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Abstract.

We describe a simple reduction from the problem of PAC-learning from multiple-instance exam-
ples to that of PAC-learning with one-sided random classification noise. Thus, all concept classes
learnable with one-sided noise, which includes all concepts learnable in the usual 2-sided random
noise model plus others such as the parity function, are learnable from multiple-instance exam-
ples. We also describe a more efficient (and somewhat technically more involved) reduction to
the Statistical-Query model that results in a polynomial-time algorithm for learning axis-parallel
rectangles with sample complexity O(d2r/e2), saving roughly a factor of r over the results of Auer
et al. (1997).
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1. Introduction and Definitions

In the standard PAC learning model, a learning algorithm is repeatedly given la-
beled examples of an unknown target concept, drawn independently from some
probability distribution. The goal of the algorithm is to approximate the target
concept with respect to this distribution. In the multiple-instance example setting,
introduced in (Dietterich et al., 1997), the learning algorithm is given only the fol-
lowing weaker access to the target concept: instead of seeing individually labeled
points from the instance space, each “example” is an r-tuple of points together with
a single label that is positive if at least one of the points in the r-tuple is positive
(and is negative otherwise). The goal of the algorithm is to approximate the in-
duced concept over these r-tuples. In the application considered by Dietterich et
al., an example 1s a molecule and the points that make up the example correspond
to different physical configurations of that molecule; the label indicates whether or
not the molecule has a desired binding behavior, which occurs if at least one of the
configurations has the behavior.

Formally, given a concept ¢ over instance space X, let us define ¢y over X~
as:

Cmulti (L1, Tay .., 2p) = c(x1) Ve(za) V... Ve(zy).

Similarly, given a concept class C, let Chyiti = {¢muii : ¢ € C}. We will call
Z = (x1,...,2,) an r-example or r-instance. Long and Tan (1996) give a natural
PAC-style formalization of the multiple-instance example learning problem, which
we may phrase as follows:
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Definition 1. An algorithm A PAC-learns concept class C' from multiple-instance
examples if for any » > 0, and any distribution D over single instances, A PAC-
learns Cipyies over distribution D”. (That is, each instance in each r-example is
chosen independently from the same distribution D.)

Previous work on learning from multiple-instance examples has focused on the
problem of learning d-dimensional axis-parallel rectangles. Dietterich et al. (1997)
present several algorithms and describe experimental results of their performance
on a molecule-binding domain. Long and Tan (1996) describe an algorithm that
learns axis-parallel rectangles in the above PAC setting, under the condition that
D is a product distribution (i.e., the coordinates of each single-instance are chosen
independently), with sample complexity O(d27°6/€10). Auer et al. (1997) give an
algorithm that does not require D to be a product distribution and has a much
improved sample complexity O(dzrz/ez) and running time O(d?’rz/Gz). (The 0
notation hides logarithmic factors.) Auer (1997) reports on the empirical perfor-
mance of this algorithm. Auer et al. also show that if we generalize Definition 1
so that the distribution over r-examples is arbitrary (rather than of the form D")
then learning axis-parallel rectangles is as hard as learning DNF formulas in the
PAC model.

In this paper we describe a simple general reduction from the problem of PAC-
learning from multiple-instance examples to that of PAC-learning with one-sided
random classification noise. Thus, all concept classes learnable from one-sided
noise are PAC-learnable from multiple-instance examples. This includes all classes
learnable in the usual 2-sided random noise model, such as axis-parallel rectangles,
plus others such as parity functions. We also describe a more efficient reduction to
the Statistical-Query model (Kearns, 1993). For the case of axis-parallel rectangles,
this results in an algorithm with sample complexity O(dzr/ez), saving roughly a
factor of r over the results in (Auer et al., 1997).

2. A simple reduction to learning with noise

Let us define 1-sided random classification noise to be a setting in which positive
examples are correctly labeled but negative examples have their labels flipped with

probability < 1, and the learning algorithm is allowed time polynomial in ﬁ

THEOREM 1 If C' is PAC-learnable from I-sided random classification noise, then
C' 1s PAC-learnable from multiple-instance examples.

COROLLARY 1 If C' is PAC-learnable from (2-sided) random classification noise,
then C is learnable from multiple-instance examples. In particular, this includes all
classes learnable in the Statistical Query model.

