
An Advisor for Web Services Security Policies

Karthikeyan Bhargavan Cédric Fournet Andrew D. Gordon Greg O’Shea

Microsoft Research, Cambridge
{karthb, fournet, adg, gregos}@microsoft.com

ABSTRACT
We identify common security vulnerabilities found during security
reviews of web services with policy-driven security. We describe
the design of an advisor for web services security configurations,
the first tool both to identify such vulnerabilities automatically and
to offer remedial advice. We report on its implementation as a plu-
gin for Microsoft Web Services Enhancements (WSE).

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Verification

General Terms
Security, Languages, Verification

Keywords
Web Services, XML Security, WS-Security, Policy-Driven Security

1. INTRODUCTION

SOAP Web Services and XML Rewriting Attacks.Pro-
grammatic access to websites or to other remote servers can be
achieved by exchange of XML messages. Websites offering such
interfaces are calledweb services. SOAP [28] is a widely imple-
mented standard for the messages send to and from web services.
A SOAP message consists of a body—the payload—plus headers
containing routing or sequencing data, for example.

SOAP messages may be secured at the transport layer, using
mechanisms such as TLS/SSL. Alternatively, for more flexible end-
to-end protection, WS-Security [20] defines a SOAP security header
that can provide confidentiality and integrity properties via a wide
range of cryptographic mechanisms.

Web services may be vulnerable to the same classes of attack—
such as script injections or buffer overruns—as other websites [23,
29]. Their use of XML may allow DOS attacks on XML parsers,
such as DTD bombing [22]. Moreover, due to the flexibility of
SOAP-level security mechanisms, web services may be vulnerable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWS’05,November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-234-8/05/0011 ...$5.00.

to a distinct class based on the malicious interception, manipula-
tion, and transmission of SOAP messages, a class we refer to as
XML rewriting attacks. Used correctly, WS-Security can prevent
XML rewriting attacks; this paper presents a new tool to help de-
tect incorrect uses of WS-Security in SOAP processors.

Security Policies and their Failure Modes.Web services
and their clients are typically written in strongly typed, compiled
languages like Java or C#, and rely on SOAP libraries to help con-
struct and process messages and headers. To allow parameters to be
adjusted after deployment and without recompilation, clients and
servers load configuration files, typically in XML, at runtime. In
some systems, part of this configuration data constitutes a formal
security policy, in the sense that it governs how WS-Security is
applied to incoming and outgoing messages. The WS-* family in-
cludes specifications, chiefly WS-SecurityPolicy [11], providing an
XML syntax for declarative security policies. A policy is essen-
tially a logical predicate on SOAP messages, determining which
message parts must be present, signed, or encrypted. Web Services
Enhancements (WSE) [19] is a SOAP library, implementing WS-
Security and other specifications, that uses WS-SecurityPolicy as
part of its configuration data.

The separation of application code from security policy afforded
by WS-SecurityPolicy is good, as it allows much of the security
critical part of the system sources to be easily identified for audit-
ing and review. Still, WS-SecurityPolicy is essentially a domain-
specific language for selecting cryptographic communications pro-
tocols, a famously tricky domain. Security reviews of policy sam-
ples for pre-release versions of WSE revealed vulnerabilities to
a range of XML rewriting attacks, including replay, man-in-the-
middle, and dictionary attacks. Hence, given the general difficulty
of uncovering security vulnerabilities by testing, there is a need for
domain-specific tools to check for vulnerabilities in web services
security policies.

Formal Tools for Web Services Security.The threat model
we consider for web services, “the network is the attacker”, origi-
nates with Needham and Schroeder’s original work on authentica-
tion protocols [21]; it is a conservative but realistic threat model
for protocols over an open network. Dolev and Yao [12] were the
first to formalize this threat model; by now, there are several auto-
matic tools to check security properties of cryptographic protocols
against this model. Tool chains based on TulaFale and ProVerif [6,
5, 2, 4] and also Casper and FDR [18, 26] are being applied to check
detailed formal models of WS-Security protocols, and to clarify
their semantics. These studies have revealed design and implemen-
tation flaws in web services protocols. Still, as the formal models
are handwritten, critical details could be missing, so proofs show-

ing the absence of attacks do not directly apply to the corresponding
implementations.

To narrow the gap between model and implementation, in previ-
ous work [3] we built tools to extract TulaFale models from WSE
configuration files. To the best of our knowledge, ours is the only
tool chain that formally checks security properties of implementa-
tion files driving web services. It has been invaluable for check-
ing properties of example policies distributed with WSE. Still, a
limitation shared with other automatic tools is that the diagnostic
messages are low-level, so that non-experts find them difficult to
interpret and to act upon.

This Paper: WSE Policy Advisor.We describe a rule-based
tool for detecting typical errors in WSE configuration and policy
files. As shown in Figure1, the WSE Policy Advisor generates a se-
curity report by running queries that check for over thirty syntactic
conditions corresponding to errors found during security reviews.
These reviews involved testing, modelling, and formal analyses of
policy-based clients and services. Diagnostic messages for each
condition explain the risk and suggest appropriate remedial action,
making the tool appropriate for non-expert users. The tool offers
no formal guarantees; we recommend its use as part of the system-
atic threat modelling [24] of a WSE installation. Our experience of
security reviews suggests the tool is likely to find errors that other-
wise might be overlooked.

The main contributions of this paper are to describe a range of
failure modes found empirically during security reviews, and to de-
scribe the architecture of the first tool both to detect such errors and
to suggest corrective action.

The tool is available athttp://research.microsoft.com/
downloads. A description of the tool accompanies an implemen-
tation of the WS-I Basic Security Profile sample application [17].

