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Abstract

In joint decision making, similarly minded people may take op-
posite positions. Consider the example of a marriage in which one
spouse gives generously to charity while the other donates nothing.
Such “polarization” may misrepresent what is, in actuality, a small
discrepancy in preferences. It may be that the donating spouse would
like to see 10% of their combined income go to charity each year, while
the apparently frugal spouse would like to see 8% donated. A simple
game-theoretic analysis suggests that the spouses will end up donating
10% and 0%, respectively.

By generalizing this argument to a larger class of games, we pro-
vide strategic justification for polarization in many situations such as
debates, shared living accommodations, and disciplining children. In
some of these examples, an arbitrarily small disagreement in prefer-
ences leads to an arbitrarily large loss in utility for all participants.
Such small disagreements may also destabilize what, from a game-
theoretic point of view, is a very stable equilibrium.
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1 Introduction

In public debates, private organizations, shared living accommodations, and
many other types of interaction, participants’ behavior is seen to polarize.
Even similarly minded moderate individuals will take opposite, extreme po-
sitions in such settings. To add to the frustration, such polarization can be
quite costly: arbitrarily small disagreements in players’ preferences may lead
to arbitrarily large losses in utility for all participants.

This note presents a simple game-theoretic analysis that explains why
selfishly-motivated participants polarize'. But like the prisoners’ dilemma [1],
polarization games are designed and played by seemingly rational individuals
who suffer utility loss as a result. This suggests that, despite the apparent
game-theoretic simplicity, polarization is also subtle and easily overlooked.

The remainder of this section includes two examples where players choose
drastically opposing strategies. The first example gives a quick understanding
of the phenomenon. The second example shows how costly and destabilizing
the phenomenon may be. In that example, two players that are very happy
with the outcome of the game under full agreement of preferences, become
equally miserable when an e disagreement enters their preferences. This is
despite the fact that the outcome in the case of agreement is highly stable
from a game-theoretic point of view.

Section 2 formally defines a polarized player as one who is playing a
strategy on the boundary of her set of possible strategies. A polarization
lemma shows that, for a large class of games which we call aggregation games,
every player is either polarized or completely satisfied with the outcome. In
particular, for situations in which the players disagree on the best outcome,
all but at one player must be polarized. Sections 3 and 4 conclude with
additional illustrations and discussion.

1.1 Example: How much to give to charity?

A newly married couple, Gene and Pat, each contribute from their joint bank
account a certain amount of money to charity. Suppose, for a moment, that
Pat would like to see 10% of their combined income donated to charity and

1Our use of the term “polarization” differs from other uses, such as “group polariza-
tion,” which refers to a phenomenon in which all members of a group support the same
decision more emphatically than they would as individuals.[3]



Gene would prefer 8%. One sensible scenario is that they would begin by
donating 5% and 4% respectively, which gives a compromise of 9% donated.
With time, however, we may expect Gene’s donations to decrease to 0, in
an attempt to reduce the total contribution, and Pat’s donation to increase
to 10%. Although this is not the only possible outcome, it is a natural one
when both players act strategically to achieve their own goals.

More formally, modeled as a strategic game, we show that this polarized
outcome is the only Nash Equilibrium. Say Gene and Pat donate amounts
of g and p dollars respectively. This determines their total contribution,
t = g+ p. Suppose that they each have in mind a desired value for this
total contribution. We denote their ideal total contributions by ¢, and ¢,
respectively. Further assume that they each would like the total to be as
close as possible to their ideals, with their preferences described by utility
functions u,(t) = [t — t,] and w,(t) = [t — t,|.

Case 1. Perfect agreement, ¢, = {,. By each donating one half of the ideal
amount, both people are completely satisfied.

Case 2. No agreement, say t, < t,. Various models of players’ dynamics
will lead to polarized behavior with ¢ = 0 and p = ¢,. For example, under
Cournot best response adjustments[2], where players adjust their individual
current period choices to be best response to observed opponents’ last period
choices, the following occurs. In the initial decision period, say they each
donate one half of their ideal levels. This results in a total contribution mid-
way between ¢, and ¢,. Assuming that they best respond to these observed
levels, in the next period, we will see Gene’s contribution decrease and Pat’s
increase by an equal amount, so that the total does not change. These ad-
justments will continue each period until Gene is donating nothing, and Pat
is donating ¢,. In fact, no matter how small the initial disagreement was,
adjustments eventually lead Gene and Pat to donate 0 and ¢,, respectively.

