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Abstract 
Popular route planning systems (Windows Live Local, 
Yahoo! Maps, Google Maps, etc.) generate driving 
directions using a static library of roads and road attributes.  
They ignore both the time at which a route is to be traveled 
and, more generally, the preferences of the drivers they 
serve.  We present a set of methods for including driver 
preferences and time-variant traffic condition estimates in 
route planning.  These methods have been incorporated into 
a working prototype named TRIP.  Using a large database 
of GPS traces logged by drivers, TRIP learns time-variant 
traffic speeds for every road in a widespread metropolitan 
area.  It also leverages a driver’s past GPS logs when 
responding to future route queries to produce routes that are 
more suited to the driver’s individual driving preferences.  
Using experiments with real driving data, we demonstrate 
that the routes produced by TRIP are measurably closer to 
those actually chosen by drivers than are the routes 
produced by routers that use static heuristics.   

Introduction 
Since the introduction of commercial route planners over a 
decade ago, people have grown to rely upon them for 
everything from finding their way to local businesses and 
friends’ houses to planning cross-country road trips.  Route 
planners are available today in cars as well as on the web, 
where drivers can choose from any of a number of 
planners, including those associated with Windows Live, 
Yahoo!, and Google.  Although these planners are 
increasingly reliable in their knowledge of such details as 
one-way and otherwise quirky streets, they all share the 
same static-world assumptions.  In particular, they are all 
built around the assumptions of constancy and 
universality—respectively, the notions that an optimal 
route is independent of the time and day of the actual 
journey and of the detailed preferences of drivers. 
 In reality, constancy and universality are poor 
assumptions.  Most urban commuters can verify that the 
best route between work and home at midnight is not 
necessarily the best route to take between the same 
locations at, say, 8AM.  Similarly, different drivers may 
choose different routes to carry them between the same 
start and destination points.  While differences in 

knowledge may play a role in these divergent choices, in 
many cases drivers simply have different preferences about  
the types of routes they like to take.  For example, one 
driver may avoid highways or particularly difficult merges, 
or is willing to extend the duration of her journey by a few 
minutes in order to follow a scenic coastal road, while 
another driver simply wants to arrive as quickly as possible 
or to traverse the shortest distance. 
 As an example, consider Figure 1, which depicts a real 
driver’s regular morning commute.  It follows a route that 
defies the plans of three route planners that each use 
different but reasonable metrics, indicating that this driver 
has preferences, assumptions, and/or knowledge that 
differs from the knowledge and assumptions implicit in the 
three planners.  In fact, data from our study shows that, on 
average, drivers take the fastest route for only 35% of 
journeys.  We conclude that a spectrum of factors 
influences drivers’ route choices. 
  This paper presents methods used in a prototype 
automated route planner named TRIP (an acronym for Trip 
Router with Individualized Preferences).  TRIP produces 
route plans that more closely match the routes chosen by 
people who have extensive experience traveling within a 
region.  The goal of the methods embodied in TRIP is to 
leverage this knowledge and use it to generalize both about 
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Figure 1: Four routes for a driver’s morning commute 
computed using four different cost metrics.  A: Driver’s 
usual route (striped); B: Shortest-distance route; C: 
Fastest route (according to GPS-based estimates of road 
speeds, explained later); D: MapPoint’s route.   
 



traffic conditions in an area and about the subtle 
preferences of individual drivers, and to use this 
information to provide higher-quality route suggestions to 
these drivers. 
 TRIP improves routing in two ways, the first of which is 
to incorporate time-variant road speeds learned from large 
amounts of driver-collected GPS data.  To our knowledge, 
this paper is the first to describe the use of GPS-derived 
road speeds for routing; however, it is not the first to 
consider traffic speeds or flows.  Handley et. al. [1] use 
contextual features (time/day, traffic flow) to predict the 
duration of travel along fixed routes, but do not generalize 
their estimation to the duration or planning of new routes.  
Fawcett & Robinson [2] estimate road speeds for fine-
grained time slices, and like TRIP they use these estimates 
to provide time-variant optimal routes, but the quality of 
these speed estimates is unevaluated.  Additionally and 
importantly, both of these related works rely upon a sparse 
set of fixed-location traffic sensors.  TRIP takes a different 
approach by using as its input a large set of GPS traces 
collected by individual drivers.  This approach is justified 
by the work of Oda et. al. [3], who demonstrate that 
estimating traffic speeds from real-time, car-attached 
sensor data (infrared sensors in their case) is greater than 
90% accurate.   
 The second way in which TRIP’s routes are improved 
relative to traditional route planners is that TRIP leverages 
a driver’s route history to learn individual preferences that 
it then applies to future planning scenarios involving that 
driver.  This paper is not the first to discuss personalized 
routing, though it is the first to do so with real data.  Other 
work in this area has been confined to case-based 
approaches, developed as improvements to the efficiency 
of route planning with only a secondary emphasis on the 
incorporation of individual preference.  A series of papers 
by McGinty & Smyth [4] introduce the idea (also 
embraced by TRIP) that preference is difficult to model 
explicitly; however, their evaluation uses simulated driver 
preferences.  TRIP goes beyond this work by building and 
validating models based upon real user data; furthermore it 