Organization of the Paper.Section2 reviews WS-Security
and illustrates its risks in the context of a typical SOAP request.
Section3 describes security policies. Section4 presents the design
and implementation of our advisor tool. Section5 surveys the main
failure modes detected by the tool. Section6 discusses related work
and concludes.

2. AN XML REWRITING ATTACK ON A
WEB SERVICE

In this section, we set up a concrete running example, recall some
features of WS-Security, and describe an error that leads to a typi-
cal XML rewriting attack.

Consider a simple SOAP-based server that responds to requests
for the latest prices of a list of stocks. The server charges a sub-
scriber’s account for each quote and does not wish to respond to
non-subscribers. Hence, it requires that each request be authenti-
cated by a message signature generated using an X.509 certificate
belonging to one of its subscribers. Furthermore, it requires that
each request include a unique message identifier to be cached to de-
tect message replay. So a typical request is a SOAP envelope with
the following structure (eliding some headers, all namespaces, and
abbreviating long strings for clarity):

<Envelope>
<Header>

...
<MessageID Id="Id-1">uuid:21c81...</MessageID>
<Security mustUnderstand="1">
<BinarySecurityToken ValueType="...#X509v3"

Id="Id-2">
MIIBxDCCAW6g...

</BinarySecurityToken>
Signature (detailed below)

</Security>
</Header>
<Body Id="Id-3">
<StockQuoteRequest>...</StockQuoteRequest>

</Body>
</Envelope>

This message consists of a body, containing a list of stock sym-
bols, plus a header, containing a message identifier and security ele-
ments. The<MessageID> element is defined by WS-Addressing [7]
as a means of uniquely identifying requests and correlating them
with responses. The<Security> element is defined by WS-Secu-
rity, and here contains an X.509 certificate encoded as text within a
<BinarySecurityToken> element, and aSignatureelement that
signs the message body and the message identifier using the key
associated with the certificate.

The Signaturehas the following structure, as defined in XML-
Signature [13]:

<Signature>
<SignedInfo>
<CanonicalizationMethod

Algorithm="...xml-exc-c14n#"/>
<SignatureMethod Algorithm="...#rsa-sha1" />
<Reference URI="#Id-1">
<Transforms>
<Transform Algorithm="...xml-exc-c14n#" />

</Transforms>
<DigestMethod Algorithm="...#sha1" />
<DigestValue>d5AOd...=</DigestValue>

</Reference>
<Reference URI="#Id-3">
<Transforms>
<Transform Algorithm="...xml-exc-c14n#" />

</Transforms>
<DigestMethod Algorithm="...#sha1" />
<DigestValue>zSzZT...=</DigestValue>

</Reference></SignedInfo>
<SignatureValue>e4EyW...=</SignatureValue>
<KeyInfo>
<SecurityTokenReference>
<Reference URI="#Id-2"

ValueType="...#X509v3" />
</SecurityTokenReference></KeyInfo>

</Signature>

This element represents a joint signature of the body and mes-
sage identifier of the envelope. It has three child elements. The
first, <SignedInfo>, specifies both the parts of the message that
are signed and the algorithms used in the computation. Each mes-
sage part is specified by a<Reference> element, whoseURI at-
tribute is a fragment URI referring to theId attribute of the mes-
sage part, and whose<DigestValue> element is a cryptographic
digest of the message part. In this case, the<SignedInfo> el-
ement has two<Reference> elements, referring to the message
identifier and body, and each digest is obtained by canonicaliz-
ing the message part with the exclusive canonicalization algorithm
("xml-exc-c14n") and then hashing with the SHA-1 algorithm.
The second element of the signature,<SignatureValue>, con-
tains the outcome of first canonicalizing the<SignedInfo> ele-
ment, and then signing with the RSA-SHA-1 algorithm. Finally,
the<KeyInfo> element indicates the X.509 certificate containing
the signature’s verification key.

The signature above is meant to authenticate the client as well
as to protect the message identifier and body against tampering by
an active adversary. However, there is an XML rewriting attack
where an adversary can prevent the message identifier from being

http://research.microsoft.com/downloads�
http://research.microsoft.com/downloads�

Figure 1: WSE Policy Advisor

processed or cached at the server. The attack stems from two fac-
tors. First, the digital signature references message parts by theirId
attributes but says nothing of their location in the message. Second,
the message identifier is optional.1 Hence, the attacker can rewrite
the message to obtain the following:

<Envelope>
<Header>

...
<Bogus>
<MessageID Id="Id-1">uuid:21c81...</MessageID>

</Bogus>
<Security mustUnderstand="1">
<BinarySecurityToken ValueType="...#X509v3"

Id="Id-2">
MIIBxDCCAW6g...</BinarySecurityToken>

Signature
</Security>

</Header>
<Body Id="Id-3">
<StockQuoteRequest>...</StockQuoteRequest>

</Body>
</Envelope>

Here, the<MessageID> element is moved into a new, bogus
header element; everything else, including the certificate and sig-
nature, remains unchanged. The<Bogus> element and its con-
tents are ignored by the recipient (correctly, since this header is
unknown), but the signature remains acceptable because the ele-
ment at reference URI"Id-1" still exists in the message and still
has the same value. Assuming that the replay detection mechanism
is only triggered by the presence of the optional<MessageID> el-
ement, the recipient accepts the message as authentic. Thus, the
attacker has bypassed the replay detection checks and, by replay-
ing the message (or some variants of the message), may cause the
same request to be processed several times, making the client sub-
scriber pay several times for the same query and forcing the server
to do redundant work.

