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ABSTRACT
This paper introduces Quill (stands for a quadrillion tuples per day),
a library and distributed platform for relational and temporal analyt-
ics over large datasets in the cloud. Quill exposes a new abstraction
for parallel datasets and computation, called ShardedStreamable.
This abstraction provides the ability to express efficient distributed
physical query plans that are transferable, i.e., movable from offline
to real-time and vice versa. ShardedStreamable decouples incremen-
tal query logic specification, a small but rich set of data movement
operations, and keying; this allows Quill to express a broad space
of plans with complex querying functionality, while leveraging ex-
isting temporal libraries such as Trill. Quill’s layered architecture
provides a careful separation of responsibilities with independently
useful components, while retaining high performance. We built
Quill for the cloud, with a master-less design where a language-
integrated client library directly communicates and coordinates with
cloud workers using off-the-shelf distributed cloud components
such as queues. Experiments on up to 400 cloud machines, and on
datasets up to 1TB, find Quill to incur low overheads and outper-
form SparkSQL by up to orders-of-magnitude for temporal and 6×
for relational queries, while supporting a rich space of transferable,
programmable, and expressive distributed physical query plans.

1. INTRODUCTION
With the growth in data volumes acquired by businesses today,

there is a need to deploy rich analytic workflows over the data, that
can operate on both historical (bounded) and real-time (unbounded)
datasets. Queries in such workflows usually take the form of:
1. Ad-hoc queries, one-time queries over the data that often come

with the expectation of results at interactive latencies.
2. Recurring queries, queries that are carefully authored and de-

ployed to recur periodically, such as daily or hourly reports.
3. Continuous queries, queries that execute and incrementally com-

pute results over data as it is received in real-time, and may be
back-tested over historical data as well.

Queries are typically issued using a declarative front-end such as
SQL (or its temporal dialect), sometimes with integration into the
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high-level language (HLL) of the application (e.g., SparkSQL [8]).
Queries eventually get deployed as distributed physical plans that
execute on a multi-node cluster. While ad-hoc queries are well-
supported by such a traditional DBMS workflow, our experience
with production large-scale uses of Trill [15], a temporal analytics
library used across Microsoft, indicates that customers who author
large-scale continuous queries (on real-time data and offline data
for back-testing) or recurring queries (on offline data) have a unique
combination of new requirements. Consider an example scenario:

Example (Ad Platform). Consider an advertising (ad) platform
that tracks user activity such as ads shown and clicks on the ads.

(1) Application A may wish to compute an hourly report of the
per-ad count of user activity over a historical dataset, in a cluster of
multi-core machines holding fragments of the dataset (one per core),
using a combination of per-core and per-machine aggregation and
shuffling data by key. Fig. 1 shows some strategies; in Fig. 1(a),
we globally shuffle the dataset so that each core in the system has
a partition (by AdId) of the dataset, and then perform a per-core
aggregation. This can be appropriate if aggregation is very expen-
sive. On the other hand, if we have very few groups (AdId values),
Fig. 1(b) first computes an independent partial aggregate per-core,
and then shuffles the aggregated results across the cluster (the other
strategies, and more complex examples are covered in §3).

(2) Application B may want the same per-ad count query to in-
stead produce an incrementally maintained dashboard of top ads in
the last 5 minutes, updated every minute. Developers may also need
to back-test the query on varying amounts of offline logs at different
scales to tune the window size or other (e.g., spam) threshold.

(3) Application C may compute a per-ad recommender model [13]
based on user-session-based activities, leveraging machine learning
libraries over varying windows, on either offline or real-time data.

Writers of such applications have several unique requirements:

1) Ability to Create Transferable Plans and Logic: Application
writers (e.g., application B) need the ability to transfer or opera-
tionalize their offline logic to execute directly over real-time data
(or vice versa), with carefully tuned distributed physical plans. They
wish to avoid maintaining multiple workflows and systems [25] with
an ability to create plans that are transferable, i.e., the plans can be
moved from offline to real-time deployments and vice versa.
2) Ability to Execute a Rich Space of Plans: Application writers
(e.g., application A) expect high performance with a rich space
of plans that exploit intra- and inter-node parallelism, as well as
columnar [15] execution for performance. Beyond shuffle- or
broadcast-based relational plans such as the per-ad count exam-
ple, one may wish to deploy diverse distributed plans that replicate
data in specific ways across machines, such as partial duplication of
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Figure 1: Some distributed plans for grouped aggregation

data to efficiently handle data-parallel computations such as multi-
way joins [17], theta joins [28]), matrix operations, clustering, and
neighborhood-centric computations.
3) Ability to Control & Fine-Tune Plans: Since query optimizers
do not always produce optimal plans (particularly in the distributed
case), commercial DBMSs offer the workaround of query hint-
ing [11], where a user can instruct the optimizer to constrain its plan
search space. This gives application writers (e.g., application A)
some control over their physical plans; this is critical for continuous
and recurring queries because these users understand their data and
have sufficient lead time to carefully tune the plans before deploying
an expensive long-running or recurring job. Other users anticipate
specific changes in their workloads, and wish to choose plans, gen-
erated either via an optimizer or programmed directly, which are
robust to these changes. With only plan hints, the physical plan
can be seen (e.g., via explain plan [29]), but is not guaranteed to
be transferable or easily readable. Further, plan hints only allow
imprecise control; hence, some systems such as SQL Server offer
a primitive ability to force a specific plan (in XML) [20], but the
plans target a single node and are not integrated into the HLL.
4) Ability to Author Complex & Temporal Logic: Beyond rela-
tional plans, application writers (e.g., application C) need to deploy
plans with richer time-oriented logic, such as windowing by time
or in a data-dependent manner (by user session [3]); see §3.7 for an
end-to-end example involving online advertising. Further, they often
wish to use libraries of operators that implement such non-trivial
logic, as well as easily program their own logic (operators), lever-
aging rich HLL libraries and data-types (e.g., dictionaries of model
parameters), in a manner that retains transferability and efficiency.

