
Beating the Hold-Out:
Bounds for K-fold and Progressive Cross-Validation

Avrim Blum�
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
avrim+@cs.cmu.edu

Adam Kalaiy
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
akalai+@cs.cmu.edu

John Langford
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
jcl+@cs.cmu.edu

Abstract

The empirical error on a test set, thehold-out esti-
mate, often is a more reliable estimate of general-
ization error than the observed error on the training
set, thetraining estimate. K-fold cross validation
is used in practice with the hope of being more ac-
curate than the hold-out estimate without reducing
the number of training examples. We argue that
the k-fold estimate does in fact achieve this goal.
Specifically, we show that for any nontrivial learn-
ing problem and learning algorithm that is insen-
sitive to example ordering, the k-fold estimate is
strictly more accurate than a single hold-out esti-
mate on 1/k of the data, for2 < k < n (k = n is
leave-one-out), based on its variance and all higher
moments. Previous bounds were termed sanity-
check because they compared the k-fold estimate
to the training estimate and, further, restricted the
VC dimension and required a notion of hypothesis
stability [2]. In order to avoid these dependencies,
we consider a k-fold hypothesis that is a random-
ized combination or average of thek individualhy-
potheses.

We introduceprogressive validationas another pos-
sible improvement on the hold-out estimate. This
estimate of the generalization error is, in many ways,
as good as that of a single hold-out, but it uses an
average of half as many examples for testing. The
procedure also involves a hold-out set, but after an
example has been tested, it is added to the training
set and the learning algorithm is rerun.

1 INTRODUCTION
In many situations, a learning algorithmmust simultaneously
produce a hypothesis having low generalization error and a�Supported in part by NSF grant CCR-9732705ySupported by an NSF Graduate Fellowship.

high-accuracy estimate of this error. We make the usual as-
sumption that data is drawn independently from some fixed
distribution, and the error of a hypothesis on examples from
this distribution is called the generalization error ortrue er-
ror.

Several procedures exist for generating pairs of the formhhypothesis; estimated errori. Such a procedure can be scored
in two dimensions: the true error of its hypothesis, and the
error discrepancy: j(estimated error)� (true error)j.

The resubstitution proceduregenerates a hypothesis by
training on all the data and generates an error estimate by
measuring the number of mistakes of the learned hypothesis
on the same data used for training. Since the training error
can be a very optimistic estimate of the true error, quanti-
ties such as the VC dimension are used to bound the error
discrepancy.

The hold-out proceduredivides the data in two parts:
the training set, on which the hypothesis is trained, and the
hold-out set, on which its performance is measured. Among
the nice properties that this procedure obeys are Hoeffding
bounds guaranteeing, regardless of the learning algorithm,
that with high probability the error discrepancy will be small.

Thek-fold proceduredivides the data intok equally sized
folds. It then produces a hypothesis by training onk�1 folds
and testing on the remaining fold. This is repeated for each
fold, and the observed errors are averaged to form thek-fold
estimate. It is not obvious what hypothesis to output along
with this error estimate. In previous analysis [2], the final
hypothesis was a new hypothesis trained on all the data. Be-
cause this hypothesis was constructed using more data than
the hypotheses used for computing the error estimate, in or-
der to argue for the accuracy of the estimate one needs some
assumption that limits the effect of this extra training data. In
particular, previous work givessanity-check boundswhich
show that the k-fold estimate is almost as good as the train-
ing error estimate in the resubstitution procedure, under the
assumption that the learning algorithm has some form of hy-
pothesis stability.