Proof (of Theorem 1 and Corollary 1): Let D be the distribution over single
instances, so each multiple-instance example consists of r independent draws from
D. Let ppey be the probability a single instance drawn from I is a negative example
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of target concept ¢. So, a multiple-instance example has probability ¢ney = (Pneg)”
of being labeled negative. Let ¢,., denote the fraction of observed multiple-instance
examples labeled negative; i.e., ¢neq is the observed estimate of ¢,,c4. Our algorithm
will begin by drawing O(% log %) examples and halting with the hypothesis “all
positive” if §neq < 3¢/4. Chernoff bounds guarantee that if ¢,,c4 < €/2 then with
high probability we will halt at this stage, whereas if ¢y > ¢ then with high
probability we will not. So, from now on we may assume without loss of generality
that gpeq > €/2.

Given a source of multiple-instance examples, we now convert it into a distri-
bution over single-instance examples by simply taking the first instance from each
example and ignoring the rest. Notice that the instances produced are distributed
independently according to D and for each such instance z,

e if & 1s a true positive, it 1s labeled positive with probability 1,

e if z is a true negative, it is labeled negative with probability (pneg)” ™', inde-
pendent of the other instances and labelings in the filtered distribution.

Thus, we have reduced the multiple-instance learning problem to the problem
of learning with 1-sided classification noise, with noise rate n = 1 — (ppey) ™ *.
Furthermore, 7 is not too close to 1, since

n = 1_(pneg)r_1 S I_QHeg S 1_6/2~

We can now reduce this further to the more standard problem of learning from
2-sided noise by independently flipping the label on each positive example with
probability v = n/(1 + 1) (that is, the noise rate on positive examples, v, equals
the noise rate on negative examples, n(1 — v)). This results in 2-sided random
classification noise with noise rate

v < (1—¢€/2)/(2—¢/2) < 1/2—¢/8.

This reduction to 2-sided noise nominally requires knowing 7; however, there are
two easy ways around this. First, if there are my positive examples, then for each
i€ {0,1,...,my} we can just flip the labels on a random subset of i positive exam-
ples and apply our 2-sided noise algorithm, verifying the m4 hypotheses produced
on an independent test set. The desired experiment of flipping each positive label
with probability v can be viewed as a probability distribution over these m4 exper-
iments, and therefore if the class is learnable with 2-sided noise then at least one of
these will succeed. A second approach is that we in fact do have a good guess for #:
n=1- (qneg)l_l/’", son=1- ((jneg)l_l/’” provides a good estimate for sufficiently
large sample sizes. We discuss the details of this approach in the next section.

Finally, notice that it suffices to approximate ¢ to error €¢/r over single instances
to achieve an e-approximation over r-instances. [ |

While we can reduce 1-sided noise to 2-sided noise as above, 1-sided noise appears
to be a strictly easier setting. For instance, the class of parity functions, not known
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to be learnable with 2-sided noise, i1s easily learnable with 1-sided noise because
parity 1s learnable from negative examples only. In fact, we do not know of any
concept class learnable in the PAC model that is not also learnable with 1-sided
noise.

3. A more efficient reduction

We now describe a reduction to the Statistical Query model of Kearns (1993) that
is more efficient than the above method in that all of the r single instances in each
r-instance are used. Our reduction turns out to be simpler than the usual reduction
from classification noise for two reasons. First of all, we have a good estimate of the
noise just based on the observed fraction of negatively-classified r-instances, ¢neg.
Secondly, we have a source of examples with known (negative) classifications.

Informally, a Statistical Query is a request for a statistic about labeled instances
drawn independently from D. For example, we might want to know the probability
that a random instance € R is labeled negative and satisfies < 2. Formally, a
statistical query is a pair (x, 7), where y is a function y : X x {0,1} — {0,1} and
T € (0,1). The statistical query returns an approximation px to the probability
P, = Pryep[x(z, c(x)) = 1], with the guarantee that P, — 7 < px <P+ 1. We
know, from Corollary 1, that anything learnable in the Statistical Query model can
be learned from multiple instance examples. In this section we give a reduction
which shows:

THEOREM 2 Given any 6,7 € (0,1/r) and a lower bound fney on qneg, we can
use a multiple-instance examples oracle to simulate n Statistical Queries of toler-
ance T with probability at least 1 — §, using O(Mn—/él) r-instances, and wn time

r72Gneg

O(%(ﬁ + nT\)), where T\, is the time to evaluate a query.