1.1 Towards an Alternate Workflow
Towards satisfying all these requirements, we argue for a new

distributed programming abstraction that unifies two worlds (see
Fig. 2): (1) Imperative programmers can code directly against this
abstraction for control, while leveraging a rich set of physical opera-
tors; (2) SQL query authors can write declarative queries which are
translated into a set of candidate distributed physical plans expressed
using the same readable abstraction. Users can modify or fine-tune a
chosen plan, and possibly validate it against the optimizer (feasible
in many cases [20]), as a powerful alternative to query hinting.

Table 1 summarizes today’s analytics platforms (§7 has more
details). Many customers program explicit dataflows, e.g., via
Storm [7] topologies and map-reduce [19] or native Spark [33]
programs. While this provides more control, the space of plans
is limited by the constrained API (e.g., having to generate keys to
simulate joins [10,17,28]). Performance is low (e.g., no columnar),
making them uncompetitive with DBMSs. Moreover, application-
time or SQL support has to be “bolted on” and the burden of writing
temporal logic or operators is pushed to the layer above. This low-
ers performance and complicates transferability. Layers such as
Hive [31] compile SQL to the map-reduce API. However, they have
poor performance due to the inability to express complex (or colum-
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Figure 2: An alternate analytics workflow

nar) physical plans in the constrained API. Hence, systems such as
Impala (or SparkSQL) circumvent map-reduce (or native Spark) and
directly process data using specialized DBMS-style plans [18].

1.2 Introducing Quill
Quill (stands for a quadrillion tuples per day) is a high-performance

distributed platform for streaming tempo-relational analytics, across
scales from a single-core to multi-node on the cloud. Experiments
(§ 6) on up to 400 cloud machines, and on benchmark and real
datasets up to 1TB, show Quill to incur low overheads and outper-
form SparkSQL [8] by up to orders-of-magnitude for temporal and
6× for relational queries, while supporting significantly expanded
temporal querying functionality. Our contributions include:

1.2.1 Sharded Dataset & Compute Abstraction
We propose a sharded temporal dataset and compute abstraction

called ShardedStreamable (§ 3). This abstraction represents a fixed
number of shards of the data. Each shard represents a single time-
ordered, possibly overlapping, fragment of the dataset, stored as a
sequence of columnar batches. The API supports:
◦ Query logic: A Query(..) operation works over one (or two)

sharded datasets, accepts a query specification, executes the query
independently on every shard (or pair of shards), and produces
a new sharded dataset. Queries are specified in the extensible
language of Trill (stands for a trillion tuples per day), an in-
cremental analytics library that enables relational, progressive
(approximate) [14], and temporal [16] processing at best-of-breed
performance on one core. Users can easily create new transferable
operators, either by providing logic (code) to add and remove
tuples to and from state, or by writing an operator that reads and
produces a sequence of batches.
◦ Data movement: A set of cross-shard operations create new

datasets with the shard contents organized or duplicated in spe-
cific ways. This includes ReShard(..) for load-balancing,
Broadcast(..) for duplicating every shard on every result shard,
and Multicast(..) for duplicating each tuple on zero or more
result shards based on the payload. One can specify physical
locations for result datasets to further optimize the physical plans.
◦ Keying: Each tuple in a shard may optionally be associated with

a key. A ReKey(..) operation re-keys each shard independently,
to associate each tuple with a new key. When a sharded dataset
is keyed, a Query(..) operation logically executes on shards on
a per-key basis. ReKey(..) does not move data across shards; a
separate ReDistribute(..) operator moves data across shards
to re-organize shards by key.
By separating incremental query logic specification, a small but

rich set of data movement operations, and keying, one can build
complex1 distributed physical plans in a HLL that target different

1For compatibility, APIs such as map-combine-reduce-merge and
native Spark can be implemented over ShardedStreamable. Iterative
computation is supported at the application level like Spark.
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Table 1: Sample of today’s solutions for distributed analytics

Requirement Map-
reduce Hive

Trad.
DB,
Impala

Spark
SQL

Native
Spark

Data-
flow,
Flink

Storm Quill

Rich Temporal Support No No No No No Yes No Yes
Incremental No No No No Yes Yes Yes Yes

HLL Integration Yes No No Yes Yes Yes Yes Yes

Throughput Low Low High High Mid Low Low High
Columnar Execution No No Yes Yes No No No Yes

Rich Physical Plans No No Some Some Some Some No Yes
Programmable Plans Yes No No No Yes Yes Yes Yes

Transferable Plans Dep-
ends No No No Dep-

ends Yes Yes Yes

scales, including physical plans of modern scan-based columnar
databases, continuous queries (e.g., hybrid symmetric hash and
broadcast joins), and distributed settings (e.g., selective data replica-
tion for multi-way or theta joins and matrix operations). Critically,
Quill’s physical plans are transferable by construction, between real-
time and offline deployments. As a brief preview, the distributed
physical plans of Fig. 1(a) and (b) are written in Quill as:

(a): s.ReKey(e => e.AdId)
.ReDistribute ().Query(q => q.Count());

(b): s.ReKey(e => e.AdId).Query(q => q.Count())
.ReDistribute ().Query(q => q.Sum());

1.2.2 Layered System Architecture
Quill uses a loosely-coupled layered architecture (see Fig. 3) that

provides a careful separation of responsibilities, while retaining high
performance, and maximizes component reusability:
Single- and Multi-Core Support: The Query operation is an incre-
mental scan of (optionally keyed) batched columnar shards, that
can leverage the extensible Trill library (§ 2) for single-threaded
temporal logic execution. On top of this functionality, we add a
concrete implementation (§4) of ShardedStreamable for multi-core
that provides cross-core data movement operations.
Cloud Support: We implement ShardedStreamable for the multi-
node cloud setting (§ 5) as a HLL-integrated client library. Unlike
traditional systems that use a special master node for coordination,
and can become a single point of failure, Quill uses master-less
coordination of cloud workers using decentralized and replicated
resources available in cloud platforms (e.g., tables and queues).
This design is a good fit for the pay-as-you-go cloud as it decouples
clients, metadata, and workers, and simplifies management. We
measure overheads (§6.2) and find this design to be feasible. We
leverage the multi-core ShardedStreamable for query execution and
data movement. In addition, the client library provides functionality
to manipulate clusters using a virtual cluster abstraction, and work
with shared datasets in memory or on storage.
Component Reuse: This layered architecture enables component
reuse: each layer is an independently useful artifact. For example,
we earlier reported the Trill library’s independent use in diverse en-
vironments across Microsoft [15]. ShardedStreamable can similarly
be used independently (1) on single- and multi-core, for scaling up
or partitioning computation on either a stand-alone machine or a
node that is part of an existing distributed dataflow system; and (2)
as part of the Quill multi-node cloud platform described in §5.