Our k-fold procedure, instead, outputs thek-fold hypoth-
esis, a meta-hypothesis that, given an examplex, randomly
chooses one of thek generated hypotheseshi and outputs
the prediction of that hypothesis,hi(x). Alternatively, if hy-
potheses are allowed to make predictions in[0; 1] and we are
usingL1 loss, this is equivalent, in terms of its true error, to
outputting the average value ofh1(x); : : : ; hk(x) when the
true labels are0; 1. We show that this k-fold procedure pro-

duces a better estimate than the hold-out procedure in sense
that that the error discrepancy has smaller absolute moments,
and that Hoeffding bounds still apply.1

The progressive validation procedure, like the hold-out
procedure, first selectss examples for testing, and the re-
mainder are for training only. It generates a sequence ofs hypotheses, where theith hypothesis is trained on all of
training dataplusthe firsti� 1 examples of the test set, and
tested on theith example of the test set. Repeating this for1 � i � s, we count the number of mistakes to produce an
error estimate. The hypothesis returned, as above, is a meta
hypothesis which randomly selects among thes generated
hypotheses to make its prediction. This procedure is very
similar to methods used to convert online to batch learning
algorithms [9, 7], but the kinds of guarantees we are looking
for are somewhat different. In particular, we argue that the
progressive validation procedure gives as good an estimate
as the hold-out procedure with a hold-out of sizes, while
training on more examples.

2 PRELIMINARY DEFINITIONS

Let X be the instance space and letD be a fixed distribu-
tion overX. We also assume a fixed target functionf :X �! f0; 1g. A learning algorithm produces a hypothesish : X �! [0; 1]. We allow the range to be[0; 1], for con-
venience, so that we have a notion of averaging hypotheses.
The error of this hypothesis on a particular examplex 2 X
is eh(x) = jh(x) � f(x)j: The true error of this hypothesis
is �eh = Ex2D[eh(x)]:
3 K-FOLD ANALYSIS

Imagine that we will flip an unfair coin ten times, and we
want to estimate the probability of headsp. The full estima-
tor “p̂10 = (total number of heads)=10” seems better than
the one-flip estimator “̂p1 = 1 if the first flip is a head andp̂1 = 0 otherwise”, but in what sense? Forp = 1=100, the
chance thatjp̂1 � pj > 0:05 is 1/100, while the chance thatjp̂10�pj > 0:05 is nearly 10/100, namely the chance that any
of the flips were heads. Thus,p̂10 doesn’t completely domi-
natep̂1 under every conceivable notion of “better”. Instead,
whatcanbe said is thatE [jp̂10 � pjm] < E [jp̂1 � pjm], for
all m � 1. We make a similar statement about the k-fold
procedure in comparison to a hold-out of sizen=k.

Say we have a labelled data set of sizen, and1 < k � n:
We divide the data intok equally sizedfolds. Then we gen-
eratek hypotheses,h1; : : : ; hk, wherehi is trained on all
the data except theith fold. We let�ei = �ehi be the true
error of hi, and êi be the measured error frequency ofhi
on the ith fold. As discussed in the introduction, thek-
fold hypothesis, hK , makes a prediction on an examplex
by randomly choosing1 � i � k and outputtinghi(x) or,
equivalently in terms of true error, by choosinghK(x) =(h1(x) + h2(x) + � � � + hk(x))=k: In either case, the true
error of the k-fold hypothesis is the average of the true errors

1Since our bounds compare an estimate to the hold-out esti-
mate instead of the training error estimate, they are not sanity-check
bounds, so they must beinsanity-check bounds.

of its k hypotheses,�eK = �e1(x) + �e2(x) + � � �+ �ek(x)k :
Finally, we let the k-fold error estimate be the average of the
fold estimates,̂eK = (ê1 + ê2 + � � �+ êk)=k:

Notice that the estimated and true errors of thek hy-
potheses and k-fold hypothesis,êi; �ei; êK; �eK , are random vari-
ables that are functions of the data set. We would like the
error discrepancyjêK � �eK j to be small in absolute value.

We begin by showing that moments of the error discrep-
ancyjêK � �eKj areno larger thanthose of a single hold-out
of sizen=k. Notice that the error discrepancy of a single
hold-out isjê1� �e1j. The following theorem takes the trivial
observation that the k-fold error is an unbiased estimate of
the true error a step further. Expectations, unless otherwise
noted, are over complete data sets drawn i.i.d. fromD.