Proof: We begin by drawing a set R of r-instances. Let S_ be the set of single
instances from the negative r-instances in R, and let S, ,_ be the set of single
instances from all r-instances in K. Thus the instances in S} ,_ are drawn indepen-
dently from D, and those in S_ are drawn independently from D~ the distribution
induced by D over the negative instances.

We now estimate §ney = [S_|/|S4/=| and prey = (dneg)l/r. Chernoff bounds

guarantee that so long as |R| > kTIQDTQl(IZé for sufficiently large constant k, with
neg
probability at least 1 —§/2,

QHeg(l - 7“7'/12) S (jneg

IN

Gneg(1 + r7/6).
This implies

Preg(l — 7“7'/12)1/T
pneg(l - 7/6)

Preg(1 —|—r7’/6)1/r,
Preg(1+ 7/6)

< Pneg <
< <

ﬁneg

where the last line follows using the fact that 7/6 < 1/r.
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Armed with Sy/_, S_, and pnegy, we are ready to handle a query. Our method will
be similar in style to the usual simulation of Statistical Queries in the 2-sided noise
model (Kearns, 1993), but different in the details because we have 1-sided noise
(and, in fact, simpler because we have an estimate p,c, of the noise rate). Observe
that, for an arbitrary subset S C X, we can directly estimate Prycplz € S] from
Sy/—. Using examples from S_, we can also estimate the quantity,

Pryepler € SAc(x) =0] = Prgeple(x) = 0]Pryeplx € Sle(z) = 0]
= PnegPriep-[z € 5]. (1)
Suppose we have some query (x, 7). Define two sets: Xy consists of all points
z € X such that x(z,0) = 1, and X; consists of all points # € X such that
x(z,1) = 1. Based on these definitions and (1), we can rewrite P,
P, = Pryeplr € Xy Ae(z) = 1]+ Preeplr € Xo Ac(z) = 0]
Pryeple € Xi]— Pryeplr € X1 Ae(x) = 0]
+Pryeple € Xog Ac(z) = 0]
= Pryep[r € Xi]+ preg(Procp-[o € Xo] — Proep-[z € X1]). (2)

Each of the three probabilities in the last equation is easily estimated from S, ,_
or S_ as follows:

Using kﬂgﬁl examples from S, ,_, estimate Pryeplr € X;].

Using k’ln(f# examples from S_, estimate Pr ecp-[z € Xo] and
Proep-[z € X4]. R

Combine these with preq to get an estimate P, for

P, = Pryep(z € X1] + Preg(Proep-[2 € Xo] — Prycp-[r € X1]).

We can choose k large enough so that, with probability at least 1 — §/2n, our
estimates for Prpeplz € X1], Pryep-[x € Xo], and Prycp-[x € X1] are all within
an additive 7/6 of their true values. From above, we already know that pn., is
within an additive 7/6 of p,.,. Now, since we have an additive error of at most
7/6 on all quantities in (2), and each quantity is at most 1, our error on P, will
be at most 7/6 4+ (1 + 7/6)(1 + 27/6) — 1 < 7, with probability at least 1 — J for

all n queries. The runtime for creating Sy, and S_ is O(M) and for each

T g g
query is O(m:gﬁlTx). The total number of r-instances required is O(%%—/él).
neg

As noted in Section 2, if we can approximate the target concept over single in-
stances to error ¢/r, then we have an e-approximation over multiple-instance ex-
amples. Again, if we begin by drawing O(% log %) examples and halting with the
hypothesis “all positive” if §,.q < 3€/4, then we get (using the lower bound €/2 for
Tneg)

COROLLARY 2 Suppose C is PAC-learnable to within error ¢/r with n statistical
quertes of tolerance T < 1/r, which can each be evaluated in time T, (so n, T,
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and T depend on €/r). Then C is learnable from multiple-instance examples with
probability at least 1 — &, using O(%) r-instances, and in time O(m:gﬁl(% +
nTy)).

The following theorem (given in (Auer et al., 1997) for the specific case of axis-
parallel rectangles) gives a somewhat better bound on the error we need on single-
instance examples.

€

THEOREM 3 [fqneg > %

€.