Clearly, the two players do not have to follow a Cournot best-response
dynamics. But the concept of a Nash Equilibrium[4] is useful here. For selfish
players to reach an equilibrium where they do not change their donations,
they should both be choosing a best response to the other’s decision. This
happens only when Gene donates 0 and Pat donates t,.

This type of game models many other situations, as well. For example,
it can model a debate, where participants want to influence common opinion
on an issue. It also relates to the polarization of parents disciplining a child,



where the resulting discipline is the sum of the levels imposed by the parents.
Similarly, roommates may polarize over how clean the bathroom should be,
with the “cleaner one” cleaning up for both. Business partners polarize over
the conduct of their affairs, and politicians polarize over the conduct of the
affairs of a nation.

The next example illustrates how costly and destabilizing polarization
may be.

1.2 Example: Costly Household Polarization

Consider a weekly work-consumption-savings plan of a household consisting
of two individuals. Viewed as a strategic game, each of the players, 1 = 1,2,
decides on his own work level w; and his level of consumption of a frivolous
good f;, both measured in dollar units with 0 < f; and 0 < w; < 1600.
The income not consumed, b = (w; + wz) — (f1 + f2) is deposited as savings
in the bank (b could be negative). In this example, an arbitrarily small
disagreement in the necessary amount of savings will lead one player to work
as hard as possible and spend no money on frivolous goods, while the other
player will do no work and all of the spending, and both players will be
equally miserable.

Case 1. Suppose both participants have the following identical utility func-
tion,

u; = 2min(b, 500) — (wy + wz2) + 0.1(f1 + f2).

In words, each participant gets two units of positive utility for each dollar in
the bank, up to $500, and no utility for extra money in the bank. On the
other hand, a dollar’s work (by either party) costs both players one unit of
utility, while frivolous consumption (by either party) yields both players only
0.1 units of utility per dollar spent. Thus each participant would ideally like
a total of $500 of combined work and no frivolous consumption. Formally,
when w; = wy = 250 and f; = f, = 0, the players are at a Nash Equilibrium
with equal positive utilities of 500.

Case 2. Now suppose the players almost agree, with,

wp = 2min(b,500) — (wy 4+ wy) + 0.1(f1 + f2)
uy = 2min(b,500 + €) — (wy + w2) + 0.1(f1 + f2)



In this case, the only Nash Equilibrium has w; = 0, wy = 1600, f; = 1100,
f2 =0, with both players equally miserable at w; = uy = —490.

Proof. At Equilibrium we cannot have b > 500, because player 1 could
increase his utility by increasing f;. Player 1 would gain utility from this
frivolous consumption without losing any due to having less in the bank.

Similarly, we cannot have b < 500. If this is the case, either they have
frivolous consumption or both players are not working to capacity. If they
have frivolous consumption, then both players would benefit by 1.9 units of
utility per dollar from reducing this consumption. Alternatively, if they do
not both work to full capacity, then a unit increase in work by either player
will increase utility by 1 unit.

Thus at Equilibrium b = 500. Now if wy < 1600 then player 2, who wants
more than 500 in the bank, can improve by increasing ws. So at Equilibrium
we must have b = 500 and wy = 1600. Continuing with this type of reasoning,
it is easy to see that f; > 0 is suboptimal for player 2, who wants more in
the bank. With wy = 1600 and f; = 0, the only optimal response of player
one is to have wy; = 0 and f; = 1100. O

From a game-theoretic perspective, the above example illustrates dras-
tic destabilization. In the full agreement game, with the identical utility
functions, all the possible payoffs of the game are of the form (x,x) with
—2880 < z < 500. The equilibrium discussed there yields the payoffs
(500, 500). So the equilibrium payoffs are greater, for both players simulta-
neously, than any other possible payoffs in the game. This is what Aumann
and Sorin [5] call an equilibrium of common interest. The equilibrium is also
strict in the sense that any deviation from the equilibrium strategies causes
a strictly positive loss to the deviating player. Strict Nash equilibria of com-
mon interest survive most theoretical notions of equilibrium refinements and
are considered highly stable. So it is surprising that, as we introduce an
arbitrarily small perturbation to the payoff of either one of the players, this
equilibrium completely collapses, and instead we have a unique equilibrium

with payoffs (=490, —490).



2 Polarization in aggregation games

In both of the above examples, an aggregate quantity determines the players’
utilities. At all the Nash Equilibria, each player is either completely satisfied,
meaning that no outcome could improve her utility, or is polarized, meaning
that she is playing a strategy on the boundary of her feasible set of strategies.
This is the polarization phenomenon.