Theorem 1 For all m � 1, E [(error discrepancy)m] is no
larger for the k-fold procedure than for a hold-out of a1=k
fraction of the data, i.e.,E[jêK � �eKjm] � E[jê1 � �e1jm]:
Proof. Jensen’s inequality for any convex functionf and
realsxi is,f �x1 + x2 + � � �+ xnn � � f(x1) + f(x2) + � � �+ f(xn)n :
Becausejxjm is convex for allm � 1,jêK � �eKjm = ���� ê1 � �e1 + � � �+ êk � �ekk ����m� jê1 � �e1jm + � � �+ jêk � �ekjmk :
Using linearity of expectation and that, for1 � i � k,E[jê1 � �e1jm] = E[jêi � �eijm] the expected value of the
right-hand side isE[jê1� �e1jm], whereas the expected value
of the left-hand side isE[jêK � �eKjm]. This completes the
proof.

Now we wish to show that the k-fold error is a better
estimate. However, it is possible that the hold-out error isa
perfect estimate of the true error, if, for example, the learned
hypothesis has true error equal to 0 or 1. To say something
meaningful, we need to assume the learning algorithm has
the property thatPr[ê1 6= �e1] > 0 (all probabilities are taken
over the draw of the full data set). In addition, our proof
will need to assume that the instance spaceX is finite, and
that the learning algorithm is insensitive to example ordering.
This insensitivity can be enforced in our k-fold procedure
simply by shuffling the training examples before giving them
to the learning algorithm, on each of thek runs.

It is interesting to note that the k-fold estimate can be
identical to the single hold-out estimate ifk = n or k = 2.
In the case wherek = n (leave-one-out), Kearns and Ron
[8] give several nice examples of poor performance. For in-
stance, a learning algorithm that uses the rule “if I have seen
an even number of positive examples then predict positive,
else predict negative” will have the property that no matter

what the data,̂e1 = ê2 : : : = ên; thus the leave-one-out
estimate will be exactly the same as a hold-out of size 1.
Furthermore, if the underlying distribution has 50% positive
examples, then the true errors will be the same as well. In
the case wherek = 2, an example is as follows. Suppose
that we are to predict the label of integers drawn uniformly
in some range[1; : : : ; 2t], and the truth is that all labels are
0. Our hypotheses have a single parameterp, predictingp
on even integers, and1� p on odd integers, thus having true
error 50% regardless ofp. Furthermore, our “learning” al-
gorithm choosesp to be the fraction of even examples seen
in the input. Now, ifk = 2, we will have two hypotheses
with p1 andp2, andê1 = p1p2 + (1 � p1)(1 � p2) = ê2.
So the two-fold estimate, which is identical to the hold-out
estimate, is no better an estimate of the 50% true error.

Theorem 2 Suppose the example space is finite, our learn-
ing algorithm is insensitive to example ordering, and the
hold-out estimate is not always perfect, i.e.Pr[ê1 6= �e1] >0. Then, for2 < k < n andm � 2,E[jêK � �eKjm]<E[jê1 � �e1jm];
where, unlike the previous theorem, we now have strict in-
equality.

Proof. Without loss of generality, we assume that all exam-
ples in our finite example space have positive probability so
that every dataset has positive probability. Now, for a strictly
convex function, such asjxjm, m � 2, Jensen’s inequality
holds with equality if and only if all the termsxi are equal.
Substitutingxi = êi � �ei, we see that if̂ei � �ei 6= êj � �ej
for some dataset, then we are done. Otherwise, for contra-
diction, assume thatêi � �ei = êj � �ej ; for all data sets, and1 � i; j � n: (1)

