Beating the Hold-Out:
Bounds for K-fold and Progressive Cross-Validation

1

In many situations, a learning algorithm must simultangous
produce a hypothesis having low generalization error and aassumption that the learning algorithm has some form of hy-

*Supported in part by NSF grant CCR-9732705
TSupported by an NSF Graduate Fellowship.

Avrim Blum*

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
avrim+@cs.cmu.edu

Abstract

The empirical error on a test set, theld-out esti-
mate often is a more reliable estimate of general-
ization error than the observed error on the training
set, thetraining estimate K-fold cross validation

is used in practice with the hope of being more ac-
curate than the hold-out estimate without reducing
the number of training examples. We argue that
the k-fold estimate does in fact achieve this goal.
Specifically, we show that for any nontrivial learn-
ing problem and learning algorithm that is insen-
sitive to example ordering, the k-fold estimate is
strictly more accurate than a single hold-out esti-
mate on 1/k of the data, f& < k < n (k =nis
leave-one-out), based on its variance and all higher
moments. Previous bounds were termed sanity-
check because they compared the k-fold estimate
to the training estimate and, further, restricted the
VC dimension and required a notion of hypothesis
stability [2]. In order to avoid these dependencies,
we consider a k-fold hypothesis that is a random-
ized combination or average of thendividual hy-
potheses.

We introduceprogressive validatioas another pos-
sible improvement on the hold-out estimate. This
estimate of the generalization error is, in many ways,
as good as that of a single hold-out, but it uses an
average of half as many examples for testing. The
procedure also involves a hold-out set, but after an
example has been tested, it is added to the training
set and the learning algorithm is rerun.

INTRODUCTION

Adam Kalaif
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
akalai+@cs.cmu.edu

John Langford
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
jcl+@cs.cmu.edu

high-accuracy estimate of this error. We make the usual as-
sumption that data is drawn independently from some fixed
distribution, and the error of a hypothesis on examples from
this distribution is called the generalization errortare er-

ror.

Several procedures exist for generating pairs of the form
(hypothesisestimated errgr Such a procedure can be scored
in two dimensions: the true error of its hypothesis, and the
error discrepancy |(estimated errgr— (true erroj|.

The resubstitution procedurgenerates a hypothesis by
training on all the data and generates an error estimate by
measuring the number of mistakes of the learned hypothesis
on the same data used for training. Since the training error
can be a very optimistic estimate of the true error, quanti-
ties such as the VC dimension are used to bound the error
discrepancy.

The hold-out proceduredivides the data in two parts:
the training set, on which the hypothesis is trained, and the
hold-out set, on which its performance is measured. Among
the nice properties that this procedure obeys are Hoeffding
bounds guaranteeing, regardless of the learning algorithm
that with high probability the error discrepancy will be sma

Thek-fold proceduralivides the data inté equally sized
folds It then produces a hypothesis by trainingion1 folds
and testing on the remaining fold. This is repeated for each
fold, and the observed errors are averaged to fornk-tudd
estimate It is not obvious what hypothesis to output along
with this error estimate. In previous analysis [2], the final
hypothesis was a new hypothesis trained on all the data. Be-
cause this hypothesis was constructed using more data than
the hypotheses used for computing the error estimate, in or-
der to argue for the accuracy of the estimate one needs some
assumption that limits the effect of this extra trainingedan
particular, previous work givesanity-check boundshich
show that the k-fold estimate is almost as good as the train-
ing error estimate in the resubstitution procedure, urger t

pothesis stability.

Our k-fold procedure, instead, outputs #éold hypoth-
esis a meta-hypothesis that, given an exampleandomly
chooses one of the generated hypothesés and outputs
the prediction of that hypothesig;(x). Alternatively, if hy-
potheses are allowed to make prediction®irl] and we are
usingL; loss, this is equivalent, in terms of its true error, to
outputting the average value 6f(z), ..., hx(x) when the
true labels ar®, 1. We show that this k-fold procedure pro-

duces a better estimate than the hold-out procedure in sensef its k hypotheses,
that that the error discrepancy has smaller absolute m@nent _ _
and that Hoeffding bounds still apply. _a@ e+ +e(r) .