We proceed to present simple conditions on the aggregation and util-
ity functions that result in this phenomenon. Informally, the condition on
the aggregation function is that any individual player, by changing his own
strategies, can move the aggregate value in any direction (specifically in some
open set), provided that player is not constrained by his own individual limi-
tations, i.e. playing a strategy on the boundary of his feasible set. Also, each
player’s utility function must have no (interior) local maxima that aren’t
also global maxima. Under these two conditions, we argue that if a player
is not completely satisfied, then she is not at a global or local maximum.
Furthermore, if she is playing a best response, then she must actually be at
a boundary strategy, otherwise she could move the aggregate to increase her
utility. We formalize this argument as follows.

Player ¢ in {1,2,...,n} has a feasible set of strategies S;. Let S = x;5;
denote the set of strategy profiles. An aggregating function AGG: S — A
selects an outcome a from a set A for every strategy profile s. Each player
¢ has a utility function u;: A — R describing his preferences over the
selected outcome. We assume only that the sets 5; and A are subsets of
abstract topological spaces, but in all our examples they are simply subsets
of Euclidean spaces.

An aggregation game consists of the simultaneous selection of individual
strategies where players’ payoffs are computed through the realized outcomes.
With an abuse of notation, we denote this by u;(s) = u;(AGG(s)).

Next, we describe the notion that every player not limited by his own
feasibility constrains, i.e. not playing a boundary strategy, can move the
aggregate value within some neighborhood of its current value. Formally,
the range of influence of player i at s_; = (81,89, ..., Si1, Siq1y..er Sn) 18
AGG(S1, ey 8ic15 54y Siq1y ooy Sn) © A An individually responsive aggregating
function AGG has the property that, for every player ¢ and strategy profile
s, if AGG(s) is on the boundary of i’s range of influence at s_;, then s; is on
the boundary of i’s feasible set of strategies S;.



A utility function has no local mazima if every (interior) local maximum
is actually a global maximum. That is, if u;(a) is a maximum of u; over a
neighborhood of a, then it is a maximum over A.

Finally, player ¢ is completely satisfied with a strategy profile s if u;(AGG(s))
is a maximum of u; over A. Player ¢ is polarized at a strategy profile s if s;
is on the boundary of 5;. Based on these definitions, we have,

Polarization Lemma. In any (pure strategy) Nash Fquilibrium of an
aggregation game with an individually responsive aggregating function and
utility functions with no local mazxima, every player who is not completely
satisfied is polarized.

Proof: Suppose not. Say we have a Nash Equilibrium with player ¢ neither
completely satisfied nor playing a boundary strategy. Let s be the equilibrium
strategy profile and R; be i’s range of influence at s_;. Since s; is not on the
boundary of i’s feasible set of strategies and AGG is individually responsive,
AGG(s) is not on the boundary of R; (to see this note that a restatement
of individual responsiveness is that at any s_; and an s; interior to 5; the
aggregation function must yield a value interior to i’s range of influence).
Thus, R; is a neighborhood of AGG(s). Furthermore, since 7 is not completely
satisfied and u; has no local maxima, u(AGG(s)) is neither a global nor local
maximum. This means that there must be some a; in R; with w;(a}) >
u;(AGG(s)). Since ! is in player i’s range of influence, s, is not a best
response and we have a contradiction.

In fact, even a minimal amount of disagreement between the players’
preferences leads to polarization for all but one player. To be precise,

Corollary. If no single outcome is optimal for more than one player, then
at any Nash Fquilibrium of an aggregation game satisfying the conditions of
the lemma, at least n — 1 players are polarized.

Remarks:

1. The scope of the lemma. The sufficient conditions used in the polar-
ization lemma are quite general. Individually responsive aggregation
functions, as described by the general topological property above, in-
clude many aggregation methods other than those obtained by adding



or averaging individual positions. Weighted averages, geometric av-
erages, averages of monotonic functions of the players positions, are
illustrations of individually responsive aggregation functions. If the
players positions and the set of aggregate values are one dimensional,
for example, any function which is strictly monotonic coordinatewise
is individually responsive.

. A similar observation is true for the no (interior) local maximum con-
dition. Consider the cases that the set of possible aggregate values is
convex. For any strictly convex utility function there are no interior
local maxima, and the condition holds. Conversely, if an individual
utility functions is concave, any interior maximum is a global maxi-
mum and the condition holds. But intermediary conditions are also
possible. For example any function with the property that all its local
maxima are global, e.g., multiple equal peaks, satisfies the condition.