3. WEB SERVICES SECURITY POLICIES
The specifications WS-Policy [8], WS-PolicyAssertion [9], and

WS-SecurityPolicy [11] define a declarative XML format to ex-
press how web services implementations construct and check SOAP
messages. In this format, apolicy is a propositional formula with

1According to WS-Addressing, a message identifier must be
present in a request if a reply is expected. However, it is often
difficult to tell whether an envelope belongs to a one-shot or to a
request-reply pattern. Hence, implementations, such as WSE, treat
message identifiers as optional.

disjunctions and conjunctions built from any set ofbase asser-
tions that define predicates on SOAP messages. WSE is one of
the first SOAP libraries to support policies. In principle, it is pos-
sible to write complex, deeply-nested policies with both standard
and custom base assertions. (A detailed discussion of the expres-
siveness and limitations of this policy language appears in an earlier
work [3].) In practice, however, the policies used with WSE typi-
cally consist of a single conjunction built from a set of five base as-
sertions. Our tool focuses on three of these assertions: the message
predicate assertion from WS-PolicyAssertion, and the integrity and
confidentiality assertions from WS-SecurityPolicy.

• A message predicateassertion lists the message parts that
must be present in an envelope. For instance, if an appli-
cation supports WS-Addressing, this assertion can require
that in addition to the body, the addressing headers,<To>

and<Action>, are included in every request message. We
then say that these parts aremandatory. In some cases, such
checks may also be present at other layers. For instance, any
WSE application will refuse to accept a message without a
SOAP body, so including the body in a message predicate
assertion may seem superfluous. Still, it is useful to docu-
ment and check for the presence of the mandatory message
parts at this layer, to avoid further processing, and to provide
uniform error messages.

• An integrity assertion requires that the envelope include a
digital signature; it lists the message parts to be jointly signed,
if present in the envelope, and describes the security token to
be used to generate the signature. We say that the message
parts listed in an integrity assertion aresigned-if-present.

• A confidentialityassertion lists the message parts that must
be encrypted if present in the envelope, and describes the
security token to be used for this encryption. We say that
the message parts listed in an confidentiality assertion are
encrypted-if-present.

As an example, here is a policy that can be used with WSE to
generate and check the request messages from the previous section:

<Policy Id="PolicyReq">
<MessagePredicate>

Body() Header(To) Header(Action)
</MessagePredicate>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>...#X509v3</TokenType>
<TokenIssuer>CN=RootAgency</TokenIssuer>

</SecurityToken>
</TokenInfo>
<MessageParts>

Body() Header(To) Header(Action)
Header(MessageID) Timestamp()

</MessageParts>
</Integrity>

</Policy>

This policy (PolicyReq) is the conjunction of a message predi-
cate assertion and an integrity assertion. The first assertion requires
the presence of the three mandatory message parts: the body and
the <To> and<Action> headers. The second assertion requires
a signature, using an X.509 token issued by ‘CN=RootAgency’,
that covers the body, the<To> and<Action> headers, the optional
<MessageID> header, and the WS-Security<Timestamp>.

Different applications have different security requirements. Some
applications may require the presence of a header that is not manda-
tory according to any standard. They must then take care to include
this optional or custom header in a message predicate assertion. In
the example policy above, the service is relying on the presence of
the<MessageID> header for replay protection but the header is not
included in the<MessagePredicate> assertion. This oversight
enables the XML rewriting attack described in Section2. Includ-
ing Header(MessageID) in the message predicate assertion avoids
this attack.

Some applications may require the secrecy of the body contents,
to avoid information leaks to eavesdroppers. We stipulate encryp-
tion by adding a confidentiality assertion, requiring use of an X.509
public key certificate issued by a particular authority:

<Policy>
...
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>...#X509v3</TokenType>
<TokenIssuer>CN=RootAgency</TokenIssuer>

</SecurityToken>
</TokenInfo>
<MessageParts> Body() </MessageParts>

</Confidentiality>
</Policy>

Having written such a policy, we can then configure the client or
service application to enforce it on all request (or response) mes-
sages. This configuration is not part of the WS-Policy specification
and is implemented in a custom way by WSE. Each WSE policy file
contains a set ofmappingsand a set of WS-SecurityPolicy policies.
Each mapping associates a SOAP message to a policy, based on the
service endpoint of the message, and whether the message is a re-
quest to that endpoint, or a response or fault from that endpoint.
For instance, the policy file for the example stock web service has
a mapping section as follows:

<mappings>
<endpoint uri="http://.../StockService.asmx">
<operation requestAction=".../StockQuoteRequest">
<request policy="#PolicyReq" />
<response policy="#PolicyResp" />
<fault policy="#PolicyFault" />

</operation>
</endpoint>
</mappings>

It identifies an endpoint with a service URI and an operation
URI; these are the values that appear within the<To> and<Action>
headers of all requests sent to the service. It maps request messages
sent to the endpoint to the first policy in this section (PolicyReq)

and maps response and fault messages to other policies (PolicyResp
andPolicyFault) not shown here.

4. WSE POLICY ADVISOR
As illustrated by the previous sections, subtle mistakes in poli-

cies can lead to exposure to XML rewriting attacks. Policies writ-
ten by WSE users exhibit a range of such errors, suggesting that the
threats and security mechanisms are often not fully understood.

In response, we propose a tool, WSE Policy Advisor, for use by
developers, testers, or operators of WSE installations. Our tool pro-
vides both a commentary on the positive security guarantees pro-
vided by a collection of policies, and advice on potential security
vulnerabilities. This section describes the architecture and usage of
the tool, and discusses its limitations and validation.

