
Dialog Management / Conversation 
 multiparty, multi-task dialog management 

Language understanding / Intention 
 situated understanding of verbal and non-

verbal communicative acts 

Turn-Taking / Signal 
 track multiparty conversational dynamics; 

manage floor and coordinate outputs 

Engagement / Channel 

 engage, disengage and re-engage in 
conversation with multiple actors 

Communicative Process / Grounding Level Situationsl Context 

Goals and Intentions 
 sense and reason about beliefs, 

intentions and goals of self and others 

Situation and Activity 
 sense and reason about relevant 

events and activities of self and others 

Physical Awareness 

 detect, track, identify and characterize 
relevant actors, objects, states and 
relationships; understand physical 

affordances and actions 

Figure 1. Components for reasoning in support of dialog for 

communication and joint activity in the open world. 
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Abstract 

We outline several challenges and opportunities for building 
physically situated systems that can interact in open, 
dynamic, and relatively unconstrained environments.  We 
review a platform and recent progress on developing 
computational methods for situated, multiparty, open-world 
dialog, and highlight the value of representations of the 
physical surroundings and of harnessing the broader 
situational context when managing communicative 
processes such as engagement, turn-taking, language 
understanding, and dialog management. Finally, we outline 
an open-world learning challenge that spans these different 
levels.  

Introduction   

Most research to date in spoken dialog systems has focused 
on dyadic interactions over a speech- or text-only channel, 
with the telephony-based interactive voice response system 
(IVR) as the prototypical application. Various interactional 
problems have been investigated in this context, and 
advances in areas like speech recognition and synthesis, 
language understanding and generation, and dialog 
management have led to wide-scale deployments and use 
of IVR and multimodal mobile systems in daily life. 
 At the same time, the goal of developing autonomous 
systems (such as robots) that act and interact in the open 
world via spoken language is still in its early stages and 
raises significant research challenges. Interactions in the 
open-world are characterized by several aspects which 
represent key departures from assumptions typically made 
in spoken dialog systems. First open-world interactions are 
physically situated: the surrounding environment provides 
a rich, continuously streaming physical context often 
critical to understanding and organizing communications. 
Open world interactions are also typically multiparty and 
dynamic: the world contains not just one, but multiple 
actors that may be relevant to the computational system, 
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and each actor has their own set of evolving goals, desires 
and intentions.  
 The physically situated, dynamic, and multiparty nature 
of open-world interactions brings to fore new challenges to 
the traditional spoken dialog processing stack. Managing 
communicative processes like engagement, turn-taking, 
language understanding, and dialog management in an 
open-world setting requires integrative reasoning that goes 
beyond the confines of language problems and takes into 
account the broader situational context: the who, where, 
what, and why of the scene (Figure 1.) At the low level, 
this includes basic physical awareness and reasoning about 
relevant actors, objects, and events in the environment, 
their location, physical characteristics and relationships, 
topologies and trajectories, etc. At a higher level, it 
includes semantic context about the (changing) activities 
that the human and computational actors are involved in, 
and about the long-term goals, plans, desires, knowledge, 
and intentions that are driving these activities.   As an 
example, consider the problem of establishing an open 
communication channel—the first step in any successful 
language interaction. In traditional dialog systems, this 
problem is simply resolved via unambiguous signals such 
as a call being received in a telephony IVR system, or a 
push-to-talk button. These solutions are however 
inadequate for systems that operate continuously in open, 
dynamic environments, where participants might come and 
go, initiate interactions from a distance, interact with each 
other and with the system and interleave their 



communications with other activities. New models that 
explicitly reason about spatiotemporal trajectories, 
proxemics and geometric relationships in formations of 
people, non-verbal behaviors, body pose and the dynamics 
of gaze and eye contact, as well as higher level inferences 
about the long-term goals and activities of each agent are 
required in order to fluidly manage the engagement process 
in an open-world setting. Similar challenges in integrating 
the streaming physical and semantic context are raised for 
the other conversational competencies like turn-taking, 
language understanding, and dialog management.  
 In this paper, we review some of these challenges and 
opportunities in more detail, summarize our initial research 
efforts in this space, and outline directions for future work.  
We begin by describing a set of hardware and software 
components, and a number of applications that provide the 
test-bed for the work described in the sequel.  

