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Abstract a(s, 1) CRP will increase its wealth exponentially. At the
end of each day it trades stock so that it has an equal worth
A constant rebalanced portfolio is an investment strat- in each stock. On alternate days the total value will change
egy which keeps the same distribution of wealth among aby a factor off (1) + 2(3) = 2 and$(1) + £(2) = 2, thus
set of stocks from day to day. There has been much work onincreasing total worth by a factor 6§ 8 every two days.
Cover’s Universal algorithm, which is competitive with the The main contribution of this paper is an efficient imple-
best constant rebalanced portfolio determined in hindsigh mentation of Cover's UNIVERSAL algorithm for portfolios
[3,9, 2,8, 14, 4, 5, 6]. While this algorithm has good per- [3], which Cover and Ordentlich [4] show that, in a market
formance guarantees, all known implementations are expo-with n stocks, over days,
nential in the number of stocks, restricting the number of
stocks used in experiments [9, 4, 2, 5, 6]. We present an performance of UNIVERSAL 1 .
efficient implementation of the Universal algorithm that is performance of best CRP = (¢ 4 1)»~*
based on non-uniform random walks that are rapidly mix-
ing [1, 12, 7]. This same implementation also works for
non-financial applications of the Universal algorithm, Buc
as data compression [6] and language modeling [10].

By performance, we mean the return per dollar on an invest-
ment. The above ratio is a decreasing function. dflow-
ever, the average per-day ratjo/ (¢t +1)"~1)'/?, increases
to 1 ast increases without bound. For example, if the best
CRP makes one and a half times as much as we do over a
_ day of 22 years, it is only making a factor bb'/?? ~ 1.02
1. Introduction as much as we do per year. In this paper, we do not con-
sider the Diricheldtl /2, ..., 1/2) UNIVERSAL [4] which

A constant rebalanced portfolio (CRP) is an investment has the better guaranteed ratie2qf'1/(¢ + 1)"~*.
strategy which keeps the same distribution of wealth among ~ All previous implementations of Cover’s algorithm are
a set of stocks from day to day. That is, the proportion of €xponential in the number of stocks with run times of
total wealth in a given stock is the same at the beginning of O("~"). Blum and Kalai have suggested a randomized ap-
each day. Recently there has been work on on-line invest-proximation based on sampling portfolios from the uniform
ment strategies which are competitive with the best CRPdistribution [2]. However, in the worst case, to have a high
determined in hindsight[3, 9, 2, 8, 14, 4, 5, 6]. Specifically Probability of performing almost as well as UNIVERSAL,
the daily performance of these algorithms on a market ap-they requireD(t"~') samples. We show that by sampling
proaches that of the best CRP for that market, chosen inportfolios from a non-uniform distribution, only polynomi
hindsight, as the lengths of these markets increase withouglly many samples are required to have a high probability
bound. of performing nearly as well as UNIVERSAL. This non-

As an example of a useful CRP, consider the following Uniform sampling can be achieved by random walks on the
market with just two stocks [9, 5]. The price of one stock Simplex of portfolios.
remains constant, and the price of the other stock altdgnate
halves and doubles. Investing in a single stock will notin- 2 Notation and Definitions
crease the wealth by more than a factor of two. However,
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market has: stocks and trading takes place durifiglays, This is the form in which Cover defines the algorithm.
then the market’s performance can be expressefl psice He also notes [4] that UNIVERSAL achieves the average
relative vectors(z', s, ..., 1), &; € RN, wherez! is the performance of all CRPs, i.e.,
nonnegative price relative of thjéh stock for theth day.

A portfolio is simply a distribution of wealth among the
stocks. The set of portfolios is the: — 1)-dimensional

T
Perf. of UNIVERSAL= [ -, - & = / Pr (%) du(7)
simplex, A

t=1

. N , 4. An efficient algorithm
A={beR"Y b =11 >0}

=1 Unfortunately, the straightforward method of evaluating

the integral in the definition of UNIVERSAL takes time ex-
ponential in the number of stocks. Since UNIVERSAL is
really just an average of CRP’s, it is natural to approximate
the portfolio by sampling [2]. However, with uniform sam-
pling, one need®(t"~!) samples in order to have a high
probability of performing as well as UNIVERSAL, which
is still exponential in the number of stocks. Here we show
¢ that, with non-uniform sampling, we can approximate the