Proof: Let p; = Pryeple(z) = 0V h(z) = 0] and pz = Pryeple(z) = 0Ah(z) = 0].
So, errorp(c,h) = p1 — pa. Notice that Przepremuiri(Z) = Amuiei (£) = 0] = pj.
Also note that Prze prlcmuits () = hmuiri () = 1] > 1 — p} because all r-instances
that fai to satisfy this equality must have their components drawn from the region

[e(x) = 0V h(x) = 0]. Therefore,

and errorp(c, k) < ffq"ﬁ, then errorpr(Cmuiti, Pmuiti) <
neg

errorpr(Cmultiy Amuiri) < P — 5
= (pr—p2)(P, P e 4Py

r—1

< (p1 — p2)rr}

r—1
€ pneg € pneg)
- r(p + =
(r 4qneg) ( ned 7 4Gneg

(pne )T € Tt
SE ; <1+ )

4QHeg 4TQHeg

r—1

€ 1
< -1+ -
< £(1+7)
< e |

4. Axis-Parallel Rectangles

The d-dimensional axis-parallel rectangle defined by two points, (ai,...,aq) and
(b1, ...,b4q), is {Z|x; € [a;,b;],4 = 1,...,d}. The basic approach to learning axis-
parallel rectangles with statistical queries is outlined in (Kearns, 1993) and is similar
to (Auer et al., 1997). Suppose we have some target rectangle defined by two points,
(a1, ...,aq) and (by,...,bq), with a; < b;. Our strategy is to make estimates
(ay,...,aq) and (131, . ..,l;d), with a; > a; and b; < b; so that our rectangle is
contained inside the true rectangle but so that it is unlikely that any point has ¢th
coordinate between a; and a; or between l;Z and b;. We assume in what follows that
€/2 < gneg < 1 —¢/2, and that we have estimates of ppey and ¢ney good to within
a factor of 2, which we may do by examining an initial sample of size O(% log %)

Let 7 = %z:—:z. From Theorem 3, we see that if we have error less than 7
per side of the rectangle, then we will have less than e error for the r-instance
problem, and we are done. For simplicity, the argument below will assume that
i1s known; if desired one can instead use an estimate of 7 obtained from sampling,
in a straightforward way.
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We first ask the statistical query Pryeple(x) = 1] to tolerance 7/3. If the result is
less than 27/3 then 1 — prey < 7, and (using Theorem 3) we can safely hypothesize
that all points are negative. Otherwise we know pn.y, < 1—17/3. Define (df, ..., a})
and (b],...,b)) such that Proep(a; < ; < af) = 7/3 and Proep (b} < z < b;) =
7/3. (If the distribution is not continuous, then let af be such that Pryep(a; <
z; < af) < 7/3 and Pryep(a; < #; < af) > 7/3, and similarly for 6;.) We now
explain how to calculate a;, for example, without introducing error of more than
T.

Take m = O(In(d/d)/7) unlabeled sample points. With probability at least 1-
d/2d, one of these points has its first coordinate between a; and a} (inclusive)
and let us assume this is the case. We will now do a binary search among the
first coordinates of these points, viewing each as a candidate for a; and asking the
statistical query Pryeple(z) = 1 A z1 < a;] with tolerance /3. If all of our logm
queries are inside our tolerance, then we are guaranteed that some a; > a; will
return a value at most 27/3. In particular, the largest such a; is at least a; and
satisfies Pryepla; < o1 < a1] < 7. We similarly find the other a; and l;Z We use
the algorithm of Theorem 2 with confidence parameter &' = §/(4d logm) so that
with probability at least 1 — /2 none of our 2d logm queries fail.

The total number of multiple-instance examples used 1s at most

o (14 DICAEMINY) (L) _g(frma) g (L),
r T (neg T Qneg € pneg €

The time for the algorithm is the time to sort these m points plus the time for
the log m calls per side of the rectangle, which by Theorem 2, is:

ln((dlogm)/é’))

72

!
0 (dm logm + —ln((dlg)g m)/3")
T qneg

d3r? dr 1 d r
- d37°2
o( 2 )
€

This is almost exactly the same time bound as given in (Auer et al., 199~7) except
that they have an log(%) instead of log(% In(%)) for the last term. We use O(rd*/e?)

r-instances compared to O(r2d?/e?) r-instances.

+ dlogm
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