A Research Platform for Situated Interaction 

Our hardware platform consists of a custom-assembled 
multi-modal kiosk shown in Figure 2. The sensory 
apparatus of this prototype includes a wide-angle camera 
with 140° field of view and a resolution of 640x480 pixels; 
a 4-element linear microphone array that can provide 
sound-source localization information in 10° increments; a 
19‖ touch-screen; and a RFID badge reader. The output 
consists of a talking avatar head with controllable pose, 
synchronized lip movements and limited facial gestures.  

Data gathered by the sensors is forwarded to a scene 

analysis module that fuses the incoming streams and 

constructs (in real-time) a coherent picture of what is 

happening in the surrounding environment. This includes 

models for detecting and tracking the location of multiple 

actors in the scene, reasoning about their attention, 

activities, goals and relationships (e.g. which people are in 

a group together), reasoning about engagement (e.g. 

tracking engagement states, actions and intentions), and 

turn-taking (e.g. tracking who is talking to whom, who has 

the floor, etc.) The results of this real-time scene analysis 

(some of them illustrated in Figure 3) are forwarded to a 

reactive control layer, which orchestrates the avatar’s 

behaviors based on the semantic outputs planned by a 

multiparty dialog management component. A more 

detailed description of these components is available in [4].  

These software components are implemented on top of 

the Microsoft Robotics Studio platform [14], which 

facilitates concurrent, coordinated computation. Given its 

degree of modularization and abstraction, we expect that 

our software stack can be easily adapted to different 

hardware platforms, including robotic systems.  
 To date, we have developed several applications using 
this framework [4]. Videos of recorded interactions are 
available in [21]. The first application we have developed, 
called Receptionist, implements a situated conversational 
agent that makes shuttle reservations, a task performed by 
front-desk receptionists at our campus. The system can 
handle multi-participant interactions and can manage 
interleaved engagements with multiple parties e.g. by 
interrupting a conversation to address a waiting customer 
and let them know they will be attended to momentarily.  
 Another application, the Questions Game, implements a 
situated conversational agent that can engage with one or 
multiple participants and challenge them to answer 
questions on a variety of topics. In multi-participant 
situations, the system can monitor side conversations, and, 
once it receives an answer, also seeks confirmation from 
other engaged participants before moving on. In addition, 
the system can attract bystanders and engage them in an 
already running game. This application has served as the 
primary platform for the research described below. 

A third application, PASS, or the Personal Assistant and 
Scheduling System is designed to act as an administrator 
with the ability to handle messaging and scheduling tasks. 
The system is deployed outside its owners‘ office and has 
access to their calendar and to components that learn and 
reason about the owner‘s presence and availability. By 
leveraging this back-end information, PASS can engage 
people that approach the office when the owner is not 
present and provide assistance with scheduling meetings 
and relaying messages.  

Figure 2. Prototype, software components, and automated annotation of conversational scene analysis 
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Figure 3. Placement, fields of view, and error rates for 

detecting engagement intentions in two spatial orientations. 
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Research Challenges 

We now turn our attention to the set of core conversational 
competencies for enabling physically situated interaction. 
We review our previous efforts on modeling engagement 
[2, 3] and turn-taking [5, 6] in multiparty, open-world 
settings and we discuss lessons learned and future work. 
We then review challenges at the higher levels in the stack 
of conversational competencies, in the areas of situated 
language understanding and dialog management.  

