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The Complexity of Normativity

Several years ago, we initiated the PROTOS project, to
investigate the use of decision theory as a framework
for reasoning about the design and operation of ideal
expert systems and control systems under bounded re-
sources. The research evolved from early research on the
PATHFINDER project, an effort to development an ex-
pert system for surgical pathology. PATHFINDER inves-
tigators have investigated the use of probability theory
for representing and manipulating uncertain knowledge.
Intuitive and theoretical justification of the axioms of
probability and utility theory have led people in sev-
eral disciplines to view the axioms of decision theory as
normative.

A chief problem with the development of normative
reasoning systems is the complezity of traditional nor-
mative representations and inference methods. Several
simplified normative medical diagnostic systems were
developed during the 1960s and early 1970s. Attempts
to extend the scope of these systems, or to weaken
the simplifying assumptions of manifestation indepen-
dence, and mutual exclusivity of diseases, threatened
researchers in artificial intelligence in medicine (AIM)
with combinatorial explosion in the effort required for
representation and computation.

In PATHFINDER and related PROTOS research, we
have wrestled with the problems of complexity witkin
the framework of probability and decision theory. We
have addressed complexity in two different ways. A
large portion of PATHFINDER research has grappled
with complexity by developing representations and tools
that increase the efficiency of elucidating and captur-
ing independence in the structure of biomedical knowl-
edge [Heckerman et al., 1989]. That work has demon-
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Figure 1: Rational metareasoning about partial compu-
tation can be applied to such fundamental operations as
sorting and searching, or to decision-theoretic inference
itself. We wish to optimize the value of an approxima-
tion, as the solution ranges from a complete analysis
(asterisk) to an increasingly poorer approximation (di-
rection of arrow)

strated, for several domains, that there is a great deal
of independence in expert knowledge. Unfortunately, we
may not always be able to rely on independence to gain
tractability; medical knowledge can be intrinsically com-
plex. PROTOS research has investigated the normative
control of representation and inference problems that
are too complex to solve without incurring unaccept-
able computational or engineering costs. This research
has sought to develop principles of bounded rationality
based on decision theory, for use in controlling trade-
offs associated with the use of approximate normative
reasoning strategies.

Bounded Optimality as Rationality

The high stakes and time pressure of decisions in
medicine highlight the significance of developing nor-




mative principles of bounded rationality. As indicated
in Figure 1, our model of bounded rationality centers on
the use of design-time and tractable run-time decision-
theoretic analyses to control the detail and completeness
of complex problem-level decision making.

This normative perspective on bounded rationality
is in sharp distinction to older, more familiar concep-
tions of bounded rationality. In 1955, Herbert Simon
noted that we should consider constraints on cognitive
resources in generating and evaluating the behavior of
a decision maker in a complex situation. However, he
and other early Al pioneers quickly retreated from de-
cision theory. Citing the limited abilities of human de-
cision makers and the forgiving nature of many prob-
lems in the world, Simon proposed that most intelli-
gent behavior is oriented toward finding relatively sim-
ple solutions that are nonoptimal, yet are sufficient or
satisficing [Simon, 1955]. This theme has stimulated
broad Al research on relatively ill-characterized heuris-
tic procedures in a wide array of domains. Unfortu-
nately, the nonnormative approaches to bounded ratio-
nality may stray far from the levels of utility that might
be achieved through the pursuit of more sophisticated
normative analyses. Losses may be especially significant
in high-stakes decision making, given complex uncer-
tainties about the world. In medical reasoning, poten-
tial losses—and opportunities for great gain—highlight
the potential usefulness of decision theory for optimizing
the value of behavior under resource constraints.

We use bounded optimalily to distinguish research
on the optimal design of problem solvers and solu-
tion methodologies under bounded resources from tradi-
tional nonnormative approaches to reasoning under re-
source constraints [Horvitz, 1987). Unlike straightfor-
ward decision analyses, we apply the principles of de-
cision theory to enriched models that include not only
distinctions and outcomes in the world, but also distinc-
tions and outcomes about the representations or reason-
ing processes themselves.