The progressive validation proceduréike the hold-out k
procedure, first selects examples for testing, and the re- Finally, we let the k-fold error estimate be the average ef th
mainder are for training only. It generates a sequence offold estimates¢k = (é1 + é2 + -+ -+ éx) /k.
s hypotheses, where théh hypothesis is trained on all of Notice that the estimated and true errors of thay-
training dateplusthe first: — 1 examples of the test set, and potheses and k-fold hypothesis,é;, éx, ek, are random vari-
tested on theéth example of the test set. Repeating this for ables that are functions of the data set. We would like the
1 <1 < s, we count the number of mistakes to produce an error discrepanc{x — éx | to be small in absolute value.
error estimate. The hypothesis returned, as above, is a meta We begin by showing that moments of the error discrep-
hypothesis which randomly selects among thgenerated ancy|éx — ex| areno larger thanthose of a single hold-out
hypotheses to make its prediction. This procedure is very of sizen/k. Notice that the error discrepancy of a single
similar to methods used to convert online to batch learning hold-outis|é; — ;|. The following theorem takes the trivial
algorithms [9, 7], but the kinds of guarantees we are looking observation that the k-fold error is an unbiased estimate of
for are somewhat different. In particular, we argue that the the true error a step further. Expectations, unless otlserwi
progressive validation procedure gives as good an estimatenoted, are over complete data sets drawn i.i.d. ffdbm
as the hold-out procedure with a hold-out of sizewhile

training on more examples. Theorem 1 For all m > 1, E'[(error discrepancy™] is no
larger for the k-fold procedure than for a hold-out ofldk
2 PRELIMINARY DEFINITIONS fraction of the data, .e.,

. : L Ellex — ex|™] < Eller — e|™].
Let X be the instance space and Tetbe a fixed distribu-
tion over X. We also assume a fixed target functifn: Proof. Jensen’s inequality for any convex functignand
X — {0,1}. Alearning algorithm produces a hypothesis realsz; is,
h : X — [0,1]. We allow the range to b, 1], for con-
venience, so that we have a notion of averaging hypotheses.; (951 trat o+ l‘n) < F@) + flea) + -+ flzn) .
The error of this hypothesis on a particular example X n - n
isen(x) = |h(x) — f(z)|. Thetrue error of this hypothesis
ise, = Exep[eh(l‘)].

Becausdxz|™ is convex for allm > 1,

~ _ ~ _m
€1 —€1+ - +eép—eg
k

Imagine that we will flip an unfair coin ten times, and we < S Ui SEER 1

want to estimate the probability of heagsThe full estima- k

tor “p1p = (total number of headg10” seems better than Using linearity of expectation and that, far < i < &,
the one-flip estimatorgy = 1 if the first flip is a head and ~ E[|¢; — e1|™] = E[|é; — e;|™] the expected value of the
p1 = 0 otherwise”, but in what sense? Fpr= 1/100, the right-hand side i€[|é; — €,|™], whereas the expected value
chance thatp, — p| > 0.05 is 1/100, while the chance that of the left-hand side i¥/[|éx — éx|™]. This completes the
|[p1o—p| > 0.05is nearly 10/100, namely the chance thatany proof.ll

of the flips were heads. Thug,, doesn’t completely domi-

3 K-FOLD ANALYSIS lek — e | =

natep; under every conceivable notion of “better”. Instead, Now we wish to show that the k-fold error is a better
whatcanbe said is that [|p1o — p|™] < E[|p1 — p|™], for estimate. However, it is possible that the hold-out erra is
allm > 1. We make a similar statement about the k-fold perfect estimate of the true error, if, for example, theredr
procedure in comparison to a hold-out of sizg. hypothesis has true error equal to 0 or 1. To say something
Say we have a labelled data set of sizandl < k < n. meaningful, we need to assume the learning algorithm has
We divide the data inté equally sizedolds Then we gen- the property thaPr[é; # ¢;] > 0 (all probabilities are taken
eratek hypothesesh,, ..., hy, whereh; is trained on all over the draw of the full data set). In addition, our proof
the data except théh fold. We lete; = €, be the true will need to assume that the instance spaces finite, and
error of h;, andé; be the measured error frequency Iof that the learning algorithmis insensitive to example arder
on theith fold. As discussed in the introduction, tke This insensitivity can be enforced in our k-fold procedure
fold hypothesishk, makes a prediction on an exampte simply by shuffling the training examples before giving them
by randomly choosind < ¢ < k and outputting:; () or, to the learning algorithm, on each of theuns.
equivalently in terms of true error, by choosihg(z) = It is interesting to note that the k-fold estimate can be

