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Abstract

The actions taken by an automated decision-making agent can be enhanced

by including mechanisms that enable the agent to categorize concepts e�ec-

tively. We pose a utility-based approach to categorization based on the idea

that categorization should be carried out in the service of action. The choice

of concepts made by a decision maker is critical in the e�ective selection of

actions under resource constraints. This perspective is in contrast to classical

and similarity-based approaches which seek completeness in concept descrip-

tion with respect to shared properties rather than the e�ectiveness of decision

making. We propose a decision-theoretic framework for utility-based catego-

rization which involves reasoning about alternative categorization models con-

sisting of sets of interrelated concepts at varying levels of abstraction. Cate-

gorization models that are too abstract may overlook details that are critical

for selecting the most appropriate actions. Categorization models that are too

detailed, however, may be too expensive to process and may contain informa-

tion that is irrelevant for selecting the best action. Categorization models are

therefore evaluated on the basis of the expected value of their recommended

action, taking into account the associated resource cost required for their eval-

uation. A knowledge representation scheme, known as probabilistic conceptual

networks, has been developed to support the dynamic construction of mod-

els at varying levels of abstraction. This knowledge representation scheme

combines the formalisms of in
uence diagrams from decision analysis and in-

heritance/abstraction hierarchies from arti�cial intelligence. We also propose

an incremental approach to categorical reasoning which involves the dynamic

construction and re�nement of categorization models. A model may be im-

proved by making the concepts under consideration either more abstract or

more detailed. The expected increase in value of the recommended action may

be used to direct and control the direction of model improvements. By applying

decision-theoretic control of model re�nement, a resource-constrained actor it-

eratively decides between continuing to improve the current level of abstraction

in the model, or to act immediately.
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I. Introduction

The ability to dynamically categorize distinctions into useful concepts and use these

concepts e�ectively is a core competency of intelligent decision making. The utility-

based approach to categorization is founded on the idea that categorization is fun-

damentally in service of action; the choice of concepts and the level of generality of

concepts employed by an actor plays a critical role in the selection of appropriate ac-

tions [1]. This approach di�ers from classical and similarity-based approaches [2] to

classi�cation which seek logical completeness in concept description in terms of sets of

attributes, de�ned by sensory inputs, rather than by considering the action-oriented

e�ectiveness of categories.

A resource-constrained agent relies on its ability to interpret sensor observations

to maintain a plausible representation of conditions in a dynamically changing world.

Decisions are typically based on beliefs that are computed about distinctions that

are not directly observed. The agent rely on a set of previously encoded distinctions

about hidden and observed states of the world and knowledge about probabilistic

dependencies among these distinctions to make inferences about events, objects, and

conditions. The literature on decision making under uncertainty largely has addressed

methods for computing beliefs and taking ideal actions. There has been little work on

processes for reasoning about the nature of the concepts that are used in a decision

model. Moving beyond consideration of means of computing the best decision to make

given a set of observations and a static model, we have investigated an important

modeling decision|selecting the best categories to use in representing the world. An

actor with the ability to make such a choice can dynamically build, re�ne, and solve a

categorization decision model, a decision model for representing alternative categories

for classifying sensor information together with alternative courses of action. Building

and solving categorization decision models requires decision making about the level of

abstaction with which to consider key distinctions or groups of distinctions. Proper

choice of a level of abstraction may be crucial to an actor whose further deliberations
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and actions are constrained by limited computational resources.

Introducing model abstractions through selective categorization introduces tract-

ability of decision making inference at the expense of decision quality. Categorization

of distinctions creates generalizations that hide potentially relevant details in a deci-

sion model. If computational and representational resources were free or inexpensive,

there would be little reason to remove detail though categorization. Under condi-

tions of limited resources, however, an actor may �nd that representing objects and

events in the world at too detailed a level may require the subsequent expenditure

of intolerable computational time in computing optimal decisions. A classi�cation

that is too detailed may contain information that is irrelevant to the choice of action,

thus forcing the actor to waste cognitive e�ort without gain. On the other hand,

a categorization model that is too abstract may overlook details that signi�cantly

diminishes the expected value of selected actions. When constructing and re�ning a

categorization decision model, a resource-constrained actor can enhance its decisions

by expending some resource to consider the tradeo� between the expected bene�t

of using more detailed models to increase the value of action and the resource costs

entailed by computing decisions with a more detailed model.

We have developed a decision-theoretic approach to utility-based categorization

as schematized in Figure 1. Our framework elucidates the deliberative processes that

underlie an intelligent actor's utility-maximizing choice of actions. The in
uence

diagram in the middle of Figure 1 depicts an intelligent actor deliberating about the

choice of a conceptual cover based on observed sensor information. A conceptual cover

is a set of mutually exclusive and exhaustive concepts at varying levels of abstraction

that conceptually accounts for key aspects of the current situation. We consider

the task of determining a best conceptual cover for a decision problem. For each

conceptual cover being considered, a corresponding categorization decision model may

be constructed, as shown by the series of in
uence diagrams at the bottom of Figure 1.