Py(b) = HE. Z. portfolio efficiently. With high probability { — ), we can

im1 achieve performance of at least — ¢) times the perfor-

The CRP investment strategy for a particular portfd»l'jo
CRE;, redistributes its wealth at the end of each day so that
the proportion of money in thgth stock ist?. An invest-
ment using a portfoIiJ during a day with price relatives

Z increases one’s wealth by a factorlof & = " b7
Therefore, ovet days, the wealth achieved by CRiB,

mance of UNIVERSAL. The algorithm is polynomial in

Finally, we lety be the uniform distribution orh. 1/¢,1og(1/8), n (the number of stocks), arid (the number
_ _ of days).
3. Universal portfolios The key to our algorithm is sampling according to a

biased distribution. Instead of sampling accordinguto

Before we define the universal portfolio, suppose you the uniform distribution om\, we sample according ta,
just want a strategy that is competitive with respect to the Which weights portfoliosin proportion to their performanc
best single stock. In other words, you want to maximize the i-€.,
worst-case ratio of your wealth to that of the best stock. In
this case, a good strategy is simply to divide your money
among then stocks and let it sit. You will always have at
Ieast% times as much money as the best stock. Note that
this deterministic strategy achieves the expected wedlth o
the randomized strategy that just places all its money in a
random stock.

Now consider the problem of competing with the best oM ¥+,
CRP. Cover’s universal portfolio algorithm is similar taeth ' , ,
above. It splits its money evenly among all CRPs and lets ul = / v/ dvy(7) = Epey, [v] (2)
it sit in these CRP strategies. (It does not transfer money A
between the strategies.) Likewise, it always achieves theThus our sampling implementation of UNIVERSAL aver-
expected wealth of the randomized strategy which investsages draws from,:
all its money in a random CRP. In particular, the bookkeep-
ing works as follows: Definition 2 (Universal biased sampley The Universal

o ] ) biased sampler, with: samples, on the end of daghooses
Definition 1 (UNIVERSAL) The universal portfolioalgo- 4 portfoliod, as the average of: portfolios drawn indepen-
rithm at timet has portfolioi;, which for stockj is, on the dently fromw,.

first dayu] = 1/n, and on the end of thith day,

-

YT
W) = T 7 dp(7)

In the next section, we show how to efficiently sample from
this biased distribution.

UNIVERSAL can be thought of as computing each com-
ponent of the portfolio by taking the expectation of draws
ie.,

, Now, we apply Chernoff bounds to show that with high
i Ja ¥ P (¥)dp () i=19 probability, for eacly, a‘Z closely approximatesg. In order
N P(@dp(e) T T to ensure that this biased sampling will getajgw;] close
to 1, we need to ensure that isn’t too small:
(Recall thaty is the uniform distribution over the: — 1)-

dimensional simplex of portfoliod.) Lemmal Forall j <nandt <T, ui >1/(n+1).



Proof. WLOG letj = 1 andz} = =} = ...z} = 0, be-
cause this makes' smallest. Nowy} is a random variable

for any desired, > 0 in time proportional tdog =. Itis
not hard to verify that the estimates frgmandu, dlffer by

between 0 and 1 (see (1)), and the expectation of a randonat most a factor of1 + ¢;). By applying Chernoff bounds

variable0 < X < 1is E[X] = fol Prob X > z)dz. Thus,

1
u; = Egey, [v'] :/0 vy ({T]v! > 2}) d=

Furthermore{#|v! > z} = (2,0,...,0) + (1 — 2)A, isa
shrunken simplex of volumgl — z)"*~1! times the volume
of A, sinceA has dimensiom — 1. The average perfor-
mance of portfoliosin this set {d — z)* times the average
over A, because for each @fdays, a portfolio in this set
(2,0,...,0) + (1 — z)b performs(1 — z) as well as the cor-
responding portfoli(ff € A. So the probability of this set
undery; is (1 — 2)"~*(1 — z)! and,

1/(n+1).

1
uf = / (1—2)""H1 = 2)'dz
0
O
Combining this lemma with Chernoff bounds, we get:

Theorem 1 Withm = 27%(n+1T) log(nT/d)/e* samples,
the Universal biased sampler performs at lefist- ¢) as
well as Universal, with probability at leagt— §.