. Mixed strategies. The polarization lemma holds for pure strategy Nash
Equilibria but not necessarily for mixed strategies. Consider the charity
example where each player has a target value of 10%. A mixed strategy
equilibrium exists where each player chooses either 4% or 6% with
equal probability. In this case, neither player is polarized, and neither
is completely satisfied. However, if each player’s utility is a strictly
concave function of his own strategy (keeping the opponents fixed), it
is easy to see that there are only pure strategy Nash equilibria, and
thus the polarization lemma applies in general.

. General best response. The polarization lemma can be applied to an
individual player in a game. For example, fix any strategies for players
2,3, ...,n and consider a best response strategy of player 1. If player 1’s
utility function has no local maxima and the aggregation function is
individually responsive to her, then any of her best response strategies
will result in her complete satisfaction or polarization. This means that
even in a world where some of the players are irrational, all the players
that optimize relative to beliefs about opponents strategies must be
either completely satisfied or polarized. This observation may also be
useful in studying other best response based notions, such as rational-
izability [6, 7] and Cournot best response dynamics.



5. The lemma as a computational device. The polarization lemma may
help in computing solutions that are based on the notion of best re-
sponse. For example, in aggregation games that satisfy the hypotheses
of the corollary, the corollary offers a severe reduction of the possible
equilibria of the game. As an extreme case, notice that if the strategy
sets are unbounded (or simply have no boundary), then any disagree-
ment on the best choice implies the nonexistence of an equilibrium.
Similar simplification are possible in the analysis of Cournot best re-
sponse dynamics.

3 An example without polarization: political
debates

Despite the generality of the polarization lemma, most real life aggregation
games do not end in polarization. To discuss the possible reasons, it is useful
to introduce another example.

Consider a social decision maker who has to decide on the allocation of
money to m budget items. Say the game is played by several interested
advocates who are trying to influence his decision.? Let B, a closed convex
subset of R™, denote the set of possible budget allocations. Simultaneously,
every advocate chooses a point from B as his proposal for the final budget,
and after hearing these proposals the social decision maker chooses a point
in B to be the selected budget.

Assuming that the aggregation rule of the decision maker and the prefer-
ences of the advocates satisfy the hypotheses of the corollary in the previous
section, we should expect at least n — 1 advocates to offer budgets on the
boundary of the set of feasible budget. Why is this often not the case?

First, the usual assumption of game theory that players maximize utility
does not hold in many situations. Second, the players may not have complete
information about opponents preferences assumed in the lemma. It would be
interesting to investigate polarization in games of incomplete information.

Third, the assumption of individual responsiveness to advocates’ positions

?There are several examples from politics that fall into this category. For example
the advocates may be lobyists trying to influence a budget committee or political parties
trying to influence the aggregate opinion of the voters.



does not hold in many situations. For example if the set of possible budgets
is large, the opinion of an advocate who goes to “too far an extreme” may
be totally ignored, and the social decision mechanism may stop responding
to it.

Finally, the lemma applies to an isolated one-shot game. In practice,
the game or similar games may be repeated. For example, an advocate may
find himself to the left of one set of advocates and thus strategically want to
choose an extreme left position, while among other advocates, find himself to
the right. If the system has memory, it may be costly for him to flip flop his
recommendation from one extreme to another. Thus a cautious non-myopic
advocate may prefer to moderate his position or even act honestly in any
given game.

4 Conclusions

Polarization can be a costly but natural phenomenon. In some examples, an
arbitrarily small disagreement in preferences destabilizes a generally positive
equilibrium to one where all players are miserable. In addition, we have
generalized this to a class of aggregation games.

Polarization, of course, does not always occur and mechanisms may be
chosen to actively avoid it. In politics, for example, adopting the choice of
the median voter[8], rather then the average voter, results in an aggregation
function that is not individually responsive and thus people do not necessar-
ily polarize. Similarly, in the study of arbitration, it is recommended that the
arbitrator use final-offer-arbitration, where she chooses an outcome recom-
mended by one of the disputing parties, and not the average positions of the
disputing parties [9]. Final-offer-arbitration does not satisfy the individual
responsiveness condition. And, in households or other organizations, peo-
ple often delegate decisions. This also breaks the individual responsiveness
condition and thus avoids frustrating and costly polarization.
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