The optimal choice of categorization decision model is made by identifying the model

that maximizes a utility function which takes into account the cost associated with
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solving the categorization model in addition to the value of the action recommended

by the model.

Computational
cost of model

Value of
recommended action

Probabilistic conceptual network

Categorization
decision model

Conceptual
cover

Net value

Sensor information

Categorization Decision Model

Concept

Feature 2
Feature 3

Feature 4

Feature 5
Feature 6

Feature 1

Action

Value

Sensor information

Figure 1: A decision-theoretic framework for utility-based categorization.

Domain knowledge for utility-based categorization is represented with a proba-

bilistic conceptual network (pc-net) as shown at the top of Figure 1. A pc-net is a

knowledge representation which combines the formalisms of in
uence diagrams from

decision analysis and inheritance/abstraction hierarchies from arti�cial intelligence.

In pc-nets, a concept is represented by a special form of probabilistic in
uence dia-
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gram we term a probabilistic concept diagram (pc-diagram). The pc-diagrams are in

turn connected in a subsumption hierarchy such that concepts higher up the hierarchy

subsume the concepts lower in the hierarchy.

Pc-nets allow categorization decision models to be dynamically constructed at

varying levels of abstraction. A level of abstraction for the model is characterized

by a conceptual cover. Concepts included in a conceptual cover are chosen from the

pc-net at various levels in the concept hierarchy. The lower the level from which the

concepts are obtained, the more detailed the conceptual cover will be. Conversely,

the higher the level from which the concepts are obtained, the more general or ab-

stract the level of description will be. The construction of the categorization decision

model is performed by retrieving only those pc-diagrams for the concepts in the con-

ceptual cover, and performing simple graphical manipulations on the pc-diagrams.

We propose an incremental approach to categorical reasoning whereby an actor may

iteratively improve a categorization model that is being constructed by considering

the trade-o� between the cost of additional model improvement and the improvement

in the expected value of action recommended by the model.

This paper is organized as follows: In Section II, we describe an automated ma-

chining application which will be used to illustrate our approach. Section III describes

the probabilistic conceptual network knowledge representation scheme. Section IV

describes the use of categorization decision models and formalizes the procedures for

model construction. Section V introduces the incremental approach to model im-

provement. Section VI presents the idea of control of model-re�nement. Section VII

shows the application of our approach in guiding the automated machine under dif-

ferent situations and context. Section VIII discusses some research issues related to

this research. Finally, we conclude in Section IX by describing research we intend to

pursue in the future.
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II. An Automated Machining Application

We will illustrate the dynamic construction and re�nement of categorization models

in utility-based categorization with a real-world example of an automated machining

problem. This is similar to an application described in [3]. Automated machining

operations are important parts of any intelligent manufacturing system. They require

the automation of the human operator's e�orts to monitor and make appropriate ad-

justments to the state of the machine. An automated machining system typically

has sensors which acquire data on (1) dimensions of the workpiece, (2) acoustic emis-

sion from the machining processes, (3) cutting forces (dynamometer readings), and

(4) electric current (ammeter), etc. These observations are then used to determine

the state of the machine and appropriate actions are taken to ensure the continuous

operation of the plant so as to minimize production cost. The possible states of the

machining process at various level of abstraction are illustrated in Figure 2. Table 1

lists the features characterizing these states of the machine.

sensor
failure

out of

limits
variability

dynamo-
meter

acoustic
sensor

tool
breakage

machine
status

vertical
chatter

horizontal
chatter

tool
failure

tool
chatter

tool
wear

within
variability

limits

transient
state

ammeter tool
entry

tool
exit

Figure 2: Hierarchy for states of a an automated milling machine.
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Table 1: Descriptions of observed features.

Feature Description

AE-mag acoustic emission magnitude

�AE-mag change in acoustic emission magnitude

AE-freq acoustic emission frequency

dyn-freq-x cutting force frequency in x-direction

dyn-freq-y cutting force frequency in y-direction

AE-mean mean of the acoustic signal

�AE-mean change in the mean of the acoustic signal

dyn-rms-x cutting force in the x-direction

�dyn-rms-x change in cutting force in the x-direction

dyn-rms-y cutting force in the y-direction

�dyn-rms-y change in cutting force in the y-direction

AE-peak acoustic emission peak value

dyn-peak-x peak cutting force in x-direction

dyn-peak-y peak cutting force in y-direction

current motor current
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At the most abstract level, the state of the machining process is either \within

variability limits" or \out of variability limits." The event concept \out of variability

limits" may be re�ned into three alternative subconcepts: \tool failure," \sensor

failure," or \transient state." The latter occurs during the cutting tool's entry into or

exit from the workpiece. \Tool chatter" is another subconcept of \tool failure" which

is typically characterized by an event in which an acoustic emission signal increases

dramatically in amplitude as does the frequency content of the dynamometer. If left

unchecked, tool chatter can result in tool, workpiece or machine damage. Remedies

for this problem include reducing the depth of cut or reducing the feed rate. \Tool

wear" is typically characterized by a gradual increase in acoustic emissions, and by

a gradual increase in cutting force as measured by the dynamometer. A tool that is

worn out needs to be resharpened or replaced in order to achieve the desired surface

�nish and dimensional tolerances. \Tool breakage" is typically characterized by an

acoustic emission exhibiting a high amplitude peak at the moment of tool fracture,

and followed by a sharp drop in signal amplitude to a level below that of normal. It

is also characterized by a steep rise in cutting forces, followed by a drop before �nally

continuing at a value above the average. Tools that are broken cannot perform any

machining task and must be replaced immediately.

III. Probabilistic Conceptual Network

Representation

A probabilistic conceptual network (pc-net) is a knowledge representation scheme de-

signed for reasoning about concepts and categorical abstractions in utility-based cat-

egorization. The scheme combines the formalisms of abstraction and inheritance hier-

archies from arti�cial intelligence, and probabilistic networks from decision analysis.

It provides a common framework for representing conceptual knowledge, hierarchi-

cal knowledge, and uncertainty. It facilitates dynamic construction of categorization
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Figure 3: A fragment of the pc-net for the automated machining problem

decision models at varying levels of abstraction.

A pc-net consists of a probabilistic concept hierarchy (pc-hierarchy) connecting a

set of probabilistic concept diagrams (pc-diagrams). Each node in the pc-hierarchy

represents a concept, and the links in the hierarchy specify subsumption relations

among the concepts thereby organizing the concepts at various level of abstraction

or speci�city. In the current version of pc-net, we will consider only single-parent

hierarchy in which the pc-hierarchy is a tree. Each concept within the pc-hierarchy is

represented individually by a pc-diagram. We may visualize a pc-net as a hierarchical

organization of pc-diagrams. Figure 3 displays a fragment of the full pc-net used by

the machining actor in our example, which we shall call T1000.

Figure 4 shows the pc-diagram for the concept \tool chatter" used by T1000.

A pc-diagram for a concept is a special probabilistic in
uence diagram1 representing

1A probabilistic in
uence diagram is an in
uence diagram with only probabilistic nodes and
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knowledge about the probabilistic relations between the concept and the features that

characterize it. As a convention, we direct arcs from the concept to its feature nodes.

For each feature node F in the pc-diagram for concept C, we store a probability

distribution2 of the form

p(F jC;BC(F ))

where BC(F ) is the set of conditional predecessors of F , excluding C (if any). For

example, in the concept \tool chatter," a probability distribution for

p(�AE-magj\tool chatter";AE-mag)

is assessed. In the pc-diagram for C, we always represent C as a deterministic node

because we do not need the distribution p(F j:C;BC(F )). Arcs between feature

nodes indicate possible relevance or probabilistic dependency among the features

given the concept concerned. For example, the arc between the node \AE-mag"

and the node \�AE-mag" indicates that information about the current magnitude

of acoustic emission may provides information about the change in magnitude of

acoustic emission. The direction of this arc could be reversed without any change in

assertion about possible dependency.

Suppose concept Ci is a subconcept of Cj, denoted Ci � Cj. We de�ne the

subsumption probability of Ci given Cj to be the conditional probability p(CijCj),

i.e., the probability that a subconcept Ci of Cj is true given that the concept Cj is

true. We may rewrite the subsumption probability p(CijCj) as
p(Ci^Cj)

p(Cj)
. However,

Ci � Cj implies that p(Ci ^ Cj) = p(Ci). Therefore

p(CijCj) =
p(Ci)

p(Cj)
: (1)

In other words, the subsumption probability is simply the ratio of the prior probabil-

ities of the concepts.

conditioning arcs. They are also called Bayesian networks or probabilistic networks.

2We shall assume that background information � is used in all the probability distributions.
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Figure 4: The pc-diagram for \tool chatter."

We say that two pc-diagrams are graphically consistent if their graphical union

does not produce a cycle [1]. Given the special graphical structure imposed on pc-

diagrams, any inconsistency must be based in the directions of the arcs between the

features. Hence, making a set of pc-diagrams graphically consistent involves only the

reversal of arcs between the features. Unless otherwise stated, we shall assume that

all the pc-diagrams in a pc-net are graphically consistent with each other.

Let fC1; : : : ; Cng be a set of mutually exclusive concepts whose pc-diagrams are

already assessed. Suppose we wish to generalize these n concepts into a single super-

concept S, then we may relate the probability distributions in the pc-diagram for S

to those in the pc-diagrams for the subconcepts. In the pc-diagram for S, we have

BS(F ) = [n
i=1B

Ci(F ) (2)

for all features F , and

p(F jS;BS(F )) =
nX

i=1

p(F jS;BS(F ); Ci)p(CijS;B
S(F ))

=
nX

i=1

p(F jCi; S; B
Ci(F ); BS(F ) nBCi(F ))

p(CijS)p(B
S(F )jCi; S)

p(BS(F )jS)

where p(CijS) is the subsumption probability for concept Ci given the superconcept
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S. Using the fact that for each i, Ci logically implies S since Ci � S, and that

BS(F ) nBCi(F ) is conditionally independent of F given Ci and BCi(F ),3 we have

p(F jS;BS(F )) =
nX

i=1

p(F jCi; B
Ci(F ))p(CijS)

p(BS(F )jCi)

p(BS(F )jS)
(3)

For those features which do not have any feature predecessor, Equation (3) simpli�es

to

p(F jS) =
nX

i=1

p(F jCi)p(CijS) (4)

In practice, to build the pc-diagram for S from those of its subconcepts, we would

�rst use Equation (4) to evaluate the probability distributions for those features which

do not have any feature predecessor. We then proceed, using Equation (3), to the

other features in an order which is consistent with the partial ordering induced by

the pc-diagram for S.

Our pc-net formalism uses an inheritance mechanism whereby a concept may

share information about features from a concept higher up the hierarchy. It does

so by taking advantage of a form of conditional independence called subconcept in-

dependence
4 which is not conveniently represented with ordinary in
uence diagram.

A feature is said to be subconcept independent of a concept if knowledge about the

feature does not a�ect the actor's belief about any of that concept's subconcepts.

More formally, we say that a feature F is subconcept independent of a concept Ck, if

and only if

p(Cijf; Ck) = p(CijCk) (5)

for all feature values f of F and for all subconcepts Ci of Ck. Intuitively, information

about a feature that is subconcept independent of a concept does not a�ect the

actor's belief about any of that concept's subconcepts. An equivalent criterion for

3The set of nodes fCig [ B
Ci(F ) d-separate the node F from the set of nodes BS(F ) nBCi(F ).

4See [1, 4] for a comparison of subconcept independence with \subset-independence" in similarity

networks [5].
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subconcept independence which can be easily derived using Bayes' rule is

p(f jCi) = p(f jCk) (6)

for all feature values f of F and for all subconcepts Ci of Ck [1, 4]. Since Ci is any

subconcept of Ck, it follows that if F is subconcept independent of Ck, then

p(f jCi) = p(f jCj) (7)

for all feature values f of F and for any pair of subconcepts, Ci and Cj, of Ck. This

means that the probability distributions for a subconcept independent feature are

identical across all the subconcepts. Hence we only need to store the distribution

explicitly at the highest convenient position in the pc-hierarchy. The subconcepts

then \inherit" the feature's possible values and distribution from one of their super-

concepts.

To illustrate the idea of inheritance, consider the fragment of the pc-net for \tran-

sient state," \tool exit" and \tool entry" shown in Figure 3. The feature \current"

is subconcept independent of \transient state." We do not need to explicitly store

the probability distributions for \current" in the pc-diagrams for \tool entry" and

\tool exit." That is, we may \omit" these probability distributions (and hence the

corresponding feature nodes) in their respective pc-diagrams. When needed, the

probability values are �lled in by inheriting them from \transient state."

IV. Building Categorization Decision Models

Given a set of sensor information, an actor may construct and solve a categorization

decision model to decide on the best course of action. Figure 5 shows an example

of a categorization decision model that our automated machining actor T1000 might

construct. The node \state of the machine" represents a conceptual cover which is a

set of mutually exclusive and exhaustive concepts describing the current state of the

machine. An example of a conceptual cover is the set f\tool chatter", \tool wear",
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\tool breakage", \sensor failure", \transient state", \within variability limit" g as

shown in Figure 6. Features whose values have been observed are indicated in Figure

5 by informational arcs from their respective nodes to the decision node. To simplify

the �gure, we have used black dots at the end of the informational arcs to indicate

their continuation into the decision node.

∆AE-mag

∆dyn-rms-y

dyn-rms-x

∆dyn-rms-x

∆AE-mean

AE-mean

AE-mag

dyn-freq-y

AE-freq

current

dyn-freq-x

dyn-peak-x

dyn-peak-y

dyn-rms-y

Machining-
Parameters
Adjustment

Value

machine
state of the

AE-peak

Figure 5: The categorization decision model

Given a conceptual cover z, let A�

z denote the optimal action recommended by

the corresponding categorization decision model. We de�ne the expected value of

categorization with respect to a conceptual cover z, denoted EVC(z), to be the

expected value of following A�

z. Let Cc(z) be the computational cost associated

with the corresponding categorization decision model. We de�ne the net expected

value of categorization with respect to conceptual cover z, denoted NEVC(z), to be

U(EVC(z); Cc(z)) where U is the overall utility function indicating the preference

trade-o� between EVC and computation cost. For the current implementation, we

have assumed that the utility function U is of the additive form and EVC is in units
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Figure 6: An example of a conceptual cover

of cost, i.e.,

NEVC(z) = EVC(z)� Cc(z): (8)

In practice, the value of Cc(z) is dependent on the level of abstraction z used to

construct the categorization decision model, the topological structure of the decision

diagram, and the algorithm for in
uence diagram evaluation. We have analyzed

the computational cost of a number of categorization decision models with various

graphical topologies [1] based on Shachter's in
uence diagram evaluation algorithm

[6] and found that the computational cost generally increases rapidly with decrease

in level of abstraction.

We now illustrate how a categorization decision model may be constructed from

the pc-net for the automated machining problem. We shall assume the preferences

are expressed by a utility function of the form v(Ak; Ci) where Ak is the action taken

and Ci the actual state of the machine. Possible actions include \reducing cutting

speed", \reducing depth of cut", etc.

Suppose the sensors report information on \AE-mag," \AE-rms," \dyn-rms-x,"
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\dyn-rms-y," and \rms-current," and T1000 decides to perform categorization at

a level of abstraction corresponding to the conceptual cover f\tool chatter", \tool

wear", \tool breakage", \sensor failure",\transient state",\within variability limits"

g. We combine the respective pc-diagrams for these six concepts in the conceptual

cover to construct a categorization probabilistic in
uence diagram (pid) as shown

in Figure 7. The graphical structure of the combined categorization in
uence dia-

gram is obtained by performing graphical union of the individual pc-diagrams while

treating each central concept node as being the same node in each of the individ-

ual pc-diagrams. Notice that the concept node in the constructed diagram is now a

probabilistic variable (C) ranging over the six concepts used in its construction. The

conditional probabilities for each of the feature nodes in the constructed diagram are

obtained by copying over their respective values in the individual pc-diagrams.

∆AE-mag

∆dyn-rms-y

dyn-rms-y

dyn-rms-x

∆dyn-rms-x

∆AE-mean

AE-mean

AE-mag

dyn-freq-y
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current
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dyn-peak-x

dyn-peak-y

machine
state of the

AE-peak

Figure 7: A categorization probabilistic in
uence diagram

The categorization decision model shown in Figure 5 is obtained from the catego-

rization pid by adding the decision and value nodes to re
ect the preferences of the

actor, and then by adding informational arcs from the observed feature to the deci-

sion node are added. The completed categorization decision model can now be solved
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using existing methods (e.g., [6]). We formalize the categorization pid construction

procedure as follows:

Construction 1 A categorization pid G for a domain given conceptual cover z may

be constructed from a pc-net N for the domain as follows:

1. Retrieve from the pc-net, the pc-diagrams for each concept in the conceptual

cover. If a feature probability distribution is not explicitly stored in a pc-diagram,

it inherits the distribution from the most speci�c super-concept which has the

values in its pc-diagram.

2. By considering the category node in each of the pc-diagram to be the same node,

form the graphical union of all the pc-diagrams producing the underlying graph

for G. Denote by C the central category node.

3. The marginal probability distribution p(C) for the central node C is obtained

from the subsumption probabilities for each concept given the root concept of

the pc-net.

4. Fill in the conditional probability distribution for each feature node F in G by

merging all the individual conditional probability distributions originally in the

pc-diagrams as follows:

p(F jCi; B
G(F )) = p(F jCi; B

Ci(F )) (9)

We say that the pc-net N constructs the categorization pid G at level of abstraction

z and use the notation N 7!z G.

We now formalize the construction of a categorization decision model from a

categorization pid as follows:

Construction 2 A categorization decision model D may be constructed from a cat-

egorization pid G as follows:
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1. Construct a set of alternative actions including in it the most appropriate ac-

tions or courses of action that should be taken with respect to each concept in

the conceptual cover.
5

2. Add the action node to the diagram and include informational arcs from features

which had been observed to the action node.

3. Obtain the preference information v(Ak; Ci) for each possible action Ak and

each possible concept Ci in the conceptual cover used to construct G.

4. Add the value node to the diagram and add arcs from the action and category

nodes to the value node.

In any knowledge-based probabilistic model construction, it is important that

probabilistic relations such as independence assertions, which are expressed in the

knowledge base are preserved in the constructed model. This preservations of prob-

abilistic relations can be characterized by the preservation of the joint distributions

for the variables involved in the construction [5]. Given a set of concepts whose

graphically consistent pc-diagrams it can be shown that the joint distribution for

the variables C whose values range over the concepts and all the features in the pc-

diagrams, is uniquely de�ned. Furthermore, this joint distribution is preserved across

the categorization pid construction procedure [1].

V. Categorization Decision Model Improvement

In principle, an actor should consider all possible categorization decision models and

pick the one with the maximum net expected utility of categorization. In practice,

5We assume that a general knowledge base exists which associates actions and preference infor-

mation with each of the categories in the pc-net. A detailed examination of methods for constructing

decision options and value models is a diÆcult problem that we are now addressing but is beyond

the scope of this paper.
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such an approach would be highly expensive in terms of computational cost. We

propose an incremental approach to utility-based categorization by iteratively chang-

ing the level of abstraction within the conceptual cover used for model construction.

