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A Note on Learning from Multiple-InstanceExamplesAVRIM BLUM avrim+@cs.cmu.eduADAM KALAI akalai+@cs.cmu.eduSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213Abstract.We describe a simple reduction from the problem of PAC-learning from multiple-instance exam-ples to that of PAC-learning with one-sided random classi�cation noise. Thus, all concept classeslearnable with one-sided noise, which includes all concepts learnable in the usual 2-sided randomnoise model plus others such as the parity function, are learnable from multiple-instance exam-ples. We also describe a more e�cient (and somewhat technically more involved) reduction tothe Statistical-Query model that results in a polynomial-time algorithm for learning axis-parallelrectangles with sample complexity ~O(d2r=�2), saving roughly a factor of r over the results of Aueret al. (1997).Keywords: Multiple-instance examples, classi�cation noise, statistical queries1. Introduction and De�nitionsIn the standard PAC learning model, a learning algorithm is repeatedly given la-beled examples of an unknown target concept, drawn independently from someprobability distribution. The goal of the algorithm is to approximate the targetconcept with respect to this distribution. In the multiple-instance example setting,introduced in (Dietterich et al., 1997), the learning algorithm is given only the fol-lowing weaker access to the target concept: instead of seeing individually labeledpoints from the instance space, each \example" is an r-tuple of points together witha single label that is positive if at least one of the points in the r-tuple is positive(and is negative otherwise). The goal of the algorithm is to approximate the in-duced concept over these r-tuples. In the application considered by Dietterich etal., an example is a molecule and the points that make up the example correspondto di�erent physical con�gurations of that molecule; the label indicates whether ornot the molecule has a desired binding behavior, which occurs if at least one of thecon�gurations has the behavior.Formally, given a concept c over instance space X, let us de�ne cmulti over X�as: cmulti(x1; x2; : : : ; xr) = c(x1) _ c(x2) _ : : :_ c(xr):Similarly, given a concept class C, let Cmulti = fcmulti : c 2 Cg. We will call~x = (x1; : : : ; xr) an r-example or r-instance. Long and Tan (1996) give a naturalPAC-style formalization of the multiple-instance example learning problem, whichwe may phrase as follows:



2 A. BLUM AND A. KALAIDe�nition 1. An algorithmA PAC-learns concept class C frommultiple-instanceexamples if for any r > 0, and any distribution D over single instances, A PAC-learns Cmulti over distribution Dr . (That is, each instance in each r-example ischosen independently from the same distribution D.)Previous work on learning from multiple-instance examples has focused on theproblem of learning d-dimensional axis-parallel rectangles. Dietterich et al. (1997)present several algorithms and describe experimental results of their performanceon a molecule-binding domain. Long and Tan (1996) describe an algorithm thatlearns axis-parallel rectangles in the above PAC setting, under the condition thatD is a product distribution (i.e., the coordinates of each single-instance are chosenindependently), with sample complexity ~O(d2r6=�10). Auer et al. (1997) give analgorithm that does not require D to be a product distribution and has a muchimproved sample complexity ~O(d2r2=�2) and running time ~O(d3r2=�2). (The ~Onotation hides logarithmic factors.) Auer (1997) reports on the empirical perfor-mance of this algorithm. Auer et al. also show that if we generalize De�nition 1so that the distribution over r-examples is arbitrary (rather than of the form Dr)then learning axis-parallel rectangles is as hard as learning DNF formulas in thePAC model.In this paper we describe a simple general reduction from the problem of PAC-learning from multiple-instance examples to that of PAC-learning with one-sidedrandom classi�cation noise. Thus, all concept classes learnable from one-sidednoise are PAC-learnable from multiple-instance examples. This includes all classeslearnable in the usual 2-sided random noise model, such as axis-parallel rectangles,plus others such as parity functions. We also describe a more e�cient reduction tothe Statistical-Query model (Kearns, 1993). For the case of axis-parallel rectangles,this results in an algorithm with sample complexity ~O(d2r=�2), saving roughly afactor of r over the results in (Auer et al., 1997).2. A simple reduction to learning with noiseLet us de�ne 1-sided random classi�cation noise to be a setting in which positiveexamples are correctly labeled but negative examples have their labels 
ipped withprobability � < 1, and the learning algorithm is allowed time polynomial in 11�� .Theorem 1 If C is PAC-learnable from 1-sided random classi�cation noise, thenC is PAC-learnable from multiple-instance examples.Corollary 1 If C is PAC-learnable from (2-sided) random classi�cation noise,then C is learnable from multiple-instance examples. In particular, this includes allclasses learnable in the Statistical Query model.Proof (of Theorem 1 and Corollary 1): Let D be the distribution over singleinstances, so each multiple-instance example consists of r independent draws fromD. Let pneg be the probability a single instance drawn fromD is a negative example