While the abstractions we propose in this paper are agnostic to
real-time vs. offline, our current implementation of the Quill cloud
platform is optimized for offline logs and, like Spark, recovers from
failure via lineage tracking and re-execution (§5.4).

2. BACKGROUND: THE TRILL LIBRARY
Quill’s inner layer (Fig. 3) leverages a library responsible for

single-threaded processing. While Quill is in principle agnostic to

Cloud library Multi-core library Single-core library

Streamable<>

ShardedStreamable<>

VirtualCluster

…

…

API

Dataset

Setting

Figure 3: Quill overview

the library, we nail down the data format by reusing and extending
Trill’s data model, and add new operators for keying and cross-shard
data movement. This section summarizes the unmodified design of
Trill; our enhancements to it for Quill are covered in Section 4. Trill
is written in the high-level-language (HLL) of C#, and thus supports
HLL data-types and logic. By default, libraries do not own threads;
they perform computation on the thread that feeds data to them.

2.1 The Trill Data Model
A source of data with payload type TP is represented as an instance

of a class called Streamable<TP>. Continuing our advertising ex-
ample, we may use a C# payload type for click logs:

struct AdInfo { long Time; long UserId; long AdId; }

This data source is of type Streamable<AdInfo>. Physically, a
stream consists of a sequence of columnar batches. A batch holds a
set of columns (arrays) to hold a timestamp and window description
(as a time interval), a pre-computed grouping key of type TK, a 32-bit
hash of the key, and each payload field as an individual column (we
generate the batch class using dynamic code generation). The key
for ungrouped streams is a special empty struct called Empty with
a hash of 0. An absentee bitvector identifies inactive rows in the
batch. For example, the generated batch for AdInfo looks like:

class ColumnarBatchForAdInfo <TK> {
long[] SyncTime; long[] OtherTime; // timestamp & window
TK[] Key; int[] Hash; // key and hash
long[] BitVector; // bitvector
long[] Time; long[] UserId; long[] AdId; // payload

}

Trill uses memory pools to recycle and share arrays between
operators. For example, when we receive rows of type AdInfo,
we allocate three long arrays (Time, UserId, and AdId) from the
pool. During data ingestion, the user can specify that the Time field
represents our application time, using a lambda expression [26] e =>
e.Time; an anonymous function to compute application time from
the payload. The expression tree is available at query compile-time,
so we can recognize that SyncTime can point to the same array as
Time, with an added reference count. Operators return arrays to the
pool when done, and use copy-on-write to update shared arrays.

2.2 The Extensible Trill-LINQ Language
Trill’s language is Trill-LINQ [15], which is exposed as meth-

ods on an instance of Streamable<TP>. Each method represents
a physical operator (e.g., Where for filtering) and returns a new
Streamable instance, allowing users to chain a physical plan. For
instance, with a data source s0 of type Streamable<AdInfo>, we
can filter a 5% sample of users using the Where operator:

var s1 = s0.Where(e => e.UserId % 100 < 5);

The lambda expression in parentheses is from the type AdInfo to
a boolean value specifying for each row (event) e in the stream that
it is to be kept in the output stream, s1, if e.UserId % 100 < 5.

An operator accepts and produces a sequence of columnar batches.
An operator is dynamically generated C# code that inlines lambdas
(such as the Where predicate) in tight per-batch loops to operate
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directly over columns for high performance. Trill provides a rich
set of built-in relational operators (e.g., join) as well as new tem-
poral operators for defining windows and sessions. Trill-LINQ is
extensible in several ways. First, users can express user-defined
aggregation logic by providing lambdas for accumulating and de-
accumulating events to and from state. Such logic is executed over
columnar batches using an automatically generated snapshot oper-
ator that maintains per-group state and inlines these lambdas in a
tight loop [15]. Second, advanced users can write new operators
that accept and produce a sequence of (grouped) columnar batches.
Note that Trill operators understand grouping; e.g., a Count opera-
tor (also implemented using our user-defined snapshot framework)
outputs a batched stream of per-key counts. Further, every operator
is transferable between real-time and offline by construction.

Trill supports a GroupApply operation that executes a grouped
sub-query (GSQ) on each sub-stream corresponding to a distinct
grouping key. For example, we can compute a per-ad count as:

var s2 = s1.GroupApply(e => e.AdId , q => q.Count());

Here, the first lambda specifies the grouping key (AdId) and
the second lambda specifies the GSQ. Unmodified Trill exposes
grouped computation to query writers only within the context of
a GSQ. GroupApply is implemented internally by preceding the
GSQ by an operator that updates batches to have the user-specified
grouping key (nested with the previous grouping key), and following
the GSQ with an operator that un-nests the grouping key.

3. THE SHARDED STREAMABLE API
We wish to create a HLL-integrated abstraction that enables high-

performance columnar execution, leverages the extensible language
of Trill-LINQ, and supports the creation of a rich set of distributed
physical plans that are transferable between real-time and offline. In
Section 1, we illustrated some physical plans for grouped aggrega-
tion. For multi-input operations, the space of distribution strategies
is even richer. For instance, Fig. 4 considers some physical plans
for the join operation. Fig. 4(a) is a distributed symmetric hash join,
Fig. 4(b) broadcasts the smaller side globally, while Fig. 4(c) uses a
hybrid strategy of broadcast across machines and hashing within a
machine. The choice of plan itself is orthogonal and may be based,
for example, on intra- and inter-node data transfer bandwidths.