Now, we consider several possible data sets. To describe
these, letS1 be a set ofnk � 2 examples, letS2 be a set ofnk�1 examples, and letS3; S4; : : : ; Sk be sets ofnk examples
each. The basic idea is that we will be swapping the first
element of the first fold with first element of the second fold.
Specifically, the data sets we consider (using semicolons to
separate the folds) are:

A. z; x; S1; z0; S2; S3; S4; � � �
B. z0; x; S1; z; S2; S3; S4; � � �
C. z; y; S1; z0; S2; S3; S4; � � �
D. z0; y; S1; z; S2; S3; S4; � � �

To distinguish between the hypotheses of different data sets,
we’ll refer to the errors by their letters, e.g.�eBi refers to the
true error of the hypothesishBi trained on everything but theith fold in dataset B.

By the assumption of insensitivity to example order, we
see that̂eA3 � �eA3 = êB3 � �eB3. By (1), we see thatêA1 � �eA1 = êB1 � �eB1. Similarly, insensitivity to exam-
ple ordering implies that̂eC3 � �eC3 = êD3 � �eD3 so we
haveêC1 � �eC1 = êD1 � �eD1. Noting thathA1 = hC1 andhB1 = hD1, we subtract equations to get,êA1 � �eA1 � (êC1 � �eC1) = êB1 � �eB1 � (êD1 � �eD1)êA1 � êC1 = êB1 � êD1:

Now, again using the fact thathA1 = hC1 andhB1 = hD1
we have:eA1(x)� eA1(y) = eB1(x)� eB1(y);
whereeA1(x) denotes the error ofhA1 on examplex. Since
this last equation holds for arbitraryz, z0, andSi, it means
that changing a single training example (z to z0) does not
change the quantitye(x) � e(y). Therefore,eh(x) � eh(y)
must be the same for any training set, because one training
set can be changed to any other by a sequence of individual
changes. Since this is also true for arbitraryy, this means
the the functionf(x; y) = eh(x) � eh(y) is well-defined
(i.e., it doesn’t depend on the training data). In particular, we
see thateh(x) � �eh = Ey2D[eh(x) � eh(y)] is a constant
quantity across training sets forh.

This strict requirement thateh(x)� �eh is constant leads
us to conclude thateh(x) = eh(y) always. To see this, con-
sider the following data set:

E. x; x; : : :; x; y; y; : : : ; y; S3; S4; � � �
By applying (1) to data set E, we see thatêE1 � �eE1 = eE1(x)� �eE1 = eE2(y) � �eE2:

But, from the previous paragraph, we know these differences
do not depend on the specific training data. Thus,eE1(x) ��eE1 = eE1(y)� �eE1, eE1(x) = eE1(y); andeh(x) = eh(y)
for anyh learned from training data. This implies all indi-
vidual fold error estimates are perfectly accurate, violatingPr[ê1 6= �e1] > 0.

It is interesting to consider when the k-fold estimate will
be much better than the hold-out. It is sufficient thatêi � �ei
have a significant chance of different thanêj � �ej , i.e. that
these variables are not completely correlated. One scenario
in which this is the case is when you have a form of hypoth-
esis stability, which could guarantee that�ej is close to�ei.

Finally, we show a worst-case type of result, that Hoeffd-
ing bounds can still be used for the k-fold estimate, as if we
had just a hold-out of sizen=k:

Theorem 3 Hoeffding bounds hold as if we usedn=k testing
examples. In particular,Pr[êK > �eK+a] � e�2a2n=k andPr[êK < �eK�a] � e�2a2n=k:
Proof (sketch). The proof of Hoeffding bounds for the stan-
dard hold-out case of̂e1 and�e1 with a hold-out set of sizes = n=k, e.g. [1], begins by boundingE[e�s(ê1��e1)]: Then
they use Markov’s inequality with this bound,Pr[ê1 > �e1 + a] = Pr[e�s(ê1��e1) > e�a] � E[e�s(ê1��e1)]e�sa :
However, sincee�sx is a convex function ofx, Jensen’s in-
equality implies that,e�s(êK��eK) = e�sk (ê1��e1+���+êk��ek)� e�s(ê1��e1) + � � �+ e�s(êk��ek)k :
ThusE[e�(êK��eK)] � E[e�(ê1��e1)], and the proof goes through.