A NOTE ON LEARNING FROM MULTIPLE-INSTANCE EXAMPLES 3of target concept c. So, a multiple-instance example has probability qneg = (pneg)rof being labeled negative. Let q̂neg denote the fraction of observed multiple-instanceexamples labeled negative; i.e., q̂neg is the observed estimate of qneg. Our algorithmwill begin by drawing O(1� log 1� ) examples and halting with the hypothesis \allpositive" if q̂neg < 3�=4. Cherno� bounds guarantee that if qneg < �=2 then withhigh probability we will halt at this stage, whereas if qneg > � then with highprobability we will not. So, from now on we may assume without loss of generalitythat qneg � �=2.Given a source of multiple-instance examples, we now convert it into a distri-bution over single-instance examples by simply taking the �rst instance from eachexample and ignoring the rest. Notice that the instances produced are distributedindependently according to D and for each such instance x,� if x is a true positive, it is labeled positive with probability 1,� if x is a true negative, it is labeled negative with probability (pneg)r�1, inde-pendent of the other instances and labelings in the �ltered distribution.Thus, we have reduced the multiple-instance learning problem to the problemof learning with 1-sided classi�cation noise, with noise rate � = 1 � (pneg)r�1.Furthermore, � is not too close to 1, since� = 1� (pneg)r�1 � 1� qneg � 1� �=2:We can now reduce this further to the more standard problem of learning from2-sided noise by independently 
ipping the label on each positive example withprobability � = �=(1 + �) (that is, the noise rate on positive examples, �, equalsthe noise rate on negative examples, �(1 � �)). This results in 2-sided randomclassi�cation noise with noise rate� � (1� �=2)=(2� �=2) � 1=2� �=8:This reduction to 2-sided noise nominally requires knowing �; however, there aretwo easy ways around this. First, if there are m+ positive examples, then for eachi 2 f0; 1; : : : ;m+g we can just 
ip the labels on a random subset of i positive exam-ples and apply our 2-sided noise algorithm, verifying the m+ hypotheses producedon an independent test set. The desired experiment of 
ipping each positive labelwith probability � can be viewed as a probability distribution over these m+ exper-iments, and therefore if the class is learnable with 2-sided noise then at least one ofthese will succeed. A second approach is that we in fact do have a good guess for �:� = 1� (qneg)1�1=r, so �̂ = 1� (q̂neg)1�1=r provides a good estimate for su�cientlylarge sample sizes. We discuss the details of this approach in the next section.Finally, notice that it su�ces to approximate c to error �=r over single instancesto achieve an �-approximation over r-instances.While we can reduce 1-sided noise to 2-sided noise as above, 1-sided noise appearsto be a strictly easier setting. For instance, the class of parity functions, not known



4 A. BLUM AND A. KALAIto be learnable with 2-sided noise, is easily learnable with 1-sided noise becauseparity is learnable from negative examples only. In fact, we do not know of anyconcept class learnable in the PAC model that is not also learnable with 1-sidednoise.3. A more e�cient reductionWe now describe a reduction to the Statistical Query model of Kearns (1993) thatis more e�cient than the above method in that all of the r single instances in eachr-instance are used. Our reduction turns out to be simpler than the usual reductionfrom classi�cation noise for two reasons. First of all, we have a good estimate of thenoise just based on the observed fraction of negatively-classi�ed r-instances, q̂neg.Secondly, we have a source of examples with known (negative) classi�cations.Informally, a Statistical Query is a request for a statistic about labeled instancesdrawn independently fromD. For example, we might want to know the probabilitythat a random instance x 2 < is labeled negative and satis�es x < 2. Formally, astatistical query is a pair (�; � ), where � is a function � : X � f0; 1g ! f0; 1g and� 2 (0; 1). The statistical query returns an approximation P̂� to the probabilityP� = Prx2D[�(x; c(x)) = 1], with the guarantee that P� � � � P̂� � P� + � . Weknow, from Corollary 1, that anything learnable in the Statistical Query model canbe learned from multiple instance examples. In this section we give a reductionwhich shows:Theorem 2 Given any �; � 2 (0; 1=r) and a lower bound ~qneg on qneg, we canuse a multiple-instance examples oracle to simulate n Statistical Queries of toler-ance � with probability at least 1 � �, using O( ln(n=�)r�2 ~qneg ) r-instances, and in timeO( ln(n=�)�2 ( 1~qneg + nT�)), where T� is the time to evaluate a query.Proof: We begin by drawing a set R of r-instances. Let S� be the set of singleinstances from the negative r-instances in R, and let S+=� be the set of singleinstances from all r-instances in R. Thus the instances in S+=� are drawn indepen-dently fromD, and those in S� are drawn independently fromD�, the distributioninduced by D over the negative instances.We now estimate q̂neg = jS�j=jS+=�j and p̂neg = (q̂neg)1=r: Cherno� boundsguarantee that so long as jRj � k ln(1=�)r2�2 ~qneg for su�ciently large constant k, withprobability at least 1� �=2,qneg(1� r�=12) � q̂neg � qneg(1 + r�=6):This implies pneg(1� r�=12)1=r � p̂neg � pneg(1 + r�=6)1=r;pneg(1� �=6) � p̂neg � pneg(1 + �=6)where the last line follows using the fact that �=6 < 1=r.