3.1 The ShardedStreamable Abstraction
As introduced in Section 1.2.1, the immutable ShardedStreamable

abstraction represents a distributed dataset as a set of shards. Each
tuple in a shard is a payload of type TP, and may optionally be
associated with a key of type TK. Even when payloads are associated
with keys, sharding is orthogonal: there is no constraint on which
shards may contain which keys. Physically, a shard is organized as
a sequence of columnar batches, as described in Section 2.1.

As a warm up, consider the case where tuples are not associ-
ated with any key. Such a ShardedStreamble, for payload type
TP, is of type ShardedStreamable<TP>. We may initially create

a ShardedStreamable in several ways, e.g., by pointing to a di-
rectory in storage. In our running example, we can construct a
ShardedStreamable<AdInfo> named ss0 using a HDFS path to
the dataset as follows:

var ss0 = createDataset <AdInfo >("/data/hdfs/adinfo");

We classify operations over ShardedStreamable as transforma-
tions and actions, similar to Spark [33]; see Table 2. Transforma-
tions do not perform computation, but return new ShardedStreamble
instances of the appropriate type to allow type-safe composition.
For example, createDataset is a transformation because it does
not actually load the data in main memory, it simply associates the
specified path to a ShardedStreamable instance. Actions, on the
other hand, trigger the immediate computation of all the transfor-
mations issued until that point, and block until the computation is
done. The result is a new dataset, since all datasets are immutable.
For now, we assume that all operations return new datasets with the
same number of shards as the input (we revisit this in Section 3.5).

3.2 Basic Transformations

3.2.1 Query (over a single input)
The Query transformation on a ShardedStreamble accepts a lambda

expression that represents an unmodified query in the single-core en-
gine’s extensible language (e.g., Trill-LINQ) that we wish to execute
independently on every shard. When triggered, the query executes
over each shard independently in columnar fashion, and there is no
data movement across shards. For example, suppose we wish to
select a 5% sample of users, and select only two payload columns
(UserId and AdId) into a new type UserAd:
var ss1 = ss0.Query(q => q.Where(e => e.UserId % 100 < 5)

.Select(e => new UserAd { e.UserId , e.AdId }));

Here, ss1 is of a new type ShardedStreamable<UserAd>. It is
important to note that all transformations are strongly typed and
fully type-safe; query writers get auto-completion and type-checking
support during query authoring, and are prevented from making com-
mon mistakes during query authoring. They are free to seamlessly
use HLL libraries and methods in all operations as well.

3.2.2 Query (over multiple inputs)
We support multi-input queries by exposing a two-input version

of the Query transformation, which operates over two Sharded-
Streamable instances, and accepts a two-input lambda expression as
parameter that represents an unmodified two-input query (e.g., join)
in the single-core engine’s language, that we wish to execute over
pairs of shards from the two input datasets (compile-time properties
enforce inputs to have the same number of shards). The operation
produces a single sharded dataset as output. We provide an example
of this operation in the context of Broadcast, described next.

3.2.3 ReShard, Multicast, Broadcast
We now present cross-shard data movement operations that create

new datasets with the shard contents organized or duplicated in
specific ways. ReShard does a blind round-robin “spray” of every
input shard’s content across a set of result shards, and is used to
spread data evenly across shards. Multicast is a powerful operation
that sends each tuple in each input shard to zero or more result shards,
based on a user-provided lambda expression over the payload. Using
Multicast, one can selectively replicate tuples to result shards to
implement theta-joins [28], parallel multi-way joins [17], and matrix
operations. Finally, Broadcast sends all the data in each input
shard to every result shard. All data movement operations retain
the timestamp order of shards during transformations. For example,
suppose we have a sharded dataset ss1 of payload UserAd, that
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we wish to join to a reference dataset rr0, of type AdData, that
contains per-AdId information such as bids and keywords. If the
reference dataset is small, we can keep the larger dataset ss1 in
place and execute a broadcast join by broadcasting AdData to all
shards, followed by the equi-join as a two-input Query, as follows:

var rr1 = rr0.Broadcast ();
var ss2 = ss1.Query(rr1 ,

(left , right) => left.Join(right , e => e.AdId , ...));

Here, we use the two-input Trill-LINQ Join operator that takes
the equi-join key (e => e.AdId) as a lambda parameter.

3.3 Key-Based Transformations
Abstractions such as map-reduce expose an explicit key per tuple

in order to enable partitioned execution. For logical queries, keying
the data also allows us to execute queries in a grouped manner. To en-
able both functions, we support keys as a first-class citizen in Shard-
edStreamable. Each tuple may be associated with a key of type TK,
and such a dataset is represented by type ShardedStreamable<TK,
TP>, where TK is the key type and TP is the payload type. Every
row in the dataset has a payload of type TP, and a key of type TK.
This simply means that the Query operation on a shard is aware of
keying and logically executes as a group-by-key query2. The output
is a dataset with keys unchanged. Both the key and its hash value
for every tuple are computed and materialized as columns in the
dataset. We separate the notions of keying the data (ReKey) and
re-distributing the data across shards based on key (ReDistribute):

3.3.1 ReKey
The ReKey transformation accepts a lambda to select a new key of

type TK2 from the payload, and creates a ShardedStreamable<TK2,
TP> with the new key. When executed, ReKey does not move
data across shards; rather, it just modifies each tuple in the result
shards to have a different key. ReKey is very efficient as it operates
independently per shard and often only involves a per-key hash
pre-computation (Section 4 has details). In our example, we may
ReKey the dataset ss1 by AdId as follows:

var ss3 = ss1.ReKey(e => e.AdId);

3.3.2 ReDistribute
ReDistribute reorganizes data across shards, and outputs a

dataset with the same key and payload type as its input. When
executed, ReDistribute re-distributes data across shards so that
all rows with the same key reside in the same shard. By default,
ReDistribute uses hash partitioning on the key (using hash values
computed during ReKey) to move the data. Re-distributed datasets
have the property that different shards contain non-overlapping keys.