Proof. Say eachu{ is approximated bva. Furthermore,
suppose each! > u](1 — ¢/T). Then, on any individual
day, the performance of thg is at least(1 — ¢/T') times
as good as the performancef Thus, over!' days, our
approximation’s performance must be at lgdst ¢ /7))
1 — e times the performance of UNIVERSAL.

The multiplicative Chernoff bound for approximating a
random variabl® < X < 1, with meanX, by the sumS
of m independent draws is,

PF[S < (1- oz)Xm] < emmXa?/2
In our case, we are approximating eatﬂjby m samples,
our lemma shows that the expectationugf= X is X >
1/(j+1t) > 1/(n+1T), and we want to be withia = ¢/T".
Since this must hold for7" differentw]’s, it suffices for,
J

<_
= T’

e—me2/(2T2(n+T))

which holds for the number of samples chosen in the
theorem. O

The biased sampler will actually sample from a distribu-
tion that is close tex, call it p,, with the property that

[t

|db < €p

as described above the Universal biased sampler performs
at least(1 — ¢)(1 — ¢) as well as Universal (note that is
exponentially small).

5. The biased sampler

In this section we describe a random walk for sampling
from the simplex with probability density proportional to

Before we do this, note that sampling from the uni-
form distribution over the simplex is easy: piek— 1
realszy, ..., z,_1 uniformly at random between 0 and 1
and sort them intg;, < ... < y,_1; then the vector
(y1,92— Y1, -+, Yn—1— Yn—2, | — yn—1) is uniformly dis-
tributed on the simplex.

There is another (less efficient) way. Start at some point
z in the simplex. Pick a random poigtwithin a small dis-
tanced of x. If y is also in the simplex, then move {0
if it is not, then try again. Thetationarydistribution of a
random walk is the distribution on the points attained as the
number of steps tends to infinity. Since this random walk
is symmetri¢i.e. the probability of going fronx to y is
equal to the probability of going from to «, the distribu-
tion of the point reached aftersteps tends to the uniform
distribution. In fact, in a polynomial number of steps, one
will reach a point whose distribution is nearly uniform on
the simplex.

In our case, we have the additional difficulty that the de-
sired distribution is not the uniform distribution. Althgh
the distributioninduced by can be quite different from the
uniform density, it has the following nice property.

Lemma2 The functionf(l;) is log-concave for nonnega-
tive vectors.

Proof. The function—log f is convex. The derivative

Fiai NPy — (b1 b by
of log f atb is is the vectorf’ (b) = (f(g), TGIRR f(g)).
The matrixF"’ of second derivatives hasjth entry— 7 (’552 .

Thus " = —f'T f' is a negative semidefinite matrix, im-
plying thatlog f is a concave function in the positive or-
thant. O

The symmetric random walk described above can be
modified to have any desired target distribution. This is
called the Metropolis filter [13], and can be viewed as a
combination of the walk with rejection sampling: If the
walk is atx and chooses the poigtas its next step, then



move toy with probability min(1, %(%) and do nothing

with the remaining probability (i.e. try again). Lovasz
and Simonovits [12] have shown that this random walk is
rapidly mixing, i.e. it attains a distribution close to tha-s
tionary one in polynomial time.

For our purpose, however, the following discretized ran-
dom walk has the best provable bounds on the mixing time.
First rotateA so that it is on the plane = 0 and scale it
by a factor of1/+/2 so that it has unit diameter. We will
only walk on the set of points ith whose coordinates are
multiples of a fixed parametér> 0 (to be chosen below),
i.e. points on an axis parallel grid whose “unit” lengthbis
Any point on this grid hagn neighbors, 2 along each axis.

1. Startata (uniformly) random grid pointin the simplex.

2. SupposeX () is the location of the walk at time.

3. Lety be a random neighbor of (7).

4. Ifyisin A, thenmove toit, i.e. seK(r+1) = y
with probabilityp = min(1, %), and stay put with
probabilityl — p (i.e. X (r+ 1) = X(7)).