Input Files and Usage.WSE can be configured as part of the
SOAP configuration on a web service or on a client. In the case
of a service, WSE is configured by aweb.config file and in the
case of a client, by anapp.configfile. In either case, the configura-
tion file may reference a policy file. WSE provides a policy editor
tool, that can be run directly or from within the Visual Studio de-
velopment environment, for interactive editing of configuration and
policy files.

The WSE Policy Advisor plugs into the WSE policy editor and
can be used to check the configuration and policy files being edited.
Figure1 shows the overall architecture. The advisor evaluates a set
of queries against these files and generates a security report with
commentary, warnings, and advice.

We anticipate three typical usages: (1) early in the design process,
as a way of providing immediate feedback as the designer exper-
iments with different WSE settings; (2) as part of the debugging
process during development; and (3) as part of security evaluation
and review, for instance before deploying amended configurations
in production.

Static Queries.WSE Policy Advisor evaluates queries either
against a single policy file, or against the combination of a configu-
ration file and its associated policy file. Each query is triggered by
a syntactic condition (a test that may or may not be satisfied by all
or part of the configuration data), and then outputs a risk (a textual
report indicating what sort of security vulnerability may exist) and
a remedial action (a textual report suggesting how to modify the
configuration data to eliminate or reduce the vulnerability).

The triggering conditions divide into four categories:

1. Likely errors in configuration file settings. (For example, ac-
ceptance of X.509 certificates used for test purposes, or fail-
ure to switch on replay detection.)

2. Lack of conformance to a conservative XML schema for pol-
icy files.

3. Likely errors in the mappings associating SOAP messages to
policies. (For example, inclusion of a policy for responses
but not for faults.)

4. Likely errors in particular policies. (For example, failure to
sign or to check for the presence of WS-Addressing headers.)

For instance, to check for the policy error discussed in Section3,
a query in the fourth category checks thatHeader(MessageID) is
included in a message predicate assertion whenever it is included
in an integrity assertion.

In total, the advisor includes 36 queries (listed in AppendixA),
each of which checks for a condition that may lead to a security

vulnerability. Section5 explains in detail the rationale for these
queries and the risks they seek to avoid.

The Security Report.WSE Policy Advisor generates a secu-
rity report as a structured document containing both negative indi-
cations, generated by evaluating queries, and positive restatements
of the behaviour of the policy file, to help a human user under-
stand its implications and to spot irregularities that may be errors.
The report includes a summary of the mapping section of the pol-
icy file, showing which policy applies to requests, responses, and
faults associated with particular endpoints. Moreover, for each pol-
icy, a table summarizes for typical elements found in SOAP mes-
sages, whether those elements are mandatory, signed-if-present, or
encrypted-if-present.

For example, Figure2 shows the security report produced by an-
alyzing a configuration file linked to the policy file from Section3,
after removing the response and fault policies for simplicity. This
report is in HTML and can be viewed using a standard browser,
or within the custom browser of the advisor window. The win-
dow divides into three panes. The pane at the lower left-hand-side
can be used to navigate around the report: clicking on a branch in
the tree updates the two other panes. The pane at the top displays
the detailed report. The pane at the lower right-hand-side displays
snippets of XML, relevant to the report, that are extracted from the
configuration and policy files.

In the figure, the top pane shows a part of the report concerning
the policy file shown in the lower right-hand-side pane. It starts
with a table summarizing the policy. The first column shows all the
headers that must be present, the second shows all that are signed-
if-present, and the third shows all that are encrypted-if-present. The
table guarantees that all message parts with a ‘yes’ in the first two
columns must be present and included in a digital signature, and
that all message parts with a ‘yes’ in the first and third columns
(none in this case) must be present and encrypted. The report con-
tinues with a warning:

This policy accepts messages without a<wse:Timestamp>

or <MessageID> element.

This arises from the fifth row of the table:Header(MessageID) is
signed-if-present, but not mandatory. The warning is followed by
a detailed explanation of the security risk, here a description of
the attack from Section2, and advice on possible corrections to the
policy that can avoid it. A second warning (not shown above) is that
the policy has no confidentiality element and so does not protect the
secrecy of the body or headers.

Although the advisor essentially performs syntactic queries on
XML configuration files, the security interpretation of the query
and the effectiveness of remedial advice are carefully validated,
as explained below—this interpretation and validation account for
most of the effort of designing new queries.

Limitations and Experimental Validation.WSE Policy
Advisor reports common errors in simple policies. These errors and
their indicated risks can be easily demonstrated on sample WSE ap-
plications. We have tested each warning generated by the advisor
and exhibited the corresponding attack on a WSE application. We
have run the advisor against a test suite including all policy-based
samples distributed with WSE, a selection of policies generated by
WSE, and a collection of synthetic policies and configuration files
for covering the results of all queries.

On the other hand, the advisor does not provide strong security
guarantees. Even in the absence of any warnings in the security
report, there may still be attacks beyond the limited threat model

considered by the tool. For instance, the web service may still be
vulnerable to XPath injection attacks. Moreover, the tool may pro-
vide poor advice on complex policies, for instance those with pol-
icy assertions that it does not process.

Validation by Formal Methods.In earlier work [3], we de-
scribed tools for automatically generating and formally verifying
security policies using a theorem-prover. Although these verifica-
tion tools operate on a more limited and a slightly different policy
language, they are capable of providing strong security guarantees
as formal theorems against a realistic threat model. When they
fail to prove a security property, they generate an attack trace as a
counter-example. These guarantees or attacks can be hard to read
and interpret even for experts and require detailed knowledge of the
underlying model. In contrast, the analysis performed by the WSE
Policy Advisor is more limited than formal verification, and offers
no strong guarantees, but its reports are easier to understand.