4 PROGRESSIVE VALIDATION
ANALYSIS

Again, we suppose we have a data set of sizen. This time we
break it into two sets, a training set and a testing set, with the
test set havings elements. In this section, we redefinehi, êi,
and�ei. Hypothesishi is generated by training on the training
set and the firsti�1 elements of the testing set. It is tested on
theith element of the testing set to yield an estimateêi of its
true error,�ei. The progressive hypothesis chooses randomly
among thes hypotheses to label an example. Thus it has true
error�eP, with �eP = �e1 + �e2 + � � �+ �ess :
Finally, we let the progressive error estimate be the averageêP = (ê1 + ê2 + � � �+ ês)=s:

We would like to show that the progressive error with a
hold-out of sizes is as good an estimate of the true error
of the progressive hypothesis as the hold-out error is of the
hold-out hypothesis. First we show that the same Hoeffding
bounds apply:

Theorem 4 Hoeffding bounds hold as if we used a hold-out
set of sizes . In particular,Pr[êP > �eP + a] � e�2a2s andPr[êP < �eP � a] � e�2a2s:
Littlestone [9], gives a quite detailed proof of the multiplica-
tive (Chernoff-style) version of this theorem. The sketch be-
low uses the same basic argument.
Proof (sketch). As before, we only need to make a slight
modification to the standard proof of Hoeffding bounds. The
standard proof [1] begins by boundingE[e�s(êP��eP)]: This
bound is achieved by writinge�s(êP��eP) as a product ofs
termse�Yi, with E[e�Yi] � e�2=8: (2)

The Yi’s, in the standard proof are independent variables,
perhaps coin flips, but are adjusted so that they each have
mean 0. In our setting,Yi corresponds tôei � �ei, the error
discrepancy of theith hypothesis with theith measurement.
In the ordinary setting theseYi’s are independent because
theith hypothesis doesn’t depend on any previous data in the
hold-out. In our setting, they are not independent. But, while
the previous data in the hold-out may not be independent of
the hypothesis, it is independent of theith hold-out example.
Since (2) holds regardless of the hypothesis, we still have
thatE[e�YijY1; Y2; : : : ; Yi�1] � e�2=8.

Now, for two non-negative random variablesA andB,
with E[A] � c1 andE[BjA] � c2, it is true thatE[AB] �E[Ac2] � c1c2. Thus, by induction, even though theYi’s
aren’t independent,E[e�s(êP��eP)] = E[Q e�Yi] � e�2s=8,
which is all that is needed for the proof.

In fact, if we consider just the variance (the second mo-
ment) we can make a stronger statement. In particular, the
variance of the progressive validation estimate, with respect
to the true error of the progressive validation hypothesis,is
no worse than the variance of an estimate produced by testing
the progressive validation hypothesis on a new, extra, hold-
out of sizes.