Engagement 

We follow the definition by Sidner et al. [20] and view 
engagement as ―the process by which […] participants 
establish, maintain and end their perceived connection 
during interactions they jointly undertake‖. Research in 
sociolinguistics and conversational analysis [9,11,12,13] 
has shown that this is a mixed-initiative, coordinated 
process, managed via a multitude of verbal, non-verbal and 
spatial cues such as trajectory and proximity, gaze and 
mutual attention, head and hand gestures, salutations etc.  

 In contrast, traditional spoken dialog systems rely on 
simple solutions like push-to-talk buttons to resolve this 
problem. Such solutions are inadequate for systems that 
need to seamlessly engage, disengage, re-engage with 
multiple parties in an open-world setting. To address this 
challenge, we have outlined a modeling framework [2] that 
enables an embodied interactive system to explicitly 
represent and reason about engagement. The proposed 
framework harnesses components for sensing the 
engagement state, actions and intentions of various actors 
in the scene (e.g. who is engaged, who is trying to engage, 
etc.), for making engagement control decisions (e.g., whom 
should a system engage with, and when?) and for 
controlling the verbal and non-verbal behaviors of the 
agent such as to convey its own engagement intentions.  

 These models were implemented and evaluated in the 
context of the Questions Game application. We deployed 
the application near a kitchenette in our building and 
conducted a 4-week in-the-wild experiment in which the 
system could make eye contact and then invite the passer-
bys that slowed and approached it to play the game; no 
instructions for how to interact with the system were 
provided. Additionally, activity models based on the 
spatiotemporal trajectory of actors in the scene were used 
to determine whether bystanders were present in the scene 
while a game was in progress. If bystanders were detected, 
the system would temporarily suspend the existing 
interaction and create a side-engagement with the 
bystander to get them to join the game (e.g. towards 
engaged participant: ‘It looks like you could use some help. 
Excuse me for one second’, then towards bystander: ‘Hi, 
would you like to join in?’). If the bystander agreed, the 
system continued playing the game with both participants. 
Experimental results [2] indicate that the proposed models 
enabled the system to successfully create multi-participant 
engagements in this setting. Overall, bystanders 

successfully recognized that they are being engaged and 
solicited by the system and responded (either positively or 
negatively) in 87% of cases. The side comments produced 
by the participants around the moments of engagement 
indicated surprise and excitement at the system‘s 
multiparty capabilities. 

In [3] we proposed and evaluated an approach for 
learning to make inferences about when an actor might be 
interested in engaging with the system by leveraging the 
temporal structure of spatial and focus-of-attention features 
for that particular actor. The proposed approach does not 
require any explicit supervision, and allows a system to 
learn from interaction, in a previously unseen environment. 
The central idea is to start with a conservative detector for 
engagement intentions, such as a push-to-engage button, 
and automatically gather sensor data surrounding the 
moments of engagement, together with labels that indicate 
whether someone actually engaged or not (the system 
eventually finds out if an actor becomes engaged: the actor 
will either start playing the game, or will eventually 
disappear from view). Experiments were conducted in two 
different spatial orientations (see Figure 3), which create 
considerable differences in the relative trajectories of 
people that go by (dashed lines) and people that engage 
with the system (continuous lines). The results indicate that 
the system was able to learn to predict engagement 



intentions at low error rates up to 3 seconds prior to the 
actual moment of engagement. Figure 3 shows the error 
rate as a function of how early the predictions are being 
made. The learned models were different across the two 
orientations, as they were adapted to the specifics of the 
spatial configuration the system was placed in. These 
results highlight the importance of physical context in 
situated interaction, and raise questions regarding the 
development of representations that best capture this 
context in a manner that generalizes across situations.  