To benefit from both approaches, we use the formal analyses of
policies to inform the queries and positive guarantees provided by
the advisor. Most of the policy-level queries implemented by the
advisor correspond to attacks uncovered during formal analyses of
sample policies. On the other hand, the table that summarizes the
integrity and confidentiality guarantees of a policy corresponds to
authenticity and secrecy theorems proved by the verification tool:
if any header is both present and signed according to the table then,
in the model, it is authenticated between client and server. An anal-
ogous result holds for encryption.

The policy generation tool in our earlier work [3] also influences
the advisor. The remedial advice provided by many of the advisor
queries closely resembles the policies generated by the tool. This
advice is validated by our security theorems for abstract models of
generated policies.

In principle, since the advisor and our formal verification tools
consume a similar XML format, one could automate this validation
process, formally verifying that all queries correspond to attacks,
and all remedies correspond to theorems. This could be made part
of the production of new releases of the advisor. We leave the idea
as further work.

Potential Extensions.There are several features we consid-
ered but did not include in the advisor.

• Since the WSE policy language is itself extensible, the advi-
sor should also be extensible. Users should be able to extend
the set of queries by, for instance, writing macros in some
XML query language.

• For simplicity, the advisor is a pure diagnostics tool; it does
not modify the configuration. It could be useful, although
delicate, to integrate the advisor in a configuration manage-
ment tool, with automated support to implement the remedial
actions after obtaining permission from the user.

• It would be useful to provide APIs to run the queries auto-
matically (and possibly remotely), as a regular checkup or
whenever new queries are defined. The advisor could also
partially generate a threat model [24] for a WSE installation,
along the lines suggested by Udell [27].

• To extend the scope and the precision of our security queries,
the advisor could take advantage of other available informa-
tion on deployed web services, such as for instance the local
certificate store, or logs of SOAP messages.

Figure 2: WSE Policy Advisor’s Report on Example Policy

5. FAILURE MODES QUERIED BY WSE
POLICY ADVISOR

This section summarizes the various sorts of failure modes de-
tected by the advisor.

Absence of Integrity or Confidentiality Assertions.WS-
Security defines a SOAP<Security> header that may contain
username tokens, X.509 certificate tokens, message signatures, en-
crypted keys, references to encrypted data, and other items. It is up
to a security policy to select appropriate security elements and use
them correctly. For instance, if a policy contains no<Integrity>

element the message is not authenticated. The message body, for
instance, can be rewritten by an active attacker. Similarly, if the
policy contains no<Confidentiality> element, none of the mes-
sage parts is secret. Any eavesdropper can read the (possibly con-
fidential) message body. Therefore, the advisor includes queries to
check for the presence of these assertions.

Password Vulnerabilities.Username tokens allow users to
authenticate themselves to a server via a public username and a
secret password shared with the server. A<UsernameToken> el-
ement contains the username and may also contain the password,
either in the clear or hashed with a nonce, also contained in the user-
name token. Even if the password is not present in the username
token, it may be used together with the nonce in the computation

of the key used to construct the XML signature on the SOAP mes-
sage. Passwords are typically weak secrets with little entropy and
should be protected not only from direct leaks to the attacker, as
when the password is sent in the clear, but also from indirect leaks,
such as when a hash of the password is sent, that enable dictionary
attacks on the password. In the end, all policies that allow user-
name tokens in the clear are unsafe: if the password is absent, the
username is unauthenticated; if the password is present in the clear,
it is directly compromised; if it is present as a digest or as the basis
of a signature, it is vulnerable to a dictionary attack.

Consider the following policy that explicitly rejects username
tokens that contain a password, whether in the clear or digested:

<Policy>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType> UsernameToken</TokenType>
<wssp:Claims>
<wssp:UsePassword wsp:Usage="wsp:Rejected"/>
</wssp:Claims>
</SecurityToken>

</TokenInfo>
<MessageParts> ... </MessageParts>

</Integrity>
</Policy>

This policy protects against direct leaks of the password. How-
ever, since the policy requires a message signature based on the

password, the signature can be subjected to a dictionary attack. The
advisor warns about this attack, and suggests the inclusion of a con-
fidentiality assertion to encrypt the username token:

<Policy>
<Confidentiality>
<MessageParts> ... UsernameToken() ... </MessageParts>
</Confidentiality>

</Policy>

Certificate-Based Authentication.In addition to username
tokens, WS-Security defines the usage of security tokens contain-
ing X.509 certificates for signing and encrypting message parts. An
important aspect of X.509 certificate validation is to check that the
certificate has been issued by a certification authority trusted by
the recipient. Otherwise, an attacker can generate any self-signed
certificate and get it accepted by the recipient, hence breaking the
authenticity and secrecy properties of the message. To avoid such
attacks, another query checks for a<TokenIssuer> assertion, such
as the one below:

<Policy>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>...#X509v3</TokenType>
<TokenIssuer> TrustedAuthority</TokenIssuer>

</SecurityToken>
</TokenInfo>
<MessageParts> ... </MessageParts>

</Integrity>
</Policy>

Routing Headers.WS-Addressing defines SOAP headers that
are used to route messages to the intended endpoint. For instance,
each WSE web method is identified by a service URI, indicating
the location of the service class, and an operation URI, indicating
the method to call. To comply with WS-Addressing, each request
to a web service must have<To> and<Action> headers containing
these URIs for the intended endpoint. If these headers are modified,
the message can be redirected to a different web service or method.
To avoid such redirection attacks, the policy covering these mes-
sages must include an integrity assertion that requires that these
headers be signed.