Focus: Inference in Influence Diagrams

We have been investigating the use of influence dia-
grams for representing and solving difficult medical rea-
soning problems. The influence diagram is an acyclic
directed graph containing nodes representing proposi-
tions and arcs representing interactions between the
nodes. Influence diagrams without preference or deci-
sion information are termed belief networks. A belief
network defines a model for doing probabilistic inference
in response to changes in information. The problem of
probabilistic inference with belief networks is N'P-hard.
Thus, we can expect algorithms for doing inference to
have a worst-case time complexity that is exponential
in the size of the problem (e.g., the number of hypothe-
ses and pieces of evidence}. Some methods for infer-
ence in belief networks attempt to dodge intractability
by exploiting independence relations to avoid the ex-
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plicit calculation of the joint-probability distribution.
A variety of exact methods has been developed, each
designed to operate on particular topologies of belief
networks [Horvitz et al., 1988]. Other methods forego
exact calculation of probabilities; these approximation
techniques produce partial results as distributions or
bounds over probabilities of interest. The complexity of
precise inference and the availability of alternative rea-
soning approaches highlight the need for flexible approx-
imation strategies and intelligent control techniques.

Utility of Computation

As background, we will briefly describe fundamental
concepts of decision-theoretic control and flexible com-
putation. We use comprehensive value, u,., to refer to
the utility associated with the value attributed to the
state of an agent in the world. This value is a function
of the problem at hand, of the agent’s best default ac-
tion, and of the stakes of a decision problem. We call
the net change expected in the comprehensive value, in
return for some allocation of computational resource,
the expected value of computation (EVC). It is often
useful to view the comprehensive utility, at any point in
the reasoning process, as a function of two components
of utility: the object-level utility, u,, and the inference-
related cost, u;.! The object-level utility of a strategy is
the expected utility associated with a computer result or
state of the world. The inference-related component is
the expected disutility intrinsically associated with, or
required by, the process of problem solving. This cost
can include the disutility of delaying an action while
waiting for a reasoner to infer a recommendation.

Flexible Inference and Representation

A important aspect of developing reasoners that are re-
silient to uncertain challenges and resources is the de-
velopment of flezible computation and representation
strategies.

Desiderata of Flexible Computation

We have enumerated and analyzed properties of flex-
ible reasoning that are desirable for reasoning under
bounded resources [Horvitz, 1987, Horvitz, 1988]. First,
we wish to see monotonicity in the change of the object-
level value of results with the expenditure of resource.
We desire our strategies also to exhibit graceful degrada-
tion, or to be relatively insensitive to small reductions in
the allocated resource. That is, we prefer incrementality
or continuity in the refinement of partial results with the
application of resources. We refer to strategies that ex-
hibit monotonicity and continuity with computation as
flezible-computation policies.? Spanning strategies are

! More comprehensive notions of the value of a reasoning
system in an environment are discussed in [Horvitz, 1987}

*Dean and associates later independently referred to
monotonic-refinement policies, in the context of planning




an especially valuable class of flexible-computation poli-
cies that converge to an ideal solution with some finite

allocation of resource.

Economics of Flexible Computation

As an example of some prototypical relationships, con-
sider an example of the costs and benefits of reasoning,

borrowed from [Horvitz, 1987]. Figure 2 highlights the

fundamental relationships among u,, u;, and u.. As
indicated by the figure, the ideal halting time, {*, for
problem-solving methods, described by a comprehensive
utility function, with an object-level component that is
monotonically increasing and a negative second deriva-
tive, and an inference-related utility component that is
monotonically increasing, with a second derivative that
is zero or positive, occurs when the first derivatives of
both components are equal. We partition the ¢ into with
computation time, t., and metalevel reasoning time, t,,.
Consider the case where the object-level value is refined
with computation time ?, as a negative exponential pro-
cess

ki M
Let us assume that the cost of delay is separable from
the object-level utility and that the object-level value
and cost are related by addition. Assuming that we
have a linear cost with