does so without requiring any self-reporting of preferences.  
A similar pair of case-based papers by Haigh et. al. [5] 
uses the idea of  “quality” parameters (assigned to 
individual roads as opposed to TRIP’s assignment to 
users).  The evaluation in [5] is based upon users’ offline 
ratings of routes, while TRIP is evaluated on its ability to 
propose routes that local drivers actually choose. 
 TRIP extends beyond the scope of prior work by 
incorporating non-simulated user-preferences into routing, 
and by learning these preferences from GPS histories of 
individuals’ actual driving behaviors.  It also presents new 
approaches to the estimation of time- and day-specific road 
speeds from GPS logs, and for the leveraging of these 
dynamic speeds in the planning of routes.  These extra 
considerations result in route recommendations that are 
superior to those provided by traditional route planners. 

Data & Representations 
 
The route planning work presented in this paper was 
enabled by the availability of a new repository of GPS 
traces collected from over 100 people driving within the 
Seattle metropolitan area.  We introduce the data and 
explain our map representation here to give the reader a 
sense of the scope of this project, and also to motivate the 
following section addressing the subtle but challenging 
task of segmenting and aligning the raw GPS into 
sequences that are useful for reasoning about route 
planning.   

GPS Data Set: The MSMLS Corpus 
 The Microsoft Multi-Person Location Survey (MSMLS) 
data[6], which provides the basis for the analyses in this 
paper, is a series of GPS data logs (Figure 2).  Forty GPS 
devices were used to collect time-stamped (latitude, 
longitude) coordinates. Each device was placed for a two-
week period on the car dashboard of a different, consenting 
Seattle-area resident.  This process was repeated with new 
subjects over several collection periods, resulting in two-
week-long driving traces of 102 different individuals.  
Importantly, these drivers were not asked to alter their 
driving behavior in any way during the study. The GPS 
receivers were configured to record only while the vehicle 
was moving, so the drivers did not have to remember to 
turn the GPS on or off or attend to it in any way over the 
two weeks. Each driver’s data is therefore a snapshot of his 
or her natural driving routines.  
 During data collection, the GPS devices stopped 
recording after several minutes of immobility (e.g. when 
the car was parked) or several minutes after satellite 
signals were lost (e.g. when the car was in a garage).  
Recording continued again when normal travel conditions 
resumed.  The result is that most—though not all—of the 
individual journeys contained in the two week logging 
period can be identified by the time gaps that appear in the 
GPS logs at each endpoint.  Segmentation of the small 

 
Figure 2: A zoomed view of the MSMLS data set for 
downtown Seattle.  Although the measurements were taken 
from cars, GPS noise causes most to fall on off-road 
locations.  
 



number of more complex cases is discussed in the 
following section.  After segmentation, the data set’s 
288,021 individual GPS measurements resulted in 2,517 
separate journeys with a total mileage of 18,853. 

Map Representation: MapPoint 
  
TRIP represents road networks in the form of a graph: 
nodes in the graph represent intersections of roads, and 
graph edges are the roads themselves.  Representation of a 
single road or highway often requires many edges, since 
each road segment (the smallest unbroken portion of a road 
between two intersections) is a separate edge in the graph.  
An alpha version of Microsoft’s MapPoint software, on top 
of which TRIP is built, provides road networks in this 
graph format and additionally provides the physical 
geometry of each road/edge in (latitude, longitude) 
coordinates. 

Snapping & Segmenting GPS Traces  
In order to leverage the knowledge of road networks 
exposed by MapPoint when reasoning about the traces in 
the MSMLS data set, TRIP must identify individual trips 
within the traces and infer the sequence of roads that a 
driver traversed on each journey.  Only when the GPS 
traces are described in terms of routes on the road network 
can they be compared and the information they contain be 
aggregated and leveraged.   

Journey Segmentation 
 As mentioned previously, each two-week GPS trace is 
split into separate journeys during a preprocessing phase.  
Locations at which a car remained for more than 5 minutes 
are considered to be destinations, and the GPS trace is 
segmented at these locations into separate journeys.   
 We note that some destinations, however, go undetected 
by this destination-identification criterion.  For example, 
the procedure misses locations at which a driver stops for 
only a few seconds to drop off a passenger.   

 Detection of such “drive-by” destinations is desirable, 
since they can significantly alter TRIP’s concept of a best 
route; however, such destinations are extremely difficult to 
detect since Seattle traffic, like traffic in many other major 
cities, is often slowed significantly by congestion.  The 
GPS measurements recorded by a car stuck in slow traffic 
are generally indistinguishable from those generated by a 
driver slowing or stopping briefly to run an errand.  
However, there are some instances in which detection is 
possible; namely, when the driver’s route makes a loop.  If 
the on-road route generated from a snapped GPS trace 
contains a loop, then TRIP segments the trace into two 
separate journeys.  The segmentation point is chosen to be 
the point in the loop that is physically farthest away from 
the point where the loop closes.   
 

Snapping To Roads 
 The task of aligning a raw GPS sequence to a set of 
corresponding road segments is nontrivial, and will likely 
be a challenge to others working on related methods.  
Before moving on, we pause to describe our method for 
snapping GPS data onto a road network.  
 The largest problem with mapping GPS readings onto 
road maps is that GPS data is noisy.  We have found that 
the error in our GPS signals can be reasonably modeled as 
a zero-mean Gaussian with a standard deviation of 10 
meters.  Errors increase significantly beyond the expected 
ranges, however, in urban areas and under bridges or in 
tunnels where GPS satellite coverage is sparse.  
Additionally, policies embedded in specific GPS systems 
can bias data; for example, the GPS receivers used to 
collect the MSMLS data assume linear trajectories during 
moments when GPS satellite signals are lost.  
 A secondary problem with the mapping of GPS onto 
roads is that map representations themselves are imperfect; 
two different maps will pinpoint a particular 
latitude/longitude position at slightly different locations 
relative to surrounding features in each representation.  
The combined result of these various sources of error is 
that, despite having been collected entirely from on-road 
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Figure 3:  Two comparisons of naïve vs. HMM snapping.  In (a), the incorrect snapping of a measurement onto a one-way exit 
ramp forces the naïve method to infer an extra loop onto/off the highway.  In (b), a small amount of noise again forces the naïve 
method to incorrectly infer a loop. 
 



locations, nearly all GPS points in our data set fall onto 
off-road map zones, e.g. the GPS points in Figure 3a.   
 In the best of circumstances, the noise problem is 
straightforward to fix: each GPS point can be “snapped” to 
the on-road location nearest to it, and the overall GPS trace 
can be reconstructed by connecting these on-road locations 
together via the shortest on-road paths between each 
consecutive pair.  Unfortunately, the level of noise is too 
high and the network of Seattle roads too dense to make 
this naïve solution feasible (Figure 3). 
 TRIP solves the snapping problem with a Hidden 
Markov Model [7].  Informally, the HMM considers many 
potential snaps for each raw GPS observation 

i
o , and 

selects the best on-road snap 
i
s  for each such that the 

resulting sequence of on-road locations is as smooth as 
possible, while still maintaining proximity between the raw 
and snapped location of each measurement.  The set of 
possible snap locations for a single raw GPS point 

i
o  is 

created by collecting, for each road segment within 150 
meters of 

i
o , the single location 

i
s  on each distinct road 

segment that is closest to 
i
o . This results in many 

candidate 
i
s  locations in areas where the road network is 

dense, but a small number of candidates in areas with 
sparse road coverage. 
 Formally, the HMM defines the following joint 
probability over sequences of raw and snapped GPS 
locations (O  and S , respectively), from which the 
maximum-probability sequence of snapped locations for a 
given GPS log can be deduced using the standard Viterbi 
algorithm (see Rabiner [7] for details), 
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 The first term in the product is the observation 
probability: how likely would the observation 

i
o   have 

been if the GPS receiver had actually been at on-road 
location 

i
s ?  This probability is given by the error 

characteristics of our GPS receivers, modeled as a zero-
mean Gaussian with a standard deviation of 10 meters.   
 The second term in the product is the transition 
probability: how likely would the on-road location 

i
s  have 

been if the GPS device was known to be at location 
1!is  

when the previous measurement was recorded?  We define 
this as the fraction ba  where a  is the straight-line 
distance from 

1!is  to 
i
s  and b  is the length of the shortest 

on-road path between the same.  This definition penalizes 
transitions between points that are physically close but not 
directly connected by roads, reflecting the fact that because 
measurements are recorded so frequently (at least every 6 
seconds), long or roundabout paths driven between two 
measurements are unlikely.  Transitions between distant 
snap locations are also penalized, since generally there is 
no on-road, straight-line path between them. We note that 

1<ba , and we normalize such that the transition 
probabilities emanating from each node of the HMM sum 
to one. 
 Two alternative models of transition probability include 
the use of fixed values (one for same-road transitions and 

another for transitions spanning intersections); or the 
assignment to each transition of a value inversely 
proportional to the number of road intersections spanned 
by the transition.  In experimenting with these approaches 
on our data, we found both to be overly sensitive to the 
values/functions chosen to define the probabilities, 
providing either too little or too much smoothing of the 
GPS trajectory.  Neither approach worked as well on our 
data as did the solution described above.   
 Unfortunately, ground truth is not available for any 
traces in the MSMLS data set; thus we cannot validate the 
success of the HMM snapping approach on this data.  We 
did, however, examine the snapped routes computed by the 
HMM for a subset (~10%) of the traces.  For these traces, 
the HMM solution always matched the path inferred by the 
human observer, while the naïve snapping solution 
matched only for a very small number of very short traces 
(Figure 3).    
 With the GPS data converted to sequences of road 
segments, we could now characterize routes from our data 
and compare actual routes to routes planned by a 
conventional router and those planned by TRIP. 

Improving Routing Through Experience 
Any driver knows that particular roads or routes may take 
longer to traverse at rush hour than they do at noon or 
midnight.  Similarly, drivers expect that rush hour traffic 
patterns will repeat each weekday, but they expect entirely 
different traffic, if any, on the weekend.  This dynamic 
aspect of road speeds is ignored by traditional route 
planners, which answer queries without regard to the time 
at which the resulting journey is expected to take place.  
Existing routers similarly ignore the identity of the driver 
for whom the route is intended, providing the same route 
for everyone when in fact some users might prefer routes 
that bias for or against the use of highways, scenic roads, 
etc.  We describe TRIP’s approach to both of these 
problems in this section. 

Predicting Travel Time 
 Ideally, a route planner would receive its road speed 
information from real-time traffic sensors placed 
physically across a region.  At the very least, incorporation 
of real-time traffic data would allow routers to better 
predict the duration of the routes they propose; at best, the 
routers could propose different routes under different 
conditions, to better circumvent delays.  Unfortunately, 
most cities are not yet equipped with such sensors at an 
appropriately dense level of coverage. 
 Even if such data were uniformly available, however, 
using its real-time values as the basis for route planning 
presumes that driving conditions at the time of a user’s 
journey match those at the time of the query.  Many hours 
or even days can pass between the query and traversal of a 
route, so even planners with highly sophisticated real-time 
input must be able to plan routes starting at any time.  



Specifically, an intelligent router must be able to plan 
routes starting at times in the future for which exact traffic 
conditions are not yet known. 
 TRIP provides such routes by learning time-dependent 
traffic speeds for roads (Figure 4).  It breaks day-of-week 
into two categories: weekday and weekend.  Both 
categories are further broken down into 96 time slices:  15-
minute chunks of time covering all 24 hours of the day.  
For each road segment in the system, TRIP learns a 
separate average speed for each time-of-day and 
weekday/weekend breakdown.  It does so by examining 
each pair (A, B) of consecutive GPS points in our snapped 
traces.  The average speed of the driver between each pair 
is easily calculated, and the speed added to a running 
average for every road segment traversed to get from A to 
B.  Speed measurements are applied to the running average 
associated with the time chunk whose time features match 
those of the GPS timestamps involved in the speed 
calculation.  
 Of course, even the most frequently traversed roads in 
our data set are not traversed during every time slice.  For 
road segments and time segments where no data is 
available, the speed calculated for the same road at an 
adjacent time slice is used.  If neither adjacent time slice 
contains data, TRIP estimates the segment’s speed from 
the system-wide average of the speed of drivers at the 
given time on all other “similar” roads, where similarity is 
defined by road class (this is in turn defined by MapPoint, 
which identifies classes such as highway, arterial, on-ramp, 
etc.).  The speed of road segments at times for which even 
a system-wide average is unavailable is taken simply to be 
its speed limit.   

Incorporating Driver Preferences 
Route planning decisions that vary based on expectations 
of road speeds at different times will produce routes that 
are, in expectation, faster to traverse.  Nevertheless, drivers 
are not necessarily concerned only with speed; their utility 
functions may involve other variables.  Ideally, a route 
planner should incorporate these variables into its planning 
so that the personalized routes it proposes can maximize 
the implicit utility function of each driver. 
 One approach to doing this is to explicitly identify the 
space over which preferences can range.  A planner might 
then model preferences for avoiding highways, minimizing 
turns, or favoring scenic roads.  Such an approach would 
require the explicit identification of variables affecting 
preference as well as learning, for each driver, the driver’s 
utilities as a function of these variables.    
 As a simpler approach, TRIP instead learns and 
manipulates preference implicitly.  TRIP does not model 
factors affecting preference (e.g. road quality, scenic value, 
etc.).  Instead, TRIP treats each journey in a driver’s trace 
set as a statement of preference.  In particular, it assumes 
that the route a driver actually takes is preferred by that 
driver over any other route he could have taken between 
the same endpoints.  As the drivers in our set are all local 
residents driving familiar areas, we believe that the number 

of routes for which this assumption does not hold is very 
small. 
 As a step toward characterizing a driver’s implicit 
preferences, TRIP examines each of the driver’s traces in 
turn and calculates its inefficiency ratio r—the ratio of the 
duration of the fastest route (in expectation) between the 
trace’s endpoints, as determined by our own A* route 
planner relying upon the time-varying road speeds 
discussed previously, and the actual duration of the user’s 
trip.  Thus r ’s value is always a fraction between 0 and 1; 
in the rare cases where a driver’s actual time was smaller 
than the expected-fastest time, we cap r  at 1.0.  The 
meaning of r  is most easily understood in terms of its 
inverse, which is a value between 1.0 and infinity and 
represents the proportion of time by which a driver has 
extended his/her journey beyond the shortest possible time 
in order to satisfy preferences unrelated to efficiency.   
 For each driver, TRIP calculates a personal inefficiency 
parameter r  by averaging the individual r  values 
computed from each of the driver’s GPS traces.  Like the 
r  values, r  is always between 0 and 1.  A value of 1.0 
indicates that the driver generally takes the most efficient 
route, while lower values imply a higher willingness to 
sacrifice efficiency for other preferences.  
 TRIP uses r  in the following utility function defining 
the driver-specific cost of traversing a particular road 
segment i : 
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where 
i
t  is the estimated time required to traverse of 

segment i  (dependent upon the time of travel).  The result 
is that a path using only non-traversed (non-preferred) 
edges and requiring x  seconds to traverse is equivalent in 
cost to a path using only preferred (previously traversed) 
edges and requiring ( )xr1  seconds to traverse (recall 
that 1<r ), since the discount of r  to the latter path will 
result in a cost of ( ) xxrr =1 .  This equivalence is 
consistent with our assertion that the user is willing to 
extend the duration of his trip by up to a factor of r1  in 
order to satisfy preferences not related to efficiency.  The 
cost function also reflects the interpretation of driver 
histories as statements of preference by allowing TRIP to 
reduce the cost of previously-used (preferred) edges.  
 Two major assumptions inherent in this approach to 
preference modeling are as follows: 

1) Drivers in the MSMLS data set are making 
informed choices; they are not extending the 
duration of their journeys out of ignorance. 

2) Drivers prefer roads that they have taken before. 
Although these assumptions were used to guide the 
development of TRIP and are used in this section as a 
motivating story in the description of TRIP’s process, we 
recognize that they may not necessarily be true for all trips.  
In particular, the difference between routes taken out of 
preference and those taken out of ignorance (e.g. a driver 
did not know that a different route was faster) is 
indistinguishable in our data set.  Nevertheless, even with 



these potential problems, the results in the next section 
demonstrate that routes generated from these assumptions 
can accurately match routes that drivers themselves would 
choose.  

Experimental Results 
In this section we present an experiment in which the 
routes generated by TRIP are compared with the routes 
actually taken by drivers in the data set, via a take-one-out 
cross-validation.  One at a time, each individual journey in 
the MSMLS set was removed.  Using the remaining traces, 
TRIP calculated the driver’s inefficiency ratio according to 
the process described previously.  TRIP was then queried 
for a route whose endpoints matched the endpoints of the 
removed trace, and the trial was considered a success if the 
proposed route matched the route actually taken by the 
driver.  A match is defined as overlap between 95% of the 
distance in both routes.  In all trials, the removed route was 
reinserted into the set before the next trial. 
 Over all traces in the MSMLS set, TRIP’s proposed 
route matched the driver’s actual route in nearly half— 
46.6%—of cases.  To put this in context, consider the fact 
that only 34.5% of actual driver routes follow the path that, 
according to the aggregated road speed data, is the fastest; 
the incorporation of driver preference improves 
performance.  Furthermore only 30% of the actual driver 
traces match the routes suggested by a traditional (static) 
fastest-route planner, demonstrating that the use of 
dynamic road speeds together with driver preferences 
improves performance well over that which can be 
achieved by traditional planners.  
 Another interesting contextual note is the fact that only 
10.8% of routes in the MSMLS data are duplicates, where 
a duplicate is defined as a trace sharing the same driver, 
start point, and end point—regardless of whether the route 
taken between the two endpoints is the same.  This means 
that on 35.8% of the test trips, TRIP was constructing new 
optimal routes (routes not seen in the training data) by 
piecing together preferences from a set of independent 
training journeys.  Thus we see that TRIP can compute 
routes preferred by a driver without having ever seen an 
instance of the particular route being queried. 

Conclusions 
TRIP is a route planner that uses real-world GPS data to 
estimate both time-dependent road speeds and individual 
driver preferences.  We demonstrated through experiments 
that by using route planning methods that include these 
two dimensions, we can generate routes that are 
significantly closer to those chosen by local drivers than 
are the routes produced by traditional, static planners.   
 We also believe that the techniques applied in TRIP are 
a simple and effective approach to integrating 
personalization into route planning.  Fielding TRIP’s 
methodology is quickly becoming feasible as the accuracy 

and affordability of GPS sensors makes them increasingly 
ubiquitous, and as the popularity of in-car navigation 
systems grows.   
 Directions for future work include development of 
solutions for drivers with little or no driving data, via 
automatic clustering of drivers.  This would allow users 
with sparse data to identify with other users (perhaps via 
brief online entry of a few often-traversed routes), thereby 
allowing TRIP to use the data of other, similar users to 
guide its recommendations.  Alternatively, routers could 
generalize about classes of roads instead of individual road 
segments, allowing personalized help to be provided in 
areas—and even cities—where a driver has not yet 
traveled. 
 Additional research directions include addressing the 
problem scenario in which drivers have collected so much 
GPS data that every road (in the hypothetical limit) has 
been traversed.  In this case, TRIP’s current system 
degenerates into a fastest-route planner.  Two potential 
approaches to this problem include intelligent pruning of 
the training data, or the inclusion of the frequency of 
traversal into the edge discount policy.   
 We believe that route planners stand to benefit from the 
current technological trend toward personalization.  We 
have provided an initial approach to such personalization, 
leveraging a large corpus of trips in a metropolitan area.  
 
 
 

References 
 

1. Handley, S., P. Langley, and F.A. Rauscher. Learning to 
Predict the Duration of an Automobile Trip. in Fourth 
International Conference on Knowledge Discovery and 
Data Mining. 1998. New York: AAAI Press. 

2. Fawcett, J. and P. Robinson, Adaptive Routing for Road 
Traffic. IEEE Computer Graphics and Applications, 
2000. 20(3): p. 46-53. 

3. Oda, T., et al. Evaluation of Measured Travel Time 
Utilizing Two-way Communication in UTMS. in Third 

World Congress on Intelligent Transport Systems. 
1996. Orlando, Florida. 

4. McGinty, L. and B. Smyth. Turas: A Personalised Route 
Planning System. in Sixth Pacific Rim International 
Conference on AI, (PRICAI’00). 2000. Melbourne, 
Australia: Springer-Verlag. 

5. Haigh, K.Z., J.R. Shewchuk, and M.M. Veloso, 
Exploiting Domain Geometry in Analogical Route 
Planning. Journal of Experimental and Theoretical AI, 
1997. 9(4): p. 509-541. 

6. Krumm, J. and E. Horvitz, The Microsoft Multiperson 
Location Survey. Microsoft Research Technical Report 
MSR-TR-2005-103, August 2005, Microsoft Research. 

7. Rabiner, L.R., A Tutorial on Hidden Markov Models and 
Selected Applications in Speech Recognition. 
Proceedings of the IEEE, 1989. 77(2): p. 257-286.  