(hi(x) + ha(z) + --- + hi(x))/k. In either case, the true identical to the single hold-out estimatekif= n or & = 2.
error of the k-fold hypothesis is the average of the truersrro In the case wheré = n (leave-one-out), Kearns and Ron
[8] give several nice examples of poor performance. For in-
ISince our bounds compare an estimate to the hold-out esti- Stance, a learning algorithm that uses the rule “if I have see
mate instead of the training error estimate, they are nétysaheck an even number of positive examples then predict positive,
bounds, so they must liesanity-check bounds else predict negative” will have the property that no matter

what the datag; = é5... = é,; thus the leave-one-out Now, again using the fact thaty; = hey andhg; = hp;
estimate will be exactly the same as a hold-out of size 1. we have:

Furthermore, if the underlying distribution has 50% positi _

examples, then the true errors will be the same as well. In car(z) —eary) = ep(z) —ep(y),

the case wheré = 2, an example is as follows. Suppose wheree,;(x) denotes the error df4; on exampler. Since

that we are to predict the label of integers drawn uniformly this last equation holds for arbitraey =/, andS;, it means

in some rangé€l, ..., 2t], and the truth is that all labels are that changing a single training exampletf ') does not

0. Our hypotheses have a single parametegpredictingp change the quantity(z) — e(y). Thereforeep, (z) — en(y)

on even integers, and— p on odd integers, thus having true must be the same for any training set, because one training
error 50% regardless @f Furthermore, our “learning” al- set can be changed to any other by a sequence of individual
gorithm chooseg to be the fraction of even examples seen changes. Since this is also true for arbitrgrythis means

in the input. Now, ifk = 2, we will have two hypotheses the the functionf(z,y) = ex(z) — en(y) is well-defined

with p; andps, andé; = pips + (1 — p1)(1 — p2) = éa. (i.e., it doesn't depend on the training data). In partiguee
So the two-fold estimate, which is identical to the hold-out see thak,(z) — €, = Eyeplen(z) — en(y)] is a constant
estimate, is no better an estimate of the 50% true error. guantity across training sets fbr

o This strict requirement that, (z) — €, is constant leads
_Theorem 2 Suppose th_e_example space is ﬂnl_te, our learn- ;s to conclude that, (¢) = ex(y) always. To see this, con-
ing algorithm is insensitive to example ordering, and the gjger the following data set:

hold-out estimate is not always perfect, ir[é; # é1] >

0. Then, for2 < k < nandm > 2, E.zx 0y, Y S35 545
Elléx — ex|" < E[|é1 — e1]™], By applying (1) to data set E, we see that
where, unlike the previous theorem, we now have strict in- ép1 —ep1 =ep (x) —ep1 = epa(y) — épa.

equality. But, from the previous paragraph, we know these differences
Proof. Without loss of generality, we assume that all exam- do not depend on the specific training data. Thus(z) —
ples in our finite example space have positive probability so €ég1 = eg1(y) — €p1, er1(2) = eg1(y), andep(z) = ex(y)

that every dataset has positive probability. Now, for acHyri for any learned from training data. This implies all indi-
convex function, such as:|™, m > 2, Jensen’s inequality vidual fold error estimates are perfectly accurate, vinfat
holds with equality if and only if all the terms; are equal. Prléy #¢e]>0.1

Substitutinge; = ¢; — ¢;, we see that ie; — ¢; # ¢; — ¢;

for some dataset, then we are done. Otherwise, for contra- Itis interesting to consider when the k-fold estimate will
diction, assume that be much better than the hold-out. It is sufficient that ¢;
have a significant chance of different thgn— ¢;, i.e. that
these variables are not completely correlated. One seenari
Now, we consider several possible data sets. To describein which this is the case is when you have a form of hypoth-
these, lets; be a set of; — 2 examples, let5; be a set of esis stability, which could guarantee thats close tce; .
7—1examples, and lef3, S, . . ., .Sk be sets of: examples Finally, we show a worst-case type of result, that Hoeffd-
each. The basic idea is that we will be swapping the first ing bounds can still be used for the k-fold estimate, as if we
element of the first fold with first element of the second fold. had just a hold-out of size/:

Specifically, the data sets we consider (using semicolons to .) .
separate the folds) are: Theorem 3 Hoeffding bounds hold as if we usegdk testing

examples. In particular,

¢ —e; = ¢; —¢;, foralldatasets, and <i,j <n. (1)