Let the set of grid points be denoted by We will ac-
tually only sample from the set of grid points i that are

not too close to the boundary, namely, each coordinate
at least. % for a small enough. For convenience we will
assume that each coordinate is at Iegﬁ—t). Let this set
of grid points be denoted b¥. Each grid point: can be
associated with a unique axis-parallel cube of lerdgten-
tered atr. Call this cubeC'(x). The step length is chosen
so that for any grid point, f(z) is close tof(y) for any

y € C(x).
Lemma 3 If we choosé < % then for any grid point

zin D, and any poiny € C'(z), we have
(L+a)7'f(2) < fly) < (L+ ) f(2).

Proof. Sincey € C(z), max; |y; — z;| < 4. For any price

relatives*, the ratio%; is at mostmax; . This can be
7

written as

i)

W=

)
= 1 —
5 max(1+ )

J Z]

ma
J

. . . 1
Since each coordinate is at Iea;f{m we have that the
ratio is at most(1 + 25(n + ¢)). Thus the ratiof% is at
most(1 + 26(n +t))* and the lemma follows. m]

The stationary distributiom of the random walk will
be proportional tof (=) for each grid point. Thus when
viewed as a distribution on the simplex, for any pajrin
the simplex,

m(u)(1+a) ™" < duly) < 7(u)(1 + o)

The main issue is how fast the random walk approaches
7. We return to the discrete distribution on the grid points.
Let the distribution attained by the random walk after
steps bey;, i.e. p;(z) is the probability that the walk is
at the grid point: afterr steps. The progress of the random
walk can be measured as the distance between its current
distributionp, and the stationary distribution as follows:

|lpr — || = Z lpr (x) — 7 ()]

zeD

In [7], Frieze and Kannan derive a bound on the conver-
gence of this random walk which can be used to derive the
following bound for our situation.

Theorem 2 After r steps of the random walk,
[Ipr = 7l[? < ¢ T (0 4 1)?
wherey > 0 is an absolute constant.

Corollary 1 For anye, > 0, afterO(nt*(n + ¢)* log %t
steps,
lp- = 7|I* < <o

Proof (of theorem). Frieze and Kannan prove that

1

T

Mmrond?

9 8782
2[pr —7ll? < ¢~ E log &

wherevy > 0 is a constantd is the diameter of the con-
vex body in which we are running the random watk, is
mingep w(x), 0 is a parameter between 0 and 1, and

Z m(z).

wol(C(x)nA)
veD: = yEtay - <

Ty —

In words, my is the probability of the grid points
whose cubes intersect the simplex in less tlfafrac-
tion of their volume. The parametey/ is defined as
maxy po(#) log ’%x%l, wherep; is the initial distribution on
the states.

For us the diametet is 1. We will set? = % and choose
4 small enough so that, is a constant. This can be done
for example with any < TRF To see this, consider

the simplex blown up by a factor df i.e. the set;A =

Wy >0, u = %}. Now the set of points with integer
coordinates correspond to the original grid points. Bdie

the set of cubes on the border of this set, i.e. the volume
of each cube inB that is in $ A is less thani. Then by

1The M we use here differs slightly from the definition in [7], where
pol#) o0 20(%)  However, the theorem holds with either

() w(z)

M = max,
choice ofM.



blowing up further by 1 unit, we get a set that contains all 6. Conclusion
these cubes. But the ratio of the volumes is

(L 4+1) We have presented an efficient randomized approxima-

517 = (1+9)". tion of the UNIVERSAL algorithm. Not only does the ap-
(5)" proximation have an expected performance equal to that of

UNIVERSAL, but with high probability(1 — d) it is within

(1 —¢) times the performance of universal, and runs in time

polynomial inlog % 1/¢, the number of days, and the num-

ber of stocks. With money, it is especially important to

Also, the performance of these border grid points can only
be (1 + d)* better than the corresponding (non-blown up)
points in the corresponding points. Thus< (1+4§)"*" <
2ford < =———

2(n+1) " achieve this expectation. For exampley(& chance at 10
Thus the bound above on the distance to stationary be-million dollars may not be as valuable to most people as a
comes guaranteed 5 million dollars.
s 1 IMn While our implementation can be used for applications
2llpr — w||* < e” " n log — + — of UNIVERSAL, such as data compression [6] and lan-
T 70 guage modeling [10], we do not implement it in the case
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