Theorem 5 Let êP
0 be an estimate of the progressive vali-

dation hypothesis’s error measured on a new, independently
chosen hold-out of sizes. Then,E[(êP � �eP)2] � E[(ê0P � �eP)2]:
Proof. Both quantities above are averages ofs terms. The
RHS is the variance of the sum of independent terms, which
is the sum of the variances. Each of these i.i.d. terms has a1=s chance of being distributed likêei, for eachi. Thus the
RHS is E[Psi=1(êi � �eP)2]s2 = E[Psi=1(ê2i � �e2P)]s2 :
The LHS isE[(êP� �eP)2] = E[(P(êi� �ei)2]=s2: We would
like to again use the fact that the variance of a sum of in-
dependent terms is the sum of variances. While these terms
are not independent, we do have the martingale-like prop-
erty thatE[êj � �ej jêi � �ei] = 0 for i < j. Now,E[AjB] =0 =) E[AB] = 0; so thatE[(êj � �ej)(êi � �ei)] = 0 fori 6= j. This means that even though the terms aren’t indepen-
dent, the variance of the sum is still the sum of the variances.
Thus the LHS is,E[P(êi � �ei)2]s2 = E[P(ê2i � �e2i)]s2 :
Thus the LHS and RHS are quite similar. They only dif-
fer in that the RHS has�eP’s and the LHS has�ei’s. Because(�e21 + � � �+ �e2s)=s � ((�e1 + � � �+ �es)=s)2 = �e2P, we’re done.
Unfortunately, this argument does not work on the higher
moments.

5 EXPERIMENTS

The motivation behind progressive validation is that it allows
one to train on more examples than the hold-out estimate.
With the extra examples training algorithms should be able
to choose a better hypothesis. Many learning problems ex-
hibit thresholding where a small increase in the number of
examples dramatically improves the accuracy of the hypoth-
esis. Consider anN dimensional feature space in the boolean
setting where it is known that one feature is an exact predic-
tor. Consider the learning algorithm: cross off features in-
consistent with the training data and output the hypothesis
that takes a majority vote over all features remaining. If the
example distribution is uniform overf0; 1gN , then this ex-
ample exhibits a thresholding behavior because the accuracy
of the current hypothesis is almost 50% until the number of
consistent features is reduced to a constant, at which pointit
quickly increases to 100%. In expectation,12 of the features
will be eliminated with each example, leading us to expect a
threshold nearlgN .

In our experiments, we built a synthetic data generator
which picks a feature uniformly at random then produces
some number of correctly-labeled examples consisting ofN =1000 boolean features, withPr(true) = :5. The output of
this generator was given to the learning algorithm.

In the first test, we trained onn�10 examples and tested
on 10 examples. In the second test, we trained onn � 10
examples and applied progressive validation to the next10

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20training set size

error

"Holdout"
"Progressive_Validation"

Figure 1: True error vs. training size for hold-out and pro-
gressive validation

examples. We repeated this experiment 1000 times for10 �n � 30 and averaged the results in order to get an empirical
estimate of the true error of all hypotheses produced, shown
in Figure 1. Error bars in the figure are at one standard devi-
ation.

As expected, the hold-out’sperformance was much worse
than that of progressive validation. In general, the degreeof
improvement in empirical error due to the progressive vali-
dation depends on the learning algorithm. The improvement
can be large if the data set is small or the learning problem
exhibits thresholding behavior at some point past the number
of training examples.

In order to compare the quality of error estimation, we
did another set of runs calculating the error discrepancyjtrue error�
estimated errorj. Five training examples were used followed
by either progressive validation on ten examples or evalu-
ation on a hold-out set of size ten. The “true error” was
calculated empirically by evaluating the resulting hypothe-
sis for each case on another hold-out set of10000 examples.
The hold-out estimate on five examples has larger variance
then the progressive validation estimate. One might suspect
that this is not due to a good estimation procedure but due
to the fact that it is easier to estimate a lower error. To in-
vestigate this further, we performed a hold-out test which
was trained on nine examples, because the true error of the
progressive validation hypothesis with five training examples
and ten progressive validation examples was close to the true
error of a hypothesis trained on nine examples, as shown in
the following table:

true error jtrue error� est.j
Prog. Val.(5; 10) :205� :003 :088� :011
Hold-out(5; 10) :436� :005 :120� :015
Hold-out(9; 10) :235� :005 :109� :015

Averages of the true error and estimate accuracy favor
progressive validation in this experiment with a hold-out set
of size 10. In fact, the progressive estimate and hypothesis
on a data set of size 15 were better than the hold-out estimate

and hypothesis on a data set of size 19.