While the<To> and<Action> headers completely specify the
intended recipient of request messages, the routing of response and
fault messages is more complicated. Since the web client is typ-
ically anonymous and does not advertise a service URI, the web
service must be told what URI to put in its<To> header. Hence,
request messages carry a<ReplyTo> header and also, optionally,
a <FaultTo> header indicating the URIs to which the response or
fault message should be sent. If either of these headers can be mod-
ified by an attacker, the response or fault message will be redirected
to a different endpoint. So, these headers must also be included
in the integrity assertion. The advisor includes queries to check
all these headers are included within integrity assertions in request
policies.

Message Identifiers.Since a web services client may make
several concurrent requests to the same or different web services,
correlating responses with their requests is important. With WSE,
this correlation is done on the basis of request message identi-
fiers: each response message includes a<RelatesTo> header that
echoes the contents of the<MessageID> header in the correspond-
ing request. If this<RelatesTo> header is not signed, the attacker

can modify it and fool a client into accepting it as a response to an
unrelated request. Hence, the policy for response messages must
includeHeader(RelatesTo) in its <Integrity> assertion. A query
checks this for all response policies.

Message identifiers are also useful, along with message time-
stamps, in detecting and avoiding replays of messages. If a web
service, or client, caches all the message identifiers received within
a time window and rejects all messages that either have a duplicate
message identifier or a stale timestamp, then it avoids message re-
play attacks. Even without caching message identifiers, timestamps
provide a cheap way of avoiding replays outside a time window.
However, such mechanisms fail if the<MessageID> header or the
<Timestamp> security header may be tampered with. Hence, the
advisor includes a query to check both these headers are included
within the integrity assertions of all message policies.

Schema Compliance.If a policy is treated as a propositional
formula, the semantics of a missing, incorrectly-named, or schema
non-compliant policy should be the unsatisfiable proposition: it
should be satisfied by no message. However, this behaviour is not
specified by WS-Policy, so some pre-release versions of WSE took
the reverse approach and accepted some or all messages. To be
safe, the advisor includes queries that check that all linked policies
are present and schema compliant.

MessagePredicate Assertion.As noted in Section3, a com-
mon misconception regarding integrity assertions is that they re-
quire the listed message parts both to be signed and present, when
in fact they only require these parts to be signed-if-present. An
analogous misconception arises for confidentiality assertions. If
the intention is to require a header to be both present and signed,
the policy must also include a message predicate assertion that re-
quires the presence of the header. Otherwise it enables attacks as in
Section2. Although the message predicate assertion typically only
includes optional headers such as<MessageID> and<FaultTo>,
it is good practice to include all headers that are used for message
routing or security. Queries check for the presence of a message
predicate assertion containing all security-critical headers, which
depend on whether the message is a request, response, or fault.

Security Mapping.Even the strongest policies are useless if
they are not applied to the right messages. If a web service or
web method is mapped to no request policy, WSE will drop all
messages sent to it. However, if it has an empty request policy
(<request policy=""/>) attached to it, then all messages sent
to it will be sent through unchecked. For safety, all messages must
have a minimally strong security policy attached to them. We con-
sider empty policies inherently unsafe. In particular, even faults
should have policies attached to them. Otherwise there is a denial-
of-service attack on a client where the attacker sends an arbitrary
fault message causing the client to close down its web session. For
all endpoints mentioned in the policy file, queries check that every
request, response, or fault message is mapped to some policy.

Global Settings.The WSE configuration file contains entries
to customize the behaviour of the inbuiltUsernameTokenManager,
that checks user passwords, andX509TokenManager, that checks
the validity of X.509 certificates.

WSE’s username token manager has a replay detection feature
that can be configured by users. This feature is quite useful as
it prevents replays of hashed passwords and password-based sig-
natures without relying on other message replay detection mecha-

nisms. However, if this feature is not enabled, then an attacker can
capture and use a username token with a password hash and include
it with any number of messages to a server that relies on hashed
passwords for (weak) authentication. An advisor query checks that
this feature is enabled.

WSE uses the operating system’s certificate manager to handle
and store X.509 certificates. For specific web services, however,
users can choose to disable trust-chain verification, which is unsafe
as it accepts any self-signed X.509 certificate. Moreover, during
testing, WSE users often enable the test-root authority that is used
by the sample certificates provided with the toolkit. This should be
disabled before the web service is deployed. Hence, a query checks
that the WSE configuration file contains the following element:

<x509 allowTestRoot="false"
allowRevocationUrlRetrieval="true"
verifyTrust="true"/>

6. CONCLUSIONS AND RELATED WORK
The problem of XML rewriting attacks on web services is not

new; several studies [1, 2, 4, 5, 16, 18, 26] develop formal analyses
to help find such vulnerabilities and to rule them out. Still, al-
though these tools can give strong guarantees of correctness within
a formal model, there is typically a gap between the model and the
implementation. Our previous study [3] of generating and analyz-
ing web services security policies is the only prior work we are
aware of that checks actual implementation files for vulnerabilities
to XML rewriting attacks. WSE Policy Advisor does the same, but
makes a different tradeoff between formal correctness and usabil-
ity; it offers no formal guarantees, but instead detects typical error
patterns, and suggests specific remedial action. Since it looks for
particular error conditions, the resulting advice is more specific and
actionable than the formal error conditions reported by the theorem
prover used in our prior work [3].