U, = l-—e

uy = -—ct 2)
we know that the comprehensive utility is
ue = 1—e M-t _ 3)

where t,, is the constant cost of the metalevel optimiza-
tion process needed to determine the optimal halting
point. We can solve for an optimal halting time by dif-
ferentiating Equation 3 in terms of the time expended on
the problem and identifying a maxima. For our exam-
ple, the ideal amount of computation time before halting
is

—in(§)
_EL 4

Through substitution, into Equation 3, we can calculate
the ideal u,, u?, at this ideal halting point. This optimal
utility is

te
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These equations demonstrate how the optimal halting
time and ideal comprehensive utility will change, given
changes in the cost of reasoning (dictated by ¢), in the
rate of refinement (dictated by k), and the cost of de-
termining the optimal halting time (¢, ).

up = l-¢f

[
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problems, as anytime algorithms [Dean and Boddy, 1988].
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Figure 2: The economics of flexible computation. The
graph highlights the fundamental relationships among
the object-level value (u,), the cost of reasoning (u;),
and the comprehensive value of computation (u.).

Flexible Probabilistic Inference

The previous example assumes certainty in the object-
level value and costs. We are interested more typ-
ically in reasoning under uncertainty. OQur goal has
been to develop flexible methods for probabilistic in-
ference and to develop theoretical and practical tools
for the control of the flexible reasoning. As an ex-
ample, we have constructed an algorithm for flexi-
ble probabilistic inference named bounded conditioning
[Horvitz et al., 1989c]. Bounded conditioning satisfies
the desiderata of continuily, monotonicity, and conver-
gence. The method works by decomposing an inference
problem into separate subproblems, each representing a
plausible context, and generating exact bounds on prob-
abilities of interest through accounting for the contexts
that have not yet been explored. The algorithm in-
crementally refines bounds on a probability of interest,
continuing to tighten the upper and lower bounds on
a probability of interest, with continuing computation,
until reaching a point probability.

We characterized the behavior of bounded condition-
ing on experimental belief networks constructed with a
belief-network generator and on an intensive-care unit
(ICU) belief network 3 Figure 3 shows the typical form
of the convergence displayed by bounded conditioning
when updating all nodes in the ICU network, given an
observation. We found that the bounds for a large set of
updates for this problem decay at rate that can be mod-
eled approximately with a negative exponential, e~ %,
with different decay constants k.

3The network was developed by Ingo Beinlich, a doctoral
student in our research group.
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Figure 3: The flexible bounded-conditioning inference
strategy incrementally refines bounds on probabilities
in a belief network.

Ideal Reflection Before Action

A component of PROTOS work on the metalevel control
of probabilistic inference is captured by the overview in
Figure 4. A metareasoning decision problem, shown at
the top of the figure, is used to control the nature and ex-
tent of inference in a complex belief network. The struc-
ture of the ICU belief network that we have analyzed is
represented in the middle of Figure 4. This network
represents uncertain relationships between observations
and patient pathophysiology in intensive-care medicine.
Object-level decision problems, requiring belief-network
inference for relevant probabilities, are passed to the
metareasoner, which determines the optimal dwell time.

In answer to a query for assistance, our automated
reasoner must propagate observed evidence about a pa-
tient’s symptomology through the complex ICU belief
network. Rather than seeking simply to optimize the
object-level value by doing complete inference, the re-
flective system’s goal is to optimize the utility associated
with the value node in the metareasoning problem, la-
beled u.. As demonstrated by the relationships among
propositions in the metareasoning problem, u. is a func-
tion of the object-level value and the inference-related
cost, u;. The integration of inference-related and object-
level utility allows our system to treat decisions and out-
comes regarding the control of reasoning just as it does
decisions about action in the world.

Given a characterization of the performance of flexible
algorithms as a function of the expenditure of compu-
tational resource (such as the convergence of bounded
conditioning), we can trade-off the quality of a decision
for delay. Assume that our reasoner may apply one of
several incremental-refinement algorithms that can iter-
atively tighten the distribution on the probability of in-
terest over time. We wish the system to make a rational
decision about whether to make a treatment recommen-
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dation immediately, or to defer its recommendation and
continue to reason, given its knowledge about the costs
of time needed for computation.