. / . . .
A Za$a51a < aSZa S3a S4a"'

2 2
Prlék > éx+a) < e~ 7% and Prléx < ex—a) < e 2% Mk,
B. 2,2, 515 2, S5 Ss; Sy _ B

Proof (sketch). The proof of Hoeffding bounds for the stan-

C. z,y,51; 2/, 82; Sg; Sa;- - dard hold-out case af, andée; with a hold-(qut s?t of size
, . oo s = n/k, e.g. [1], begins by bounding[e**(¢:=¢1)]. Then
D. 2%y, 515 2,52} 553 4 they use Markov’s inequality with this bound,

To distinguish between the hypotheses of different datg set s Ei-en)

we’ll refer to the errors by their letters, e.gg; refers to the Prlé; > 1 4+ a] = Pr[e** (G178 5 Ao < Bl o]

true error of the hypotheslsg;; trained on everything but the - ersa

ith fold in dataset B. However, since*** is a convex function of, Jensen’s in-
By the assumption of insensitivity to example order, we equality implies that,

see thate43 — €43 = éps — éps. By (1), we see that o N o

€41 — €41 = €1 — €p1. Similarly, insensitivity to exam- K=K = T (et ey

€
ple ordering implies thatcs — écs = éps — éps SO we ers(éi—er) oy eAs(Er—er)
haveécy — éc1 = ép1 — ép1. Noting thath 41 = h¢y and < i .

hpi1 = hpi, we subtract equations to get, L L
R) a K ? X) ThusE[e**k—%k)] < E[e*M€1=¢1)], and the proof goes through.
€A1 — €41 — (601 - 601) = €B1 —€B1 — (6D1 - 6D1) B

€A1 — €Ct €B1 — €D1-

4 PROGRESSIVE VALIDATION Theorem 5 Let ¢p’ be an estimate of the progressive vali-
ANALYSIS dation hypothesis’s error measured on a new, independently

) S chosen hold-out of size Then,
Again, we suppose we have a data set of 8iZ€his time we

break it into two sets, a training set and a testing set, \nith t El(ep —&p)?] < E[(¢p — p)°].
test set having elements. In this section, we redefibg é;, .
andé;. Hypothesish; is generated by training on the training Proof. Both quantities above are averagessaérms. The
set and the first— 1 elements of the testing set. Itis tested on RHS is the variance of the sum of independent terms, which
theith element of the testing set to yield an estimatef its is the sum of the variances. Each of these i.i.d. terms has a
true error¢,;. The progressive hypothesis chooses randomly 1/ chance of being distributed likg, for eachi. Thus the
among thes hypotheses to label an example. Thus it has true RHS s
errorep, with -) By io (e —ep)’] B (¢F — ep)]

e tért -+ E 52 B 52 .

ep =

The LHS isE[(ép—ep)?] = E[(> (& —e:)?]/s*. We would
S S h like to again use the fact that the variance of a sum of in-
ep=(e1t ezt &)/, dependent terms is the sum of variances. While these terms

h I(\jNe ‘f{vo;"d. like to show tgat the grogtress]:\{[erz] ertror with a are not independent, we do have the martingale-like prop-
old-out of sizes is as good an estimate of the true error o, thatE[é; — é;|é; — &] = 0 for i < j. Now, E[A|B] =

of the progressive hypothesis as the hold-out error is of the _ S N N
hold-out hypothesis. First we show that the same Hoeffding 0 = ElAB] = 0, sothati{(c; — ¢;)(e; — ¢)] = 0 for
bounds apply:

S
Finally, we let the progressive error estimate be the aeerag

i # j. This means that even though the terms aren't indepen-
dent, the variance of the sum is still the sum of the variances

Theorem 4 Hoeffding bounds hold as if we used a hold-out Thus the LHS is,
set of sizes . In particular, E[Y(é — &)Y ED.(e2 - 52)].