This paper contributes a detailed description of the tool’s ar-
chitecture and the typical error patterns it detects. Most of the
queries amount to checking conformance to fairly well known pru-
dent practices for cryptographic protocols, and may appear obvious
once stated, at least to experts. Still, packaging this advice in a tool
is pragmatically more effective than appeal to standard principles
in the literature. On the basis of positive feedback from WSE users,
we conclude that in spite of the absence of any formal guarantees,
WSE Policy Advisor helps users understand and improve their poli-
cies.

More generally, the use of XML configuration files is on the rise.
Fowler [15] notes this is a consequence of the ease with which para-
meters can be edited without needing recompilation. Nonetheless,
unlike compiled languages, XML-based domain-specific languages
enjoy little or no static checking, and so errors are only detected at
runtime, if at all. WSE Policy Advisor exemplifies the general idea
of a static checker for a domain-specific language; notice that its
checks include but go beyond conformance to an XML schema. As
XML configuration files proliferate, we expect more instances of
this idea.

An alternative to detection of typical failure modes is to re-design
to reduce the possibility of error. As implemented in WSE 2, ver-
sion 1.0 [11] of WS-SecurityPolicy expresses policy in terms of
individual headers on individual messages. More recently, version
1.1 [10] expresses policy in terms of higher-level message patterns,
as does the policy language being implemented in WSE 3. These
design changes eliminate at least some of the possibilities of mis-
configuration detected by our tool (which targets WSE 2 configu-
rations).

Another approach is to start from an abstract description of se-
curity requirements and to generate lower-level policies; some re-
search tools [3, 25] and WSE itself follow this approach. Static
checkers such as our advisor may still find problems with gener-
ated policies, as they are often edited by hand after generation.

As well as static checkers, dynamic tools for penetration testing
of running web services are starting to appear. For example, WS-
Digger [14] attempts attacks such as SQL and XPATH injection,
and cross site scripting. We are not aware of any dynamic tools to
automate the discovery of XML rewriting attacks.

Acknowledgements.We thank all members of the WSE team—
and in particular, Keith Ballinger, Mark Fussell, Sidd Shenoy, and
Hervey Wilson—for their support of this work. Vittorio Bertocci
provided invaluable feedback on an early version of the tool.

7. REFERENCES
[1] M. Backes, B. Pfitzmann, S. M̈odersheim, and L. Vigano.

Symbolic and cryptographic analysis of the secure
WS-ReliableMessaging scenario. Unpublished draft, 2005.

[2] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon.
Secure sessions for web services. In2004 ACM Workshop on
Secure Web Services (SWS), pages 11–22, October 2004.

[3] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
policy-based security for web services. In11th ACM
Conference on Computer and Communications Security
(CCS’04), pages 268–277, October 2004.

[4] K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics
for web services authentication.Theoretical Computer
Science, 340(1):102–153, June 2005. See also Microsoft
Research Technical Report MSR-TR-2003-83.

[5] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella.
TulaFale: A security tool for web services. InInternational
Symposium on Formal Methods for Components and Objects
(FMCO’03), volume 3188 ofLNCS, pages 197–222.
Springer, 2004. Tool available fromhttp://Securing.WS.

[6] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. InProceedings of the 14th IEEE
Computer Security Foundations Workshop, pages 82–96.
IEEE Computer Society Press, 2001.

[7] D. Box, F. Curbera, et al.Web Services Addressing
(WS-Addressing), August 2004. W3C Member Submission,
athttp://www.w3.org/Submission/ws-addressing/.

[8] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy,
A. Nadalin, N. Nagaratnam, M. Nottingham, C. von Riegen,
and J. Shewchuk. Web services policy framework
(WS-Policy), May 2003. Version 1.1.

[9] D. Box, M. Hondo, C. Kaler, H. Maruyama, A. Nadalin,
N. Nagaratnam, P. Patrick, C. von Riegen, and J. Shewchuk.
Web services policy assertions language
(WS-PolicyAssertions), May 2003. Version 1.1.

[10] G. Della-Libera, M. Gudgin, P. Hallam-Baker, M. Hondo,
H. Granqvist, C. Kaler, H. Maruyama, M. McIntosh,
A. Nadalin, N. Nagaratnam, R. Philpott, H. Prafullchandra,
J. Shewchuk, D. Walter, and R. Zolfonoon. Web services
security policy language (WS-SecurityPolicy), July 2005.
Version 1.1.

[11] G. Della-Libera, P. Hallam-Baker, M. Hondo, T. Janczuk,
C. Kaler, H. Maruyama, A. Nadalin, N. Nagaratnam,
A. Nash, R. Philpott, H. Prafullchandra, J. Shewchuk,
E. Waingold, and R. Zolfonoon. Web services security policy
language (WS-SecurityPolicy), December 2002. Version 1.0.

http://Securing.WS�
http://www.w3.org/Submission/ws-addressing/�

[12] D. Dolev and A.C. Yao. On the security of public key
protocols.IEEE Transactions on Information Theory,
IT–29(2):198–208, 1983.

[13] D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox,
B. LaMacchia, and E. Simon.XML-Signature Syntax and
Processing, 2002. W3C Recommendation, athttp://www.

w3.org/TR/2002/REC-xmldsig-core-20020212/.
[14] Foundstone. WSDigger, July 2005. A twww.foundstone.

com/resources/proddesc/wsdigger.htm.
[15] M. Fowler. Language workbenches: The killer-app for

domain specific languages?, 2005. At
http://www.martinfowler.com/articles/

languageWorkbench.html.
[16] A. D. Gordon and R. Pucella. Validating a web service

security abstraction by typing. InProceedings of the 2002
ACM workshop on XML Security, pages 18–29. ACM Press,
2002.