In our running example, since we have already re-keyed the
dataset by AdId (ss3), we can re-distribute it across the shards by
AdId, and then compute a per-AdId count, as follows:

var ss4 = ss3.ReDistribute ();
var ss5 = ss4.Query(q => q.Count());

As a minor variation, we could perform local-global aggregation
trivially with this API:

var ss6 = ss3.Query(q => q.Count()).ReDistribute ()
.Query(q => q.Sum());

Here, we first compute per-key counts independently in every
local shard, and then re-distribute the counts across shards by AdId,
before computing the global per-AdId sums. Apart from ease of
specification, this example hints at how the separation of ReKey and

2For efficiency, operators in the library implementing Query need to
be aware of grouping; we cover implementation details in Section 4

Table 2: ShardedStreamable operations

Operation Description

Trans-
form-
ations

Query Applies an unmodified query over each
keyed shard.

ReShard Round-robin movement of shard con-
tents to achieve equal shard sizes.

Broadcast Duplicate each shard’s content on all the
shards.

Multicast Move tuples from each shard to zero or
more specific result shards.

ReKey Changes the key/hash associated with
each row in each shard.

ReDistribute Moves data across shards so that same
key resides in same shard.

Actions

ToMemory Materialize transformation results into
main memory.

ToStorage Materialize results to specified path.
ToBinaryStream Materialize results to IO-streams.
Subscribe Materialize and apply the provided

lambda expression to each result row.

ReDistribute can provide efficiency (see Section 4 for implemen-
tation details): the key and hash are computed and materialized
exactly once (at ReKey), and are used to: (1) compute the local per-
key count; (2) partition data by hash across shards; and (3) compute
the global per-key sum in bulk. In contrast, with map-reduce: (1)
Map emits fine-grained 〈key, 1〉 pairs; (2) Combine computes key
hashes and builds a hash-table (by key) of raw value lists, to periodi-
cally aggregate local per-key counts; (3) the shuffle re-hashes keys
to partition the data to reducers; and (4) on the reduce side, data
is re-grouped by key, using either a sort or hash, before invoking
Reduce repeatedly (per-key) to compute counts. Performance is
limited because of expensive fine-grained intermediate data creation,
hash computation, and per-row method invocation.

As another example, suppose we wish to join (on AdId) our
original AdInfo dataset ss0 to the reference dataset rr0, but wish to
use the familiar distributed hash-join. We re-key both sides to AdId,
re-distribute both sides, and execute the join as follows:

var ss7 = ss0.ReKey(e => e.AdId).ReDistribute ();
var rr2 = rr0.ReKey(e => e.AdId).ReDistribute ();
var ss8 = ss7.Query(rr2 , (l, r) => l.Join(r));

The first two lines re-key and re-distribute the input datasets by
AdId. Next, the Query transformation runs over ss7 and rr2, and
applies a join query in Trill-LINQ (represented by the two-input
lambda expression) to produce a new sharded dataset ss8.

3.4 Actions
Actions are used to materialize query results. ToMemory stores the

result of the computation in a (potentially distributed) in-memory
dataset, whereas ToStorage stores the result in a persistent store.
Both are useful for sharing datasets and transferring to other work-
flows. ToBinaryStream takes an array of IO-streams (a standard
abstraction for input and output devices such as network or disk) as
parameter and outputs each shard in an efficient binary format to the
corresponding IO-stream in the array. Subscribe accepts a lambda
expression that is invoked for every tuple in the materialized result,
and is useful for clients to operate directly on results as part of their
application (see [12] for examples of actions).

3.5 Location-Aware Data Movement
We have until now assumed that data movement occurs from and

to the same set of fixed shard locations. We relax this organization
by letting data movement operations accept an optional location
descriptor argument that identifies where the data moves to. For
example, in multi-core, we may re-distribute 16 input shards to
4 output shards to utilize one socket. In multi-node, we may re-
distribute a reduced dataset to a new virtual cluster with fewer
machines. Further, locations can be optionally viewed as a layered
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organization: a set of global shards, each of which consists of a set
of local shards. Thus, all data movement operations take an optional
”scope” argument, which can be either local or global. If unspecified,
data movement assumes a flat movement across all shards.

This layering allows us to express complex inter- and intra-
node data movement. Fig. 1(a) and (b) were covered in Section 1.
Fig. 1(c) aggregates per-core, re-distributes across shards within a
machine and re-aggregates before a global re-distribute for the final
aggregation. This strategy makes sense if keys are duplicated across
the shards within a machine. Fig. 1(d) is similar, except it does not
perform per-core aggregation, which may be superior for a large
number of groups, where the memory cost of building a large hash
table per core (if we aggregated before re-distributing by key) would
be high. These plans are expressed over the keyed dataset ss3 as:
(c): ss3.Query(q => q.Count()).ReDistribute(Local)

.Query(q => q.Sum()).ReDistribute ()

.Query(q => q.Sum());
(d): ss3.ReDistribute(Local).Query(q => q.Count())

.ReDistribute ().Query(q => q.Sum());

Other examples, such as the joins in Fig. 4, are covered in [12].

3.6 Revisiting Transferability
We illustrate how the Quill API provides plan transferability.

Users read from a real-time data source instead of offline files or
caches, by using a variant of the loadDataset call that takes a
real-time stream constructor as parameter:

createDataset <AdInfo >(p => new KafkaToShardedStr(p));

This example reads real-time data from Kafka [6] (a messaging
service). The lambda takes a partition id as argument and constructs
a ShardedStreamable that is capable of delivering a sequence of
columnar batches from that partition. All ShardedStreamable op-
erations are incremental by construction, including Query because
it leverages Trill’s physical operators and extensibility framework
which are transferable by construction [15]. Thus, a user’s offline
Quill logic can work over real-time and vice versa.