Priép>ep+al < e 207 and Prép < ep — a] < e=20%s. 52 52

Littlestone [9], gives a quite detailed proof of the muli Thus the LHS and RHS are quite similar. They only dif-
tive (ChernE)f]f-gtyle) ve?sion of thisthpeorem. The skggl; b feé in that tt‘ze RHS hasp's and the LHS h?zsils' Because
low uses the same basic argument. (€ + - +e&)/s > ((e1+- - +&)/s)” = ép, we're done.
Proof (sketch). As before, we only need to make a slight Unfortunately, this argument does not work on the higher
modification to the standard proof of Hoeffding bounds. The momentsH

standard proof [1] begins by boundidgf¢**(¢P=¢P)]. This
bound is achieved by writing**(°P~°P) as a product of
termse*Y:, with

5 EXPERIMENTS

E[MY] < A8) The motivation behind progressive validation s that itbw_ﬂ;

L - _ _ one to train on more examples than the hold-out estimate.
The Y's, in the standard proof are independent variables, \wjth the extra examples training algorithms should be able
perhaps coin flips, but are adjusted so that they each havgq choose a better hypothesis. Many learning problems ex-
mean 0. In our setting;; corresponds te; — ¢;, the ermor pjpt thresholding where a small increase in the number of
discrepancy of théth hypothesis with théth measurement. eyamples dramatically improves the accuracy of the hypoth-
In the ordinary setting thesg;’s are independent because ggjs. Consider ai dimensional feature space in the boolean
theith hypothesis doesn’t depend on any previous data in thegetiing where it is known that one feature is an exact predic-
hold-out. In our setting, they are notindependent. Butlevhi 1o Consider the learning algorithm: cross off features in
the previous data in the hold-out may not be independent of ;qnsjstent with the training data and output the hypothesis
the hypothesis, itis independent of thie hold-outexample. a1 takes a majority vote over all features remaining. é th
Since (2) holds regardless of the hypothesis, we still have example distribution is uniform ovei0, 117, then this ex-

that E[e*Y Y1, Ya, ..., Vioq] < /8. ample exhibits a thresholding behavior because the agcurac

Now, for two non-negative random variabldsand B, of the current hypothesis is almost 50% until the number of
with E[A] < ¢; and E[B|A] < ¢s, itis true thatZ[AB] < consistent features is reduced to a constant, at which joint
E[Aes] < erea. Thus, by induction, even though thg's quickly increases to 100%. In expectatignof the features
aren't independentiz[e*s(¢P—2P)] = E[[TeMi] < X7s/8, will be eliminated with each example, leading us to expect a
which is all that is needed for the prod. threshold neaig V.

In our experiments, we built a synthetic data generator

In fact, if we consider just the variance (the second mo- which picks a feature uniformly at random then produces
ment) we can make a stronger statement. In particular, thesome number of correctly-labeled examples consisting ef
variance of the progressive validation estimate, witheesp 1000 boolean features, wit®r(true) = .5. The output of
to the true error of the progressive validation hypothesis, this generator was given to the learning algorithm.
no worse than the variance of an estimate produced by testing In the first test, we trained an— 10 examples and tested
the progressive validation hypothesis on a new, extra,-hold on 10 examples. In the second test, we trainednor 10
out of sizes. examples and applied progressive validation to the heéxt

and hypothesis on a data set of size 19.

0.6 T T T
“Holdout" ——+—
"Progressive_Validation" ---x--~

bl P 1 6 RELATED WORK, FUTURE WORK,
T AND CONCLUSIONS
N " 1 Leave-one-outross-validation, which is also common in prac-

error x

tice, corresponds th = n, and the bounds [8] depend on the

VC dimension and hypothesis stability. Restrictions of som

x 5 kind seem unavoidable, as there are interesting examples of

02 x 1 situations where the leave-one-out estimate is alwaysyoff b

E 50% [8]. These terrible-case examples do not exist for k-

o1k . i fold cross-validation with smalk, because it is better than

y . a hold-out set of a reasonable size, which is a good estima-

e, tor. In addition, certain algorithms, such as nearest rimgh

N T T T VR r T have been shown to have good performance with leave-one-
out [4]. Our bounds, however, are not very informative in the

Figure 1: True error vs. training size for hold-out and pro- léa@ve-one-out case, because we would be comparing it to a

gressive validation hold-out of a single element.