A NOTE ON LEARNING FROM MULTIPLE-INSTANCE EXAMPLES 5Armed with S+=�, S�, and p̂neg, we are ready to handle a query. Our method willbe similar in style to the usual simulation of Statistical Queries in the 2-sided noisemodel (Kearns, 1993), but di�erent in the details because we have 1-sided noise(and, in fact, simpler because we have an estimate p̂neg of the noise rate). Observethat, for an arbitrary subset S � X, we can directly estimate Prx2D[x 2 S] fromS+=�. Using examples from S�, we can also estimate the quantity,Prx2D[x 2 S ^ c(x) = 0] = Prx2D[c(x) = 0]Prx2D[x 2 Sjc(x) = 0]= pnegPrx2D� [x 2 S]: (1)Suppose we have some query (�; � ). De�ne two sets: X0 consists of all pointsx 2 X such that �(x; 0) = 1, and X1 consists of all points x 2 X such that�(x; 1) = 1. Based on these de�nitions and (1), we can rewrite P�,P� = Prx2D[x 2 X1 ^ c(x) = 1] + Prx2D[x 2 X0 ^ c(x) = 0]= Prx2D[x 2 X1]� Prx2D[x 2 X1 ^ c(x) = 0]+Prx2D[x 2 X0 ^ c(x) = 0]= Prx2D[x 2 X1] + pneg(Prx2D� [x 2 X0]� Prx2D� [x 2 X1]): (2)Each of the three probabilities in the last equation is easily estimated from S+=�or S� as follows:Using k ln(n=�)�2 examples from S+=�, estimate Prx2D[x 2 X1].Using k ln(n=�)�2 examples from S�, estimate Prx2D� [x 2 X0] andPrx2D� [x 2 X1].Combine these with p̂neg to get an estimate P̂� forP� = Prx2D[x 2 X1] + pneg(Prx2D� [x 2 X0]� Prx2D� [x 2 X1]):We can choose k large enough so that, with probability at least 1 � �=2n, ourestimates for Prx2D[x 2 X1], Prx2D� [x 2 X0], and Prx2D� [x 2 X1] are all withinan additive �=6 of their true values. From above, we already know that p̂neg iswithin an additive �=6 of pneg. Now, since we have an additive error of at most�=6 on all quantities in (2), and each quantity is at most 1, our error on P� willbe at most �=6 + (1 + �=6)(1 + 2�=6) � 1 < � , with probability at least 1 � � forall n queries. The runtime for creating S+=� and S� is O( ln(n=�)�2 ~qneg ) and for eachquery is O( ln(n=�)�2 T�). The total number of r-instances required is O( ln(n=�)r�2~qneg ).As noted in Section 2, if we can approximate the target concept over single in-stances to error �=r, then we have an �-approximation over multiple-instance ex-amples. Again, if we begin by drawing O(1� log 1� ) examples and halting with thehypothesis \all positive" if q̂neg < 3�=4, then we get (using the lower bound �=2 forqneg),Corollary 2 Suppose C is PAC-learnable to within error �=r with n statisticalqueries of tolerance � < 1=r, which can each be evaluated in time T� (so n, � ,



6 A. BLUM AND A. KALAIand T� depend on �=r). Then C is learnable from multiple-instance examples withprobability at least 1 � �, using O( ln(n=�)r��2 ) r-instances, and in time O( ln(n=�)�2 (1� +nT�)).The following theorem (given in (Auer et al., 1997) for the speci�c case of axis-parallel rectangles) gives a somewhat better bound on the error we need on single-instance examples.Theorem 3 If qneg � �4 and errorD(c; h) < �r pneg4qneg , then errorDr (cmulti; hmulti) <�.Proof: Let p1 = Prx2D[c(x) = 0_h(x) = 0] and p2 = Prx2D [c(x) = 0^h(x) = 0].So, errorD(c; h) = p1 � p2. Notice that Pr~x2Dr [cmulti(~x) = hmulti(~x) = 0] = pr2.Also note that Pr~x2Dr [cmulti(~x) = hmulti(~x) = 1] � 1 � pr1 because all r-instancesthat fail to satisfy this equality must have their components drawn from the region[c(x) = 0 _ h(x) = 0]. Therefore,errorDr(cmulti; hmulti) � pr1 � pr2= (p1 � p2)(pr�11 + pr�21 p2 + : : :+ pr�12 )� (p1 � p2)rpr�11< � �r pneg4qneg� r�pneg + �r pneg4qneg�r�1� � (pneg)r4qneg �1 + �4rqneg�r�1� �4 �1 + 1r�r�1� �:4. Axis-Parallel