 Similar models are required for detecting whether 
engaged participants are actively maintaining the 
conversational engagement or are disengaging. Apart from 
tracking and reasoning about physical space as well as 
verbal and non-verbal cues and gestures, such as 
affirmations, gaze and attention, body position, etc., these 
inferences could also significantly benefit from a tighter 
integration with higher level context. This includes 
information about goals, intentions and activities (e.g., 
what role does the participant play in the current 
collaboration? is the participant involved in another non-
communicative, but still on-task activity?) as well as 
information from the higher levels in the dialog processing 
stack. Examples of the latter include the turn-taking 
context (e.g., was the last utterance produced by the 
participant addressed to the system or to someone going 
by?), language understanding (e.g., did the last utterance 
bring a contribution to the current interaction?), and dialog 
management (e.g., what is the expected rhythm of 
contributions and the pace of the interaction at this point?).  

 Important challenges also remain in making engagement 
control decisions in open-world settings. Consider for 
instance the problem of optimizing engagements with 
multiple parties, who all desire access to a single point-of-
service system (e.g., Receptionist). Or consider the 
problem in which a system has to engage with a participant 
already engaged in another task or conversation. We 
believe such problems require decision-theoretic solutions 
that draw on a deep understanding of the current context, 
including the goals and tasks at hand, and take into account 
the underlying uncertainties, the costs of continuing versus 
interrupting collaborations, as well as notions of 
conversational etiquette, expectations of fairness, etc.  

 Interesting challenges lay ahead on the creation of 
accurate low-level behavioral models, including the fine-
grained control of pose, gesture, facial expressions, etc. 
Mobility adds yet another dimension to the problem, as the 
behavioral control components need to also reason deeply 
about trajectories, proxemics and the structure of f-
formations, and more generally about the etiquette of space 
and movement in interaction. Developing such methods 
will likely have subtle, yet powerful influences on the 
effectiveness and fluidity of the engagement process. 

Multi-Participant Turn-Taking 

Once participants are engaged in a conversation, given the 
serial nature of the verbal channel, they have to coordinate 

with each other on the presentation and recognition of 
various communicative signals. This happens in a process 
known as turn-taking, which, like engagement, is regulated 
through a rich set of verbal and non-verbal cues, such as 
establishing eye contact, head and hand gestures, changes 
in prosody and verbal affirmations [1,8,10,17,18,19].  

 With a few exceptions, e.g. [15,16,22,23], most spoken 
dialog systems have been designed for closed-world dyadic 
interactions and make a simplifying ―you speak then I 
speak‖ assumption. This can often lead to breakdowns, 
even in dyadic interactions, and various heuristics are used 
to handle departures from this expected volley of 
interaction, such as user barge-ins or time-outs. The 
inadequacy of simple heuristics for guiding turn-taking is 
even more salient in multiparty settings, where multiple 
participants vie for the floor and may address contributions 
to the system or to each other, and where events external to 
the conversation can impinge on the urgency of a 
participants‘ need to make a contribution. 

 In [5], we outlined a computational framework for 
modeling and managing turn-taking in open-world spoken 
dialog systems. We take the view that turn-taking is a 
collaborative, interactive process by which participants in a 
conversation monitor each other and take coordinated 
actions in order to ensure that (generally) only one 
participant speaks at a given time—that participant is said 
to have the conversational floor. Furthermore, we assume 
floor shifts from one participant to another emerge as a 
result of joint, coordinated floor management actions 
performed by the participants: Hold, Take, Release and 
Null.  The proposed framework subsumes models for 
tracking the conversational dynamics in multiparty 
interaction, for making floor management decisions, and 
for rendering these decisions into appropriate behaviors.  

 The sensing subcomponent in the proposed framework 
is responsible for tracking the conversational dynamics, i.e. 
identifying spoken signals, their source and target (the 
framework represents various addressee roles as per [7] – 
see Figure 4 and Table 1), and the floor state, actions and 
intentions for each engaged participant. The decision 
component decouples input processing from response 
generation and floor control decisions: all inputs are 
processed as soon as they are detected. However the 
decisions to generate a new contribution and the selection 
of the floor management actions to be performed by the 
system are made separately, based on rules that take into 
account the larger turn-taking and dialog context (i.e., floor 
state, actions and intentions for each participant in the 
scene, set of planned outputs, etc.). Finally, the system‘s 
floor management actions are rendered into a set of 
accurately timed verbal and non-verbal behaviors (e.g., 
establishing and breaking eye contact, lifting eyebrows, 
etc.) that convey the system‘s turn-taking intentions.  