Anthony and Holden [2] extend the analysis of Kearns
and Ron [8] to the k-fold setting. They judge the k-fold er-
ror as an estimate of the true error of the hypothesis trained

examples. We repeated this experiment 1000 times(fot on all the data. This is a natural formulation of the prob-
n < 30 and averaged the results in order to get an empirical lem, because in practice the hypothesis often chosen is this
estimate of the true error of all hypotheses produced, shownuntested hypothesis. However, because the new hypothesis
in Figure 1. Error bars in the figure are at one standard devi- is untested, their performance guarantees depend on VC di-
ation. mension, and their results are sanity-check bounds which re
As expected, the hold-out’s performance was much worselate the k-fold error to the training error. For largeleaving
than that of progressive validation. In general, the degfee @ small number out, the training error may be a better esti-
improvement in empirical error due to the progressive vali- mate than the corresponding hold-out, and their bounds may
dation depends on the learning algorithm. The improvement bridge the gap between leave-one-out{ n) and typical
can be large if the data set is small or the learning problem k-fold (% is a small constant).
exhibits thresholding behavior at some point pastthe numbe ~ On another note, if the k-fold hypothesis is chosen as an
of training examples. average of theé: generated hypotheses rather than the ran-
In order to compare the quality of error estimation, we domizing hypothesis, it is similar to bagging[3]. In that si
did another set of runs calculating the error discrepaimayg error-uation, the goal is to reduce the generalization error, whic
estimated errdr Five training examples were used followed Breiman claims can be achieved by reducing the variance in
by either progressive validation on ten examples or evalu- the hypothesis. On the other hand, we are concerned more
ation on a hold-out set of size ten. The “true error” was With the variance in our error discrepancy. Thus decreasing
calculated empirically by evaluating the resulting hymsth the generalization error of the final hypothesis would make
sis for each case on another hold-out setsf)0 examples. the k-fold error a worse estimate. It would also be interest-
The hold-out estimate on five examples has larger varianceing to explore the connection between hypothesis instgbili
then the progressive validation estimate. One might saspec Which Breiman discusses for the purposes of reducing gener-
that this is not due to a good estimation procedure but duealization error, to hypothesis stability, which Kearns &twh
to the fact that it is easier to estimate a lower error. To in- [8] trace back to Devroye and Wagner [5] for the purposes of
vestigate this further, we performed a hold-out test which accurate error estimation.
was trained on nine examples, because the true error of the In conclusion, we have shown that the k-fold estimate
progressive validation hypothesis with five training exéaap of generalization error is better than testing on a holdebut
and ten progressive validation examples was close to the tru 1/% of the data. In future work, it would be nice to analyze
error of a hypothesis trained on nine examples, as shown inhow much better the k-fold estimate is. We have also in-

the following table: troduced progressive validation. We provide theoretiodl a
experimental evidence that it does not reduce our error esti
| | trueerror | |true error— est] | mate accuracy, while providing more examples for training
Prog. Val.(5, 10) | .205 & .003 088 £ 011 than a simple hold-out set.
Hold-out(5, 10) | 436 & .005 120+ .015
Hold-out(9, 10) | .235+ .005 109 4+ .015 References

Averages of the true error and estimate accuracy favor [1] N. Alon and J. Spencefhe Probabilistic Methodwi-
progressive validation in this experiment with a hold-ceit s ley, 1991.
of size 10. In fact, the progressive estimate and hypothesis [2] M. Anthony and S. B. Holden Cross-Validation for Bi-
on a data set of size 15 were better than the hold-out estimate nary Classification by Real-Valued Functions: Theoret-

ical Analysis InProc. Eleventh Annual Conference on
Computational Learning Theort998.

[3] L. Brieman. Bagging predictorsMachine Learning
24(2):123-140, 1996.

[4] L. Devroye, L. Gyrofi, and G. LugosiA Probabilistic
Theory of Pattern Recognitiotspringer-Verlag, 1996.

[5] L. Devroye and T. Wagner. Distribution-free perfor-
mance bounds for potential function ruléSEE Trans-
actions on Pattern Analysis and Machine Intelligence
IT-25(5):601-604, 1979.

[6] VY. Freund and R. Shapire. Discussion of the paper
"Arcing classifiers” by Leo BreimanAnnals of Statis-
tics, 26(3): 824-832, 1998.

[7] D.P. Helmbold and M.K. Warmuth. On Weak Learning.
JCSS$50(3): 551-573, 1995.

[8] M. J. Kearns and D. Ron. Algorithmic stabil-
ity and sanity-check bounds for leave-one-out cross-
validation. InProc. Tenth Annual Conference on Com-
putational Learning Theoryl997.

[9] N. Littlestone. From on-line to batch learning. In
Proceedings of the 2nd Annual Workshop on Compu-
tational Learning Theorypp. 269-284, 1989.