There are numerous advantages in adopting an incremental approach. First, an in-

cremental approach has approximately the so called 
exible[7] or any time property

[8, 9]. These are computational approaches which can be terminated prematurely

during its computation and a partial result returned. In contrast, a computational

approach which does not have the any time property would return nothing useful if

it is terminated prematurely. It has been argued that 
exible or anytime approaches

are more suited for operation under conditions of great uncertainty in resource con-

straints [10]. Second, by applying the principles of decision-theoretic control of rea-

soning [10, 11, 12, 13], the problem of resource limitation for model construction and

re�nement can be computationally managed [14, 15]. Finally, since the categorization

model is being modi�ed iteratively, we can include any newly acquired information

into the model at the end of each iteration. In contrast, a global solution approach

would not be able to do so until it completes its computation.

Two possible operations may be performed on a conceptual cover to either increase

or decrease the level of speci�city of the concepts concerned. These operations are as

follows:

1. Conceptual specialization whereby a concept in the conceptual cover is modi�ed

by replacing it with the set of its most general subsumees (i.e., subconcepts).

2. Conceptual generalization whereby a subset of concepts in the conceptual cover

are replaced with their most speci�c subsumer (i.e., superconcept).

Figure 8 illustrates the conceptual specialization and generalization operations.

Given the conceptual cover comprising the concepts \tool chatter," \tool wear,"

\tool breakage," \sensor failure," \transient state" and \within variability limits,"

the concept \transient state" may be specialized by replacing it with the set of its
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Figure 8: Conceptual cover specialization and generalization operations
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most general subsumees, namely \tool entry" and \tool exit." This results in a

new conceptual cover corresponding to the set of concepts comprising \tool chatter,"

\tool wear," \tool breakage," \sensor failure," \tool entry," \tool exit" and \within

variability limits." Similarly, in Figure 8, given the conceptual cover comprising the

concepts the concepts \tool chatter," \tool wear," \tool breakage," \sensor failure,"

\transient state" and \within variability limits," the three concepts \tool chatter,"

\tool wear" and \tool breakage" may be generalized and replaced by their most spe-

ci�c subsumer \tool failure." A new conceptual cover comprising the concepts \tool

failure," \sensor failure," \transient state" and \within variability limits," may be

formed in this way.

Given a conceptual cover zo, we will denote a model improvement operation by si

and zi = si(zo) the resulting conceptual cover. As a convention, we will denote the null

operation by so. We can also perform a sequence of n model improvement operations

s1; s2; : : : ; sn such that the resulting conceptual cover is zn+1 = sn(sn�1(� � � s1(zo))).

VI. Control of Model Improvement

We develop measures that aid a categorical reasoner in estimating the values obtained

by varying the level of categorical abstraction in a categorization decision model. We

de�ne the expected value of model improvement (EVMI) for operation si on conceptual

cover zo to be

EVMI(si) = EVC(si(zo))� EVC(zo) (10)

where si(zo) = zi denotes the resulting conceptual cover. In practice, EVMI values

can be estimated for categorization decision models with certain types of topology,

e.g., when all the features are conditionally independent of each other given the central

concept [1].

EVMI values o�er plausible guidance in controlling categorical reasoning. We

have developed control techniques for making decisions about categorization decision

model improvement. To consider the use of EVMI measures, we must balance the
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expected bene�ts of model improvement in terms of the expected value of the recom-

mended action with the corresponding change in computation cost. We de�ne the net

expected value of model improvement (NEVMI) as the di�erence between the EVMI

and change in model computation cost and the cost of making the improvement.

That is,

NEVMI(si) = EVMI(si)��Cc(si)� Cg(si) (11)

where EVMI(si) is the expected value of model improvement for operation si, �Cc(si)

= Cc(zi)�Cc(zo) is the change in computation cost of the model due to the operation

si, and Cg(si) is the cost of performing the model improvement operation.

The identi�cation of a theoretically optimal sequence of operations requires a

combinatorial search through all possibilities. In practice we can approximate the

process by employing a myopic or greedy NEVMI control procedure [10]. At each

iteration, we seek to identify the single-step model improvement operation with the

greatest NEVMI, i.e.,

argmax
si

NEVMI(si): (12)

We iteratively repeat this greedy analysis and halt model improvement when all

operations have NEVMI(si) � 0. Figure 9 shows the fragment of the graph of possible

model improvement steps.

The myopic approach works �ne if all NEVMI values diminish monotonically, but

it can overlook positive NEVMI values that lie more than one step ahead of the

current state. We can relax the myopia of the NEVMI analysis by allowing varying

amounts of lookahead. For example, we can consider the NEVMI of two or more

model improvement steps. Such lookahead can be invoked when single-step analysis

yields negative NEVMI values for all operations. We can also generalize the analysis

to a general n-step look ahead procedure. By careful experimentation, one may

learn about the characteristics of the utility changes that accrue from stepwise model

improvements and adopt a plausible value for lookahead.

The analysis described above is based on an urgency model of computational cost
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[10] where utility decreases monotonically with the amount of computational cost.