The reasoner’s attention is centered on the calculation
of p(H), the probability of disease H. We define ¢ to be
the value of p(H) a system would compute if it had suffi-
cient time to finish its computation. At times before the
inference is completed, our automated reasoner is un-
certain about the value of ¢. The current uncertainty
can be described by a probability distribution over 4.
We denote the uncertainty about ¢ as p(¢). Although
this distribution can change with reasoning, investiga-
tors have shown that the belief a decision maker should
use for decision making, if she has to act immediately,
is the mean of p(¢), denoted by < ¢ >. After spend-
ing additional time t on inference about ¢, our reasoner
may have a new distribution over ¢, denoted by ().

An important class of knowledge about ¢ is of the
form, p(p:(¢)). This measure refers to belief at the
present time about the likelihood of alternative belief
distributions over ¢ that might be generated after com-
putation for additional time ¢. This notion is central
in reflection about the value of initiating or continuing
decision-theoretic inference, as opposed to that of acting
with the current best decision.

Our reasoning system has incomplete knowledge
about what p(¢) will be at some future time ¢, which
we refer to as p(p;(4)). The system typically may have
a probability distribution over the future bounds on ¢
with additional computation. Our reasoner can apply
this knowledge by considering the EVC(t) based on the
information about probability distributions over p(¢),
obtained with computation for additional t, as

EVOW = [ p(eu#) [ p(6) max D)1 a6 il

Pl
—max uo[D(< 4, >)]

That is, we sum over the new probability distributions
on ¢ expected at time ¢, weighted by the current belief,
p(p:(4)), that thinking until ¢ will lead to each of the
revised distributions. In terms of the mean, < ¢; > of
the future distributions, p,(¢),

EVC :/ p(pi(¢)) max u [D(< ¢; >,1)] dp:(¢)
pi(d) b

— max u.[D(< ¢, >)]

When, for all ¢, the cost of computation becomes greater
than the benefit of computing (EVC < 0), an agent
should cease reflection and act. The EVC formula
can be used to study the value of alternative inference
schemes.

There can be significant overhead in the metareason-
ing time, t,, required for the application of an EVC-
based control strategy. Thus, a central goal of research
on decision-theoretic control is to identify tractable
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-Figure 4: Research on normative metareasoning has ex-
plored the use of a metalevel decision model to control
probabilistic inference in an object-level belief-network.

solutions to the EVC evaluation problem. Alterna-
tively, offline analysis and compilation of control strate-
gies may be useful in situations where the complex-
ity of meta-analysis limits the gains of real-time con-
trol. We have pursued tractable solutions to the EVC
by examining parameterized families of distributions
[Horvitz ef al., 1989a). For example, we have explored
the use of rational metareasoning to control the applica-
tion of probabilistic-bounding methods. The inference
metaknowledge is in the form of a partial characteriza-
tion of how the probability distribution over proposi-
tions of interest will change as reflection continues. We
found that approximation strategies can typically de-
liver a large portion of the value of complete computa-
tion with a fraction of the resource.

Summary

Theoretical and empirical PROTOS research has demon-
strated that principles and models from the decision sci-
ences can be extended and enriched to provide a prin-
cipled approach to bounded rationality. We have de-
veloped techniques to optimize the value of decisions
under resource constraints by expanding traditional de-
cision models into more comprehensive analyses. The
enriched models include knowledge about problem solv-
ing, in addition to domain knowledge. We focused here
on the interlacing of flexible computation and normative
metareasoning techniques for valuating and controlling
probabilistic inference for time-pressured medical deci-
sions. Empirical work has demonstrated that an ap-
proximation algorithm can deliver a large fraction of the
expected value of perfect computation well in advance
of complete inference. Other aspects of research on
bounded optimality, with promise for AIM applications,

81

include decision-theoretic techniques for limiting effort
in probabilistic assessment, for generating ideal policies
for compiling precomputed results, and for trading off
the precision for the understandability of explanations of
decision-theoretic inference [Horvitz et al., 1989b). We
foresee that advances in the application of decision-
theoretic metareasoning will play an important role in
the development of effective normative reasoning sys-
tems for medicine and other applications dominated by
high-stakes decisions under uncertainty.
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