3.7 End-to-End Complex Temporal Query
As a more complex temporal query, consider the problem of sani-

tizing our advertising dataset ss0 (bounded or unbounded) to elimi-
nate bots, and computing a per-ad count of sanitized users over each
Z second period. A bot is a spurious (often automated) user who has
clicked on more than X ads in a short timeframe (say, last Y secs).
We first ReKey and ReDistribute to perform bot detection on a
per-user basis (this example ignores optimizations discussed earlier,
such as pre-aggregation, for simplicity), and express the temporal
logic using Query. We then use the temporal WhereNotExists [15]
Trill operator with Quill’s two-input Query, to produce a sanitized
input log. Finally, we ReKey and ReDistribute by AdId to com-
pute our desired hopping window result. The entire query plan
executes in a pipelined manner because we do not have an action
until the final ToStorage.

var w0 = ss0.ReKey(e => e.UserId).ReDistribute ();
var w1 = w0.Query(s => s.SlidingWindow(Y)

.Count().Where(c => c > X));
var w2 = w0.Query(w1, (l, r) => l.WhereNotExists(y));
var w3 = w2.ReKey(e => e.AdId).ReDistribute ()

.Query(s => s.HoppingWindow(Z).Count())

.ToStorage (...);

4. SINGLE-NODE ARCHITECTURE
In this section, we describe how ShardedStreamable is architected

by leveraging and extending the Trill query library. We first describe
how we extend the Streamable<TP> class exposed by Trill with
keying and new runtime operators, and then cover our implementa-
tion of ShardedStreamable operations using these operators.

[ReKey]

[ReDist]

Union

[ReKey]

[ReDist]

Union

KeyedStreamables

Query Query

Query Query
ToMemory ToMemory

Materialized ShardedStreamable

ShardedStreamable

(a) (b) (c)

Figure 5: Constructing single-node physical plans

4.1 From Streamable to KeyedStreamable
We represent a single shard of a dataset by an instance of type

KeyedStreamable<TK, TP>, where TK is the key type and TP is
the payload type. An unkeyed shard uses the special key of Empty
(cf. Section 2.1). Thus, ShardedStreamable<TK, TP> on a single
machine is simply an array of KeyedStreamable instances.

KeyedStreamable is an unpartitioned dataset with grouping key
set to TK, and requires a concrete implementation (i.e., query engine)
to support the underlying query language. KeyedStreamable is
in principle agnostic to the actual query engine that implements
this abstraction. We extended Trill’s notion of Streamable<TP> to
implement KeyedStreamable. A query on KeyedStreamable<TK,
TP> receives batches of keyed tuples, and logically executes as a
grouped query, on a single thread. This modification was trivial
because the concept of grouped computation already exists internally
in the Trill library (e.g., inside a GroupApply), as described earlier.

Actions such as ToMemory already exist in Streamable<>. How-
ever, several new physical operators, denoted with [...], are needed
in KeyedStreamable<TK, TP1> to support ShardedStreamable:
◦ [ReKey] takes a grouping key selector as parameter and produces

a new KeyedStreamable with the updated grouping key. For ex-
ample, when [ReKey] with key selector e => e.AdId is applied
on the Trill stream s0 of type Streamable<AdInfo>, the result
is a stream of type KeyedStreamable<long, AdInfo>, where
long is the type of the AdId (key) field. [ReKey] first executes
a few constant-time operations (per input batch) in this exam-
ple: setting the Key array to point to the AdId array, and setting
all other arrays to point to corresponding input arrays. This is
followed by the computation of the Hash array in the result batch.
◦ [ReDistribute] accepts a count M as parameter, and outputs

an array of M KeyedStreamable instances, one per destination
shard. [Multicast] operates similarly, but leverages the user-
provided lambda to determine destination shards for each tuple.
[ReShard] and [Broadcast] similarly output an array of M
KeyedStreamable instances. Their implementation details over
columnar batches are covered in our technical report [12].

4.2 Physical Plan Construction and Execution
Consider a ShardedStreamable with N shards. Query takes the

query specification as a lambda from KeyedStreamable<TK, TP1>
to KeyedStreamable<TK, TP2>, applies the query lambda on each
of the N KeyedStreamable instances, and packages the results into a
new ShardedStreamable instance, as shown in Fig. 5(a). ReKey is
applied similarly. The two-input Query operation works similarly,
but it constructs N pairs of KeyedStreamable instances, which are
combined using the two-input query lambda, and finally packaged
into a new ShardedStreamable instance, as shown in Fig. 5(b).

ReDistribute, ReShard, Multicast, and Broadcast take a lo-
cation descriptor that represents the number of new shards, say
M (the default keeps the sharding unchanged, e.g., M = N). We
first invoke the corresponding operations on each KeyedStreamable,

1628



W1

.

.

.
MetadataTable

LineageTable

ClientW2

Wn

Cluster Queue

Relay

Key/Value Store

Figure 6: Overview of Quill’s cloud architecture

specifying M as location, resulting in N arrays, each of which is
an array of M KeyedStreamable instances. We then use temporal
union operator to merge these into M shards in timestamp order;
these shards are packaged into the result ShardedStreamable. Tem-
poral union optimizes for the case where timestamps across streams
overlap only across batch boundaries, and can perform the union
by simply swinging pointers to batches, instead of a memory copy
of the contents. Fig. 5(c) shows a shuffle operation, that consists of
re-key followed by re-distribute and union. Finally, actions are exe-
cuted using the corresponding methods on KeyedStreamable [12].

5. QUILL FOR THE CLOUD
The next layer of Quill is our distributed platform that targets

execution on a public pay-as-you-go cloud vendor (we use Microsoft
Azure [27]). Quill exposes a HLL-integrated client library to users
to manage and query sharded datasets in the cloud. The library
communicates with cloud worker instances to provide a seamless
programmatic querying functionality to users.

5.1 System Overview
We designed Quill for the cloud as a fully decentralized system

that communicates directly with the client. Unlike traditional big
data systems that use a special master node for coordination (and
can become a single point of failure), all control flow communi-
cation happens through decentralized and replicated resources in
Quill. In particular, we leverage: (1) tables (that implement a key-
value store); (2) queues (that expose a FIFO message abstraction);
and (3) relays (that implement the publish/subscribe paradigm of
topic-based message broadcast). These distributed and replicated
resources are commonplace in all major cloud vendors today, and
incur very little overhead, particularly since they are used only in
the less performance-sensitive control flow paths.