For the case where there is an uncertain deadline, we present the model improvement

control problem using the in
uence diagram shown in Figure 10. As before, let zo

represent the current level of abstraction. Let si (i = 1; : : : ; p) be the set of possible

model improvement operations applicable on zo such that si(zo) = zi. Let so represent

the null operation, i.e., so(zo) = zo. Let the uncertain deadline be denoted by td. Let

tc(zi) represent the uncertain model computational time requirement for a model

corresponding to zi. Let tg(si) be the uncertain model improvement time associated

with operation si. Depending on whether the total time tc(zi) + tg(si) exceeds the

deadline td or not, the actual time utilized is Tt(si) = min(tc(zi) + tg(si); td). Let

EVC(zi) denotes the value of the recommended action given that operation si is

applied.

Given a model improvement operation si, we consider two possibilities. In the

�rst case, when tc(zi) + tg(si) � td, there is enough time to complete the evaluation.

The overall utility of the outcome is then U(EVC(zi); Ca(tc(zi) + tg(si))) were Ca is

a function converting computation time to cost.6 In the second case, when tc(zi) +

Cg(si) > td, there is not enough time to complete the evaluation. Without model

improvement, the actor would not be able to follow any newly recommended action

and would continue to act without it. The utility of the outcome for this second

case is U(EVC(zo); Ca(td)). The net expected value of model improvement for si is

therefore

NEVMI(si) = p(tc(zi) + tg(si) � td)[EVC(zi)� Ca(tc(zi) + tg(si))] +

p(tc(zi) + tg(si) > td)[EVC(zo)� Ca(td)]� EVC(zo)

We can simplify the NEVMI to

NEVMI(si) = p(tc(zi) + tg(si) � td)[EVMI(si)� Ca(tc(zi) + tg(si))]�

6We are assuming that computation time is the only factor a�ecting cost.
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p(tc(zi) + tg(si) > td)Ca(td) (13)

VII. An Application in Automated Machining

To demonstrate the bene�ts of our system over one which does not allow for 
exi-

bility of abstraction in conceputal representation, we will illustrate how our system

might possibly guide the behavior of our automated machine (T1000) under di�erent

situations and context.

Suppose T1000 had just been set up for a new job with new set of cutting tools

and its sensors were checked recently. We can assessed low prior probabilities to

the concept \out of variability limits" and two of its subconcepts \tool failure" and

\sensor failure" in the pc-net. Sensor readings were obtained and the meta-level

decision model indicated that the optimal conceptual cover for the current situation

was \out of variability limits", \within variability limits". The recommended action

was \do nothing".

A little while later, the sensors picked up an increase in acoustic emission (\AE-

mag") and an increase in cutting force variation in the x direction (\�dyn-rms-x").

Based on these information, the system indicated that specializing the conceptual

cover to f\tool wear", \tool chatter", \tool breakage", \sensor failure", \transient

state", \within variability limits"g would yield the highest NEVMI with the recom-

mended action \reduce depth of cut to 0.5mm". After the recommended action was

carried out, the sensor readings began to change and the system returned to the

conceptual cover f\out of variability limits", \within variability limits" g as before.

As the machining proceeded, we updated the pc-net to re
ect a higher possibility

of tool wear based on the amount of usage on the tool. An hour later, again based

on sensor readings, the system changed the conceptual cover in the model to f\tool

failure", \sensor failure", \transient state", \within variability limits"g. This was due

to the fact that the tool had been used suÆciently long enough to warrant a change

in level abstraction in the model. The system also recommended a lowering of the
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cutting tool feed rate to one-half of the current value.

We observed that by allowing for 
exible abstraction of conceptual representation,

our system was able to guide an actor to respond with the best course of action de-

pending on the situation and context. A conventional categorization system, on the

other hand, would always perform its reasoning based on a �xed conceptual cover,

perhaps at the most detailed level. It would not be able to 
exibly adjust its level of

conceptual representation and reasoning according to the situation and context. For

example, when caught in a critical situation such as, for example, when T1000 broke

its tool and any prolonged delay in changing the tool would have damaged the work-

piece, our system can respond appropriate by assigning a high cost to computation

time and work on a model containing just suÆcient information to see it through the

situation. On the other hand, a system with �xed conceptual representation or one

which always seek the most comprehensive conceptual description would not be able

to respond adaptively to the criticality of the situation.

VIII. Discussion

We have described a dynamic model construction process within an overall decision-

theoretic framework for categorization. Our approach is strongly motivated by an

intelligent actor's need to manage the tradeo� between the potential bene�ts of using

more elaborate concepts and the computational costs that may be incurred when

using them to reason about action. The hierarchical pc-net in our approach to cate-

gorical reasoning incorporates inheritance mechanisms to economize on the informa-

tion stored at any given level of abstraction in a hierarchy. Rather than rely upon

this hierarchical, inheritance-based approach, it is possible to store all knowledge at

the most speci�c conceptual cover (i.e., the lowest hierarchical level or \leaves" in

the pc-net). From the decision model corresponding to this conceptual cover, one

could derive all the other more abstract decision models. However, our use of hi-

erarchical representation and inheritance mechanisms seems preferable for modeling
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the problem-solving of resource-constrained actors. By enabling the detection and

use of subconcept independence relations, our approach provides a form of \cognitive

economy" that is likely to greatly simplify the elicitation process (cf. [5]). The pc-net

representation might also be viewed as a form of generalization of Heckerman's two

level hierarchy which is based on the notion of subset independence.