6 RELATED WORK, FUTURE WORK,
AND CONCLUSIONS

Leave-one-outcross-validation, which is also common in prac-
tice, corresponds tok = n, and the bounds [8] depend on the
VC dimension and hypothesis stability. Restrictions of some
kind seem unavoidable, as there are interesting examples of
situations where the leave-one-out estimate is always off by
50% [8]. These terrible-case examples do not exist for k-
fold cross-validation with smallk, because it is better than
a hold-out set of a reasonable size, which is a good estima-
tor. In addition, certain algorithms, such as nearest neighbor,
have been shown to have good performance with leave-one-
out [4]. Our bounds, however, are not very informative in the
leave-one-out case, because we would be comparing it to a
hold-out of a single element.

Anthony and Holden [2] extend the analysis of Kearns
and Ron [8] to the k-fold setting. They judge the k-fold er-
ror as an estimate of the true error of the hypothesis trained
on all the data. This is a natural formulation of the prob-
lem, because in practice the hypothesis often chosen is this
untested hypothesis. However, because the new hypothesis
is untested, their performance guarantees depend on VC di-
mension, and their results are sanity-check bounds which re-
late the k-fold error to the training error. For largek, leaving
a small number out, the training error may be a better esti-
mate than the corresponding hold-out, and their bounds may
bridge the gap between leave-one-out (k = n) and typical
k-fold (k is a small constant).

On another note, if the k-fold hypothesis is chosen as an
average of thek generated hypotheses rather than the ran-
domizing hypothesis, it is similar to bagging[3]. In that sit-
uation, the goal is to reduce the generalization error, which
Breiman claims can be achieved by reducing the variance in
the hypothesis. On the other hand, we are concerned more
with the variance in our error discrepancy. Thus decreasing
the generalization error of the final hypothesis would make
the k-fold error a worse estimate. It would also be interest-
ing to explore the connection between hypothesis instability,
which Breiman discusses for the purposes of reducing gener-
alization error, to hypothesis stability, which Kearns andRon
[8] trace back to Devroye and Wagner [5] for the purposes of
accurate error estimation.

In conclusion, we have shown that the k-fold estimate
of generalization error is better than testing on a hold-outof1=k of the data. In future work, it would be nice to analyze
how much better the k-fold estimate is. We have also in-
troduced progressive validation. We provide theoretical and
experimental evidence that it does not reduce our error esti-
mate accuracy, while providing more examples for training
than a simple hold-out set.

References

[1] N. Alon and J. Spencer.The Probabilistic Method.Wi-
ley, 1991.

[2] M. Anthony and S. B. Holden Cross-Validation for Bi-
nary Classification by Real-Valued Functions: Theoret-

ical Analysis InProc. Eleventh Annual Conference on
Computational Learning Theory, 1998.

[3] L. Brieman. Bagging predictors.Machine Learning,
24(2):123-140, 1996.

[4] L. Devroye, L. Gyrofi, and G. Lugosi.A Probabilistic
Theory of Pattern Recognition.Springer-Verlag, 1996.

[5] L. Devroye and T. Wagner. Distribution-free perfor-
mance bounds for potential function rules.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
IT-25(5):601-604, 1979.

[6] Y. Freund and R. Shapire. Discussion of the paper
”Arcing classifiers” by Leo Breiman.Annals of Statis-
tics, 26(3): 824-832, 1998.

[7] D.P. Helmbold and M.K. Warmuth. On Weak Learning.
JCSS, 50(3): 551-573, 1995.

[8] M. J. Kearns and D. Ron. Algorithmic stabil-
ity and sanity-check bounds for leave-one-out cross-
validation. InProc. Tenth Annual Conference on Com-
putational Learning Theory, 1997.

[9] N. Littlestone. From on-line to batch learning. In
Proceedings of the 2nd Annual Workshop on Compu-
tational Learning Theory, pp. 269–284, 1989.

