpora

consisting of 250 high and 250 low priority messages,

selected by a user from a large inbox, is displayed in

Figure 3. The Receiver-Operator (ROC) curve dis-

plays the probability of high priority email being clas-

si�ed as low priority email and the probability of low

priority email being classi�ed as high priority email

for di�erent values of the probability threshold used

to de�ne the high and low criticality message classes.

Although it is useful to demonstrate the ability of the

classi�er to appropriately label cases of low and high

criticality email, we are most interested in the use of

the inferred probabilities of membership in alternate

classes to compute the expected criticality of messages,

and in the ultimate use of such information in comput-

ing the NEVA associated with messages.

As part of the validation of the automated assign-

ment of measures of criticality for email, we gener-

ated expected criticalities of email messages, assum-

ing a linear cost of delay with time for each criticality

class, and summing the costs for each class weighted

by the probability that messages are members of each

class as reported by the classi�er. Our validations have

shown that the classi�er performs well even with the

use of only two classes of criticality: time-critical mes-

sages and normal/low priority messages. In a valida-

tion study, one of the authors scored the criticality of

messages by hand on a 1 to 100 scale, using 1 to indi-

cate the messages of lowest criticality and 100 to rep-

resent the most time-critical messages. To probe the

e�ectiveness of the expected criticality measure, we

computed correlation coe�cients and generated scat-

ter plots to visualize relationships between the assessed

criticalities and the computed expected criticality. In

a sample study, one of the authors assessed the criti-

cality of 200 email messages received over three days.

A correlation coe�cient of 0.9 was found between the

user tagged criticality and the automated assignment

of expected criticality.

6 Priorities Prototypes

We have been exploring the use of attention manage-

ment for email messages through implementations of

several prototypes we refer to as the Priorities fam-

ily of systems. The Priorities prototypes learn clas-

si�ers from examples drawn from a user's email and

apply the classi�ers in real time to assign expected

criticalities to incoming email messages. The systems

work with the MS Outlook 2000 messaging and cal-

endar system. During feature selection, the systems

consider categories of features described in Section 5.

The classi�cation learning and inference procedures

have been integrated in a software application that

calls the Microsoft Exchange MAPI and Outlook 2000

CDO interfaces. These services grant the system ac-

cess to details of the message header, including sender

and recipient information, and the organizational hier-

archy at Microsoft. When email arrives, the real-time

classi�er examines the incoming messages for words

and phrases and makes calls to acquire sender, recipi-

ent, and organizational information.

An early version of Priorities has been distributed

widely at Microsoft for real-world testing. This ver-

sion assigns a measure of expected criticality to all in-

coming mail, using a pretrained, default classi�er or a

classi�er that is custom-trained by the onboard learn-

ing subsystem. The system has been integrated with

the MS Research Eve event sensing system, developed

as part of the Lumi�ere intelligent interface project



(Horvitz, Breese, & Heckerman et al., 1998), enabling

the system to continue to consider a variety of obser-

vations, including keyboard and mouse activity, and

room acoustics. Information about a user's schedule

is accessed directly from Outlook's online calendar.

The version of the Priorities system that is currently

being tested by users at Microsoft provides an email

viewer client that displays email sorted by criticality

and scoped by a user-speci�ed period of time. A dis-

play of the Priorities client is displayed in Figure 4.

The prototype can be instructed to take a variety of

actions based on observations about the user's activ-

ity and location, and the inferred expected criticality

of incoming mail. Actions include playing criticality-

speci�c sounds that were specially composed for the

system, bringing the client to the foreground, and

opening email messages and sizing and centering the

email according to criticality. The system can be di-

rected to perform a variety of automated forwarding

and response services based on expected criticality.

Moving beyond the desktop, the system has the abil-

ity to forward messages to a user's cell phone or pager

based on criticality and the time a user is away from

the o�ce. For mobile settings associated with limited

time and bandwidth, Priorities can be employed to

download messages in order of expected criticality.

A more advanced version of Priorities, named

Priorities{Attend serves as our testbed for per-

forming more sophisticated inference about a user's

attention and for making decisions about noti�cation

based on NEVA. This version has been integrated

with a manually constructed Bayesian network that

performs inference about a user's attention. Work

is underway on the development of e�ective assess-

ment techniques and richer models for representing

and reasoning about a user's attention and the costs

of interruption. Our experiences to date with the

use of automated alerting machinery suggest that a

decision-theoretic approach to alerting can fundamen-

tally change the way users work with email communi-

cations.

7 Summary

We have described e�orts to harness decision-theoretic

principles to control alerting in computing and com-

munication systems. We presented attention-sensitive

procedures for computing the net expected value of

alerts. We framed the discussion with the task of relay-

ing noti�cations about incoming email messages. Af-

ter presenting principles for decisions about alerting

users about messages, we presented work on automat-

ically assessing the expected criticality of email mes-

sages. Finally, we presented work on the Priorities

Figure 4: Display provided by the client of a version of

Priorities being tested by multiple users. The client

comes into view upon demand or when criticality-

directed policies bring it to the foreground.

systems, prototypes that operate with the Microsoft

Outlook email and scheduling application.

There are numerous opportunities for enhancing the

value of computing systems through harnessing meth-

ods that perform ongoing inference about a user's at-

tention and about the criticality of di�erent sources

of information. We are continuing our pursuit of

decision-theoretic machinery that can endow operating

systems with the ability to monitor multiple sources of

information and make intelligent decisions about the

expected value of transmitting noti�cations to users.
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