Our research on utility-based categorization grew out of our interest in more tra-

ditional approaches to knowledge representation and reasoning about concepts found

in the AI and cognitive science literature (cf. [1] for a thorough review). The no-

tion of concept-subconcept hierarchies is a central theme in that literature, although

a great deal of attention is given to methods to overcome the limitations of strict

hierarchies when deterministic relations are presumed between concepts and subcon-

cepts or between concepts and features. This includes the use of multiple inheritance

representations in conjunction with defaults, overrides, and other \non-monotonic"

inference devices. Our approach also presumes hierarchical organization, but allows

for probabilistic concept-subconcept and concept-feature relations. This probabilis-

tic approach overcomes some of the limitations of deterministic approaches regarding

concept-feature relations. Our use of hierarchical concept-subconcept relations may

bene�t from being generalized to the use of probabilistic, multiple-inheritance rela-

tions.

Our focus on categorical reasoning as an element of reasoning about action is a

particularly distinctive aspect of this research. By viewing choice of representation

in terms of its ultimate impact on e�ectiveness (i.e., utility) of action, we provide the

basis for a truly normative theory of categorization which prescribes how a resource-

constrained actor, given some sensory information, should most e�ectively exploit its

beliefs about concepts and their features in order to maximize the e�ectiveness of

that actor's impact on the world. One challenging extension to this work would be

to generalize the model construction methods describe herein for the case of \heter-

archical" organization of concepts (i.e, probabilistic relations to multiple parents of

a given subconcept). This extension poses some formidable mathematical challenges
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that we shall address in the near future.

Other promising extensions of our work include development of methods to auto-

matically generate an abstraction hierarchy from lowest-level concepts or the removal

of intermediate level concepts that are irrelevant to the problem or task at hand.7 One

promising approach to utility-based clustering involves starting from the most speci�c

conceptual cover, recursively merging two or more concepts in the cover whose gen-

eralization has the highest EVMI value, and stopping when the next generalization

produces a single (root) concept.

The idea of using expected value of decision modeling was �rst addressed in [17],

as well as [18]. Categorical specialization and generalization operations on general

probabilistic models have also been studied in [19] where they investigated the prob-

lem of dynamically re�ning and coarsening of state variables in probabilistic in
uence

diagrams and speci�ed a set of constraints that must be satis�ed to ensure that the

coarsening and weakening operations do not a�ect variables that are not involved. In

particular, the joint distribution of the Markov blanket excluding the state variable

itself must be preserved. However, the value and cost of performing such operations

were not addressed. The idea of attention focusing in decision making was also stud-

ied in [20]. They investigated the value of \extending the conversation" by identifying

additional conditioning variables that might be added to existing decision models.

In related work, we have also investigated some general techniques for reasoning

about the value of re�ning general decision models [14, 15]. These techniques for re�n-

ing general decision models can be incorporated into automated reasoning systems or

computer-based decision modeling and evaluation systems [21, 22]. These techniques

do not make any presumption of explicit availability or representation of knowledge.

By applying similar principles for the decision-theoretic control of reasoning, we can

provide guidance on when it is best for an actor to cease further re�nement of a

decision model and take immediate action in the world.

7Several methods for generating concepts based on utility-based clustering are described in [16].
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IX. Conclusions

The methods for dynamic model construction presented here fall within a novel frame-

work for utility-based categorization as a type of deliberation in support of reasoning

about action. Elsewhere, the �rst author and his colleagues discuss other important

aspects of this research (e.g., [1, 4, 14, 15]).

The model-construction approach presented here is motivated by recognition of a

resource-constrained actor's need to manage the diÆcult tradeo� between the bene�ts

to be gained from representing its problems by using more detailed categories and

the possibly unacceptable computational costs that use of such detailed descriptions

might entail. In order to address this problem we have also introduced a single-

inheritance-based probabilistic network representation scheme.

We believe that our approach, particularly, the use of decision-theoretic control

of model modi�cation is an important new direction for knowledge-based model con-

struction applications. It provides a basis for a promising approach to balancing

the computational costs and actional bene�ts of the model construction process. We

have illustrated the application of our concept-representation and model-construction

methods with an example from manufacturing automation and showed how our sys-

tem can guide an automated machining operation through di�erent situation and

context. We also believe that our approach o�ers equal value in addressing similar

issues in many other application domains, most notably for the domain of medical

diagnosis. The �rst author is currently exploring the use of the approach to categorize

personnel records in a large organization in Singapore.
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