Our overall design is shown in Fig. 6. There are two major enti-
ties in the picture: a client that runs the client library and N workers
that execute the cloud backend library. The client library supports
the ability to create clusters, create and share datasets, and imple-
ments the ShardedStreamable abstraction as well. It implements
components necessary to communicate with the workers in the cloud
via the decentralized resources, receive feedback on progress and
errors, and communicate these back to the user. Workers use a cloud
backend library that communicates with the client via the same
resources, handles inter-node network communication via TCP, and
enables query processing using multi-core ShardedStreamable.

5.2 The Client Library
The functions exposed by the client library can be divided into

different groups: (i) those that are used to manipulate clusters, i.e.
provision, scale up/down, and decommission clusters on-demand;

// Application 1
var cluster1 = Quill.createCluster(new Nodes [10] { .. });
var adInfo = Quill.createDataset <AdInfo >

("/data/hdfs/adinfo", cluster1).ToMemory ();
var counts = adInfo.ReKey(e => e.AdId).ReDistribute ().

Query(e => e.Count());
var cluster2 = Quill.createCluster(new Nodes [2] { .. });
counts.ReDistribute(cluster2).ToMemory("adcounts");
Quill.removeDataset(adInfo);
Quill.tearDown(cluster1);

// Application 2
var counts = Quill.searchDataset("adcounts");
counts.Subscribe(e => Console.WriteLine(e));

Figure 7: Two hypothetical applications using Quill

(ii) functions used to work with datasets, such as search, create
or delete; and (iii) the ShardedStreamable API. We describe these
operations using two hypothetical applications, shown in Fig. 7.
Virtual Clusters. The first step for an application or user is to
create and provision a cluster of cloud machines (called workers)
for analytics. We organize workers into virtual clusters (VCs) that
represent groups of machines that operate as a single unit. Each
VC has a name, and is associated with a broadcast topic in the
pub/sub relay. All workers in the virtual cluster are subscribed to the
topic. The client library exposes functions to create and tear-down
VCs on demand (see Table 3). Re-sizing is done by creating a new
VC, moving datasets if needed using ReDistribute or ReShard,
and tearing down the old VC. Information on VCs is stored in a
cloud table called the MetadataTable. In our example, application 1
creates a VC with 10 machines. Virtual clusters can also serve as
a location descriptor for data movement operations. For example,
application 1, after the analytics, re-distributes the result to a smaller
VC with 2 machines and tears down the larger VC.
Datasets. We support two types of datasets, both of which im-
plement the ShardedStreamable API. A disk dataset (DiskDataset)
points to storage, whereas an in-memory dataset (InMemDataset) rep-
resents a dataset that is persisted in distributed main memory. Meta-
data about these datasets is stored in the MetadataTable. Clients can
use several available functions to load the required datasets. For
example, it is possible to search the metadata for available shared
datasets, add new datasets that can be analyzed later or left for other
users that may be interested. We also allow users to delete old
datasets and reclaim memory. For example, application 1 creates a
DiskDataset, loads it into the 10 machine VC as an InMemDataset,
and subsequently deletes it. The result dataset, named “adcounts”,
is later retrieved and used by application 2.
ShardedStreamable. Users write analysis queries using the Shard-
edStreamable API. Query execution is triggered when a user writes
an action such as ToMemory or ToStorage, which creates an in-
stance of an InMemDataset or DiskDataset respectively. Subscribe
can be used to bring the raw results back to the client (cf. Sec-
tion 3.4). For example, application 1 writes “adcounts” to memory,
and application 2 retrieves results to display on the client console.

5.3 Implementing ShardedStreamable
When an action is triggered, Quill extracts the dataflow graph

(DAG) of transformations expressed by the query, and groups them
into tasks to construct the distributed physical plan. A task in Quill
is a unit of work that is sent from the client to the workers via the
relay, and conveys an intra-node physical sub-plan (again, expressed
using ShardedStreamable). Transformations are pipelined and sent
as a single task. A data movement operation such as ReDistribute
breaks the pipeline into two special tasks: one for the sender and
another for the receiver (which could be in a different VC).
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Table 3: Client library API

Operation Description

Cluster

createCluster Creates a new virtual cluster with a given
number of machines.

tearDown Tears down the cluster.

Dataset
searchDataset Searches dataset by id or name.
createDataset Allows to create new datasets from local

or remote paths.
removeDataset Deletes an existing dataset.

The transformations are serialized and published to the broadcast
relay under the appropriate topic. Workers that are subscribed to
the same topic receive the tasks and execute them. Workers maintain
TCP connections and use ToBinaryStream and FromBinaryStream
for efficient columnar compression and serialization (see [12] for
more details). On finishing, they write to a table indicating their id.
With this mechanism, Quill’s client knows that the query is finished
when the table contains the ids of all the workers in the cluster.

5.4 Fault Tolerance and Optimization
Fault tolerance. Quill’s model of fault tolerance is as follows: the
client library is completely decoupled from the workers, and submits
tasks atomically via cloud structures. The client also logs all query
transformations in a decentralized table called the LineageTable.
Jobs run on workers, and a client can disconnect or fail without af-
fecting job execution. Workers register heartbeats periodically with
the MetadataTable; when the client (or another worker) finds a node
without a heartbeat, it is marked as dead, a replacement node is allo-
cated, and the lineage information is used to recompute datasets on
the node. The MetadataTable also needs to be updated to reflect the
new locations for restored dataset shards. Handling fault-tolerance
for real-time queries is an area for future work; here, we already
support checkpointing primitives in Trill, and these primitives could,
for example, be coordinated with a replay mechanism [1] to recover
from failures of such queries.
Optimization. Quill’s plans are physical; the functional Sharded-
Streamable invocations result in a tree of operators as an expression
tree in the high-level language. This means we can build layers to
(a) programmatically translate SQL or other high-level languages
into this representation; and (b) apply visitor-based expression tree
transformations to implement planner rules that preserve semantics.
This process could be based on a cost model, using which the visitor
may push down predicates, reorder operators, and select the number
of shards. Systems such as Apache Calcite [5] (or more generally,
optimization frameworks such as Cascades [22]) may be adopted
for our plans as well, to implement the workflow of Fig. 2.
Other Discussion. We cover efficient data loading, minimizing
overhead, and handling query errors in our technical report [12].