 The proposed models were implemented and evaluated 
via a set of multi-participant interaction experiments with 
the Questions Game [5]. Results indicate that the proposed 
framework can indeed enable the conversational agent to 



participate in multi-participant interactions, and to handle a 
diversity of naturally occurring turn-taking phenomena, 
including multi-participant floor management, barge-ins, 
restarts, and continuations. Users rated the system‘s 
multiparty turn-taking abilities favorably in a post-
experiment subjective assessment questionnaire [5].  

 The data collected in these experiments also shows that 
the current behavioral models allow the avatar to 
effectively shape turn allocation and convey addressee 
roles in multi-participant interactions [6]. For instance, in 
interactions involving two participants and the system, 
during verbally produced RequestConfirmation dialog acts 
that were addressed to a single participant (e.g. ‘Is that 
correct?’) the addressee designated by the system (via 
gaze) was the one to respond in 86.2% of cases. Even 
when the RequestConfirmation dialog act was performed 
in an entirely non-verbal manner (i.e., by simply gazing 
towards the addressee and lifting eyebrows), the designated 
addressee was the one to respond in 78.6% of cases. A 
detailed discussion of these results, including an analysis 
of various contextual factors that also impact the system‘s 
ability to shape turn-allocation is available in [6].  

 As with engagement, numerous challenges remain with 
respect to turn-taking. Perhaps key among them is 
developing robust models for tracking conversational 
dynamics. We initially used handcrafted heuristic models 
for making inferences about turn-taking from audiovisual 
information, but have been exploring the promise of 
building richer models from case libraries of data that are 
used to perform joint inferences about all participants in 
the scene. We expect that richer audio-visual and physical 
context (e.g., prosody, head and body pose), temporal 
context (e.g. who spoke last, how long ago), as well as 
high-level interactional context (e.g., what turn-taking 
expectations does the current dialog state create, where is 

the avatar looking, etc.) all carry relevant information for 
these inferences. In addition, given the key role of timing 
in turn-taking, we believe that inference models that not 
only track, but also anticipate and predict floor and turn-
taking events, can significantly improve performance and 
enable more fluid turn-taking. 

 Given the underlying uncertainties in the signal and 
floor inference models, we believe that utility-theoretic 
methods that resolve trade-offs, between timely actions and 
greater accuracies promised by delays to collect additional 
audio-visual evidence, can provide more robust 
performance. Detection and recovery from turn-taking 
errors is another important area of future research. We note 
that turn-taking errors generally manifest themselves as 
overlaps or long unfilled pauses. Coupled with appropriate 
blame-assignment models, these signals may provide 
useful online cues for learning or adaptation.  

 Finally, important challenges remain in developing more 
refined behavioral models for signaling turn-taking actions 
and intentions, e.g., modulating gaze and prosody on the 
fly, producing backchannels, etc.  

Language Understanding and Dialog Management  

Numerous challenges remain also in the areas of spoken 
language understanding and dialog management. Novel 
mechanisms for integrating the streaming physical context 
into the typically discrete language understanding and 
dialog planning processes are required. For instance, the 
Receptionist uses information about the number of actors 
present in the scene and their relationships (i.e. who is in a 
group together) to make inferences about the number of 
people that a particular shuttle reservation should be made 
for. The system‘s belief updating process fuses such 
continuously streaming information with discrete discourse 
contributions from the participants. Similarly, resolving 
deictic expressions like ‗Come here!‘ requires language 
understanding models anchored in spatial reasoning and a 
deep understanding of the relevant entities (and their 
relationships) in the surrounding environment.  
 New formalisms may be required for dialog 
management of open-world, mixed-initiative, multiparty 
interactions. Handling such interactions requires discourse 
understanding models that reason more deeply about 
addressee roles, and about how contributions from multiple 
participants can be interleaved. These models in turn can 
be anchored in an analysis of the roles played by each 
participant in the interaction, as well as their knowledge, 
goals, and intentions. Finally, open-world systems must be 
able to reason beyond the confines of any single interaction 
in order to provide continuous, long-term assistance. 