RectanglesThe d-dimensional axis-parallel rectangle de�ned by two points, (a1; : : : ; ad) and(b1; : : : ; bd), is f~xjxi 2 [ai; bi]; i = 1; : : : ; dg. The basic approach to learning axis-parallel rectangles with statistical queries is outlined in (Kearns, 1993) and is similarto (Auer et al., 1997). Suppose we have some target rectangle de�ned by two points,(a1; : : : ; ad) and (b1; : : : ; bd), with ai < bi. Our strategy is to make estimates(â1; : : : ; âd) and (b̂1; : : : ; b̂d), with âi � ai and b̂i � bi so that our rectangle iscontained inside the true rectangle but so that it is unlikely that any point has ithcoordinate between ai and âi or between b̂i and bi. We assume in what follows that�=2 � qneg � 1 � �=2, and that we have estimates of pneg and qneg good to withina factor of 2, which we may do by examining an initial sample of size O(1� log 1� ).Let � = �8dr pnegqneg . From Theorem 3, we see that if we have error less than �per side of the rectangle, then we will have less than � error for the r-instanceproblem, and we are done. For simplicity, the argument below will assume that �is known; if desired one can instead use an estimate of � obtained from sampling,in a straightforward way.



A NOTE ON LEARNING FROM MULTIPLE-INSTANCE EXAMPLES 7We �rst ask the statistical query Prx2D[c(x) = 1] to tolerance �=3. If the result isless than 2�=3 then 1� pneg � � , and (using Theorem 3) we can safely hypothesizethat all points are negative. Otherwise we know pneg � 1��=3. De�ne (a01; : : : ; a0d)and (b01; : : : ; b0d) such that Prx2D(ai � xi � a0i) = �=3 and Prx2D(b0i � x � bi) =�=3. (If the distribution is not continuous, then let a0i be such that Prx2D(ai �xi < a0i) � �=3 and Prx2D(ai � xi � a0i) � �=3, and similarly for b0i.) We nowexplain how to calculate â1, for example, without introducing error of more than� .Take m = O(ln(d=�)=� ) unlabeled sample points. With probability at least 1-�=2d, one of these points has its �rst coordinate between a1 and a01 (inclusive)and let us assume this is the case. We will now do a binary search among the�rst coordinates of these points, viewing each as a candidate for â1 and asking thestatistical query Prx2D [c(x) = 1 ^ x1 < â1] with tolerance �=3. If all of our logmqueries are inside our tolerance, then we are guaranteed that some â1 � a1 willreturn a value at most 2�=3. In particular, the largest such â1 is at least a1 andsatis�es Prx2D[a1 � x1 < â1] � � . We similarly �nd the other âi and b̂i. We usethe algorithm of Theorem 2 with con�dence parameter �0 = �=(4d logm) so thatwith probability at least 1� �=2 none of our 2d logm queries fail.The total number of multiple-instance examples used is at mostO�mr + ln((2d logm)=�0)r�2qneg � = ~O� 1r�2qneg� = ~O�d2rqneg�2p2neg � = ~O�d2r�2 � :The time for the algorithm is the time to sort these m points plus the time forthe logm calls per side of the rectangle, which by Theorem 2, is:O�dm logm + ln((d logm)=�0)�2qneg + d logm ln((d logm)=�0)�2 �= O�d3r2�2 log�dr� log 1�� log�d� log r���= ~O�d3r2�2 � :This is almost exactly the same time bound as given in (Auer et al., 1997) exceptthat they have an log(d� ) instead of log(d� ln( r� )) for the last term. We use ~O(rd2=�2)r-instances compared to ~O(r2d2=�2) r-instances.AcknowledgmentsWe thank the Peter Auer and the anonymous referees for their helpful comments.This research was supported in part by NSF National Young Investigator grantCCR-9357793, a grant from the AT&T Foundation, and an NSF Graduate Fellow-ship.
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