6. EVALUATION
Our goal is to (a) evaluate the overheads with the master-less

design (§6.2); (b) understand the performance of relational-style
(§6.3) as well as temporal (§6.4) analytics queries on large bounded
datasets, in comparison to a state-of-the-art big data analytics plat-
form; (c) understand Quill’s shuffle and data loading performance
(§6.5). We use Spark v1.4 with the SparkSQL [8] interface as our
baseline, because it provides high-performance columnar execution,
and was recently shown [8] to outperform other big data systems,
including native Spark [33], Impala [23], and Shark [32] (earlier
work [33] also showed native Spark to outperform map-reduce by up
to 10×). Note that Quill supports programming the distributed plan
unlike SparkSQL, where the optimizer’s plan cannot be modified.
Except where indicated, we use SparkSQL’s explain command to
get its physical plan and use the same plan in Quill.

6.1 Setup and Workloads
We implemented Quill to target Microsoft Azure [27]. We run

experiments in cloud-provisioned clusters of up to 400 D1 nodes or
40 D14 nodes located in the West US region. Each D14 instance
has a 16-core Intel Xeon E5-2660 CPU and 112 GB RAM, while
D1 instances (used for overhead experiments) have 1 core. All the
nodes have 10 Gbps NIC bandwidth. Unless otherwise mentioned,
we run the Quill client on a remote (non-cloud) machine in North-
West US. However, the Spark client (command line) is co-located in
the West US datacenter. Datasets are stored in Azure storage, but
are pre-loaded into main memory before the experiments.

We tuned Spark to use in-memory compression and columnar
representation, which significantly improved the performance for
the queries presented in this section. Both systems use the same
number of workers; we additionally made sure to configure the
Spark master node with enough memory so that this is not a limiting
factor. For both Spark and Quill, we tune the garbage collector
to reduce its impact on performance. It is worth noting that the
performance results we show for Spark (we highly optimized it for
performance) are several factors higher than the numbers reported
in the literature [8] for a previous version of the system. Finally, we
repeat experiments 10 times, and show the average with error bars.
SQL big data benchmark. We use the big data benchmark pro-
posed by Pavlo et al. [30]; this benchmark contains typical analytical
SQL queries and is also used in the SparkSQL paper [8]. This dataset
consists of a rankings and uservisits table, with the schemas shown
below. We implemented the benchmark in both Quill and Spark
and ran the queries as specified—maintaining a fixed dataset size
per node. To show the scalability of both systems, we increase the
cluster size until we reach dataset sizes of 1 TB.

struct UserVisits {
String sourceIP; String destURL; long date;
int duration; float adRevenue;
String userAgent; String countryCode;
String languageCode; String searchWord; }

struct Rankings {
String pageURL; int pageRank; int avgDuration; }

We evaluate the performance of the different systems with the scan,
aggregate and join queries presented in the original benchmark,
varying different parameters as described later.
GitHub events dataset. We use the GitHub archive [21] to evaluate
temporal queries. This 0.5 TB dataset contains 25 types of events
registered by GitHub since 2011. Each event correspond to a user
action, such as create repository, push commits or watch events
(see [12] for more dataset details).

6.2 Masterless Design Evaluation
In this section, we evaluate the overhead of using decentralized

cloud structures for coordination in the masterless Quill design.
1) Latency of Decentralized Scheduling. On receiving a new
query (workflow), Quill uses a broadcast relay to distribute the
operation to all the workers, which execute components of the work-
flow. On completion, each worker adds an entry to the Azure table
(MetadataTable), which the client checks to report query completion.
We evaluate the overhead of this round-trip by issuing an empty task
that immediately reports back. In Figure 8, we vary the number of
Azure D14 instances from 10 to 40, and report average latency with
error bars. We report latencies when the client is outside vs. inside
the datacenter. As expected, larger clusters incur more overhead,
but the average latency is less than 300ms (inside datacenter) even
with 40 nodes, which is small compared to the expected completion
time of non-trivial analytical tasks (§6.3). For comparison, we ex-
perimented with using a service bus queue instead of an Azure table
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Figure 12: Scan query with a
selectivity of 5%
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Figure 13: Scan query with a
selectivity of 50%
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Figure 14: Scan query with a
selectivity of 95%
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for reporting completion as well, and found the average latency for
10 instances to be 340ms within the datacenter (slightly higher than
using tables). Further, we observe that running the client outside the
datacenter increases latencies by around 70 ms, due to the additional
latency incurred by the distance.
2) Effect of Client Location. Figure 8 includes latencies when the
client runs outside the datacenter; we see that average latencies are
around 70ms higher, but are less than 350ms even for 40 nodes. We
next show the detailed overhead effect when running the user client
outside vs. inside the datacenter. We use a cluster size of 10 and
40 machines, and report the CDF of latencies for inside and outside
datacenter in Fig. 9. For instance, we note that with 10 (40 resp.)
nodes, 85% of latencies are less than 200ms (400ms resp.) when
the client is inside the datacenter.
3) Latency with Larger Cluster Sizes. While we target clusters
with less than 100 machines, we next verify scalability for even
larger deployments of up to 400 workers. Given a limit on the total
number of cores available to us, we use Azure D1 instances with 1
core, and vary the number of workers from 100 to 400. Figure 10
shows the results from inside the datacenter. We see that latency
overhead is less than 1 second even with 400 workers, which would
provide 44TB of memory if we used D14 instances.
4) Throughput of Decentralized Structures. We next measure
the throughput, in terms of number of messages sent and received
per second, using our cloud structures (Azure queues and broadcast
relay). We use a single client machine with multiple threads