Towards Open-World Learning 

We have highlighted some of the specific challenges of 
integrating streaming situational context with various 
conversational competencies in support of fluid spoken 
language interaction in the open-world. We conclude by 

Role Description 

Addressee participant that utterance is addressed to 

Side participant participant that utterance is not addressed to 

Overhearer 
others known to the speaker who are not participants 
in conversation but will hear the utterance 

Eavesdropper 
others not known to the speaker who are not 
participants in the conversation but will hear the 
utterance 

 

s1: from p1 to p2 and p3, in c1 
Who coined the term science-
fiction? 

s2: from p2 to p3, in c1 
I have no idea… Do you know? 

s3: from p4, who is passing by, to p2 in 
a different conversation c2  
Hey, Bob, do you know where 
we’re parked? 

 

c1 

p2,p3: addressees  
p4: overhearer 

 

s1 

s1 

c2 

p4

5 

s1 

s2 

s2 

p3: addressee 
p1: side-participant 
p4: overhearer 

 

s3 

s3 

p2: addressee  
p1,p3: overhearers 

 

Example: 

p2 

p participant 

c conversation 

s signal 

p1 

p3 

Table 1. Addressee roles in multiparty interaction.  

Figure 4. Sample multiparty interaction with illustrated 

addressee roles and three different signals. 



outlining a more generic challenge that cuts across all these 
different components: open-world learning.  
  We believe that developing deeper competencies with 
open-world dialog will hinge on the incorporation of 
deeper domain-specific skills as well as key aspects of 
cross-domain commonsense knowledge about intentions, 
goals, activities, and about objects in the physical world.   
Higher-level processes like spoken language recognition, 
understanding, and dialog management are tightly 
anchored in both general commonsense and domain-
specific competencies, as captured by lexicons and 
grammars, knowledge about ontologies of objects and 
affordances in the world, and the abilities to infer goals, 
perform plan recognition, and to create dialog plans. 
Typically, interactive applications are developed by 
carefully defining boundaries and by engineering the 
knowledge and models required to provide good coverage 
in a particular domain. The engineering costs can be 
simplified to some degree by creating reusable components 
that decouple domain-specific from domain-independent 
aspects: the latter can be reused across applications. 
Nevertheless, this approach tends to produce brittle 
solutions susceptible to ―out-of-domain‖ problems (e.g., 
out-of-vocabulary, out-of-grammar, out-of-understanding, 
etc.). These problems become even more acute for systems 
that operate in the open, unconstrained world.  
 We envision a two-step solution to this problem. The 
first step involves the development of models for detecting, 
explicitly reasoning about, and diagnosing out-of-domain 
situations. The second step involves learning to extend 
models and domains with new knowledge in a lifelong, 
ongoing manner. This can be accomplished in small 
increments, by special machinery for autonomously 
probing and learning about situations and phenomena that 
are noted as poorly understood, as well as via leveraging 
and seeking help through interactions, or from a domain 
expert. Open problems include modeling uncertainties 
about ―unknown unknowns,‖ developing representations 
that are expressive yet easily support extensions, 
developing models for eliciting domain knowledge through 
interaction, and developing models for sharing and fusing 
the knowledge learned online by different systems. We 
believe that taking steps to solve these hard problems can 
lead to increased robustness and lower engineering costs, 
and ultimately move us closer to a long-standing dream in 
the AI community: systems that can continuously learn and 
improve themselves through experience. We challenge the 
research community to innovate in these areas. 
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