[17] J. Hogg, H. de Lahitte, D. Gonzalez, P. Cibraro, P. Coupland,
M. Bhao, and P. Slater.Microsoft WS–I Basic Security
Profile 1.0 Sample Application. Microsoft Corporation, June
2005. Preview release for the .NET Framework version 1.1.

[18] E. Kleiner and A. W. Roscoe. Web services security: A
preliminary study using Casper and FDR. InProceedings of
Automated Reasoning for Security Protocol Analysis (ARSPA
04), 2004.

[19] Microsoft Corporation.Web Services Enhancements (WSE)
2.0, 2004. Athttp://msdn.microsoft.com/
webservices/building/wse/default.aspx.

[20] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo.
OASIS Web Services Security: SOAP Message Security 1.0
(WS-Security 2004), March 2004. OASIS Standard 200401,
athttp://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.

pdf.
[21] R.M. Needham and M.D. Schroeder. Using encryption for

authentication in large networks of computers.
Communications of the ACM, 21(12):993–999, 1978.

[22] M. O’Neill. Mapping security to a services oriented
architecture, March 2005. CASSIS’05 presentation, at
http://www-sop.inria.fr/everest/events/

cassis05/Transp/oneill.ppt.
[23] J. Scambray and M. Shema.Hacking Web Applications

Exposed. McGraw-Hill/Osborne, 2002.
[24] F. Swiderski and W. Snyder.Threat Modeling. Microsoft

Press, 2004.
[25] M. Tatsubori, T. Imamura, and Y. Nakamura. Best practice

patterns and tool support for configuring secure web services
messaging. InInternational Conference on Web Services
(ICWS’04), pages 244–251, 2004.

[26] L. Tobarra, D. Cazorla, F. Cuartero, and G. Diaz. Application
of formal methods to the analysis of web services security. In
2nd International Workshop on Web Services and Formal
Methods (WS-FM 2005), pages 215–229, Sep 2005.

[27] J. Udell. Threat modeling, 2004. Athttp:
//weblog.infoworld.com/udell/2004/05/25.html.

[28] W3C.SOAP Version 1.2, 2003. W3C Recommendation, at
http://www.w3.org/TR/soap12.

[29] A. Wiesmann, M. Curphey, A. van der Stock, and R. Stirbei,
editors.A Guide to Building Secure Web Applications and
Web Services. OWASP, 2.0 Black Hat edition, 2005. At
http://www.owasp.org.

APPENDIX

A. CONDITIONS REPORTED
1. The supplied file is not valid XML.

2. This configuration file does not have an associated policy file.

3. This configuration file specifies a policy file, but the specified file
does not exist.

4. Test root certificates are allowed.

5. Replay detection is not enabled for a SecurityTokenManager of type
UsernameToken.

6. Replay detection is enabled for a SecurityTokenManager that is not
of typeUsernameToken.

7. This policy file is being analyzed independently of any configuration
file.

8. This policy file does not conform to the schema used by Policy Advi-
sor.

9. This mapping has no policy for requests.

10. This mapping does not authenticate requests.

11. This mapping has no policy for responses.

12. This mapping specifies a response policy, but it cannot be found.

13. This mapping does not authenticate responses.

14. This mapping has no policy for faults (although it has a policy for
responses).

15. This mapping does not authenticate faults (although it authenticates
responses).

16. This mapping accepts requests with unauthenticated<ReplyTo> head-
ers.

17. This mapping accepts requests without a<ReplyTo> header.

18. This mapping accepts requests with unauthenticated<FaultTo> head-
ers.

19. This mapping accepts requests without a<FaultTo> header.

20. This mapping accepts responses with unauthenticated<RelatesTo>
headers.

21. This mapping accepts responses without a<RelatesTo> header.

22. This mapping accepts faults with unauthenticated<RelatesTo> head-
ers.

23. This mapping accepts faults without a<RelatesTo> header.

24. This mapping applies to a WS-Trust RST/RSTR handshake, which
WSE treats specially.

25. This policy is not used.

26. This policy has no<Integrity> assertion.

27. This policy has no<Confidentiality> assertion.

28. This policy accepts messages with unauthenticated<To> or<Action>
headers.

29. This policy accepts messages without a<To> or <Action> header.

30. This policy accepts messages with unauthenticated<Timestamp> or
<MessageID> elements.

31. This policy accepts messages without a<Timestamp> or<MessageID>
element.

32. This policy accepts messages with an unauthenticated SOAP Body.

33. This policy accepts certificates from any issuer.

34. This policy uses an unencrypted<UsernameToken> that leaks pass-
words in the clear.

35. This policy uses an unencrypted<UsernameToken> that leaks pass-
word digests.

36. This policy uses an unencrypted<UsernameToken> for signing mes-
sages.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/�
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/�
www.foundstone.com/resources/proddesc/wsdigger.htm�
www.foundstone.com/resources/proddesc/wsdigger.htm�
http://www.martinfowler.com/articles/languageWorkbench.html�
http://www.martinfowler.com/articles/languageWorkbench.html�
http://msdn.microsoft.com/webservices/building/wse/default.aspx�
http://msdn.microsoft.com/webservices/building/wse/default.aspx�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf�
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf�
http://www-sop.inria.fr/everest/events/cassis05/Transp/oneill.ppt�
http://www-sop.inria.fr/everest/events/cassis05/Transp/oneill.ppt�
http://weblog.infoworld.com/udell/2004/05/25.html�
http://weblog.infoworld.com/udell/2004/05/25.html�
http://www.w3.org/TR/soap12�
http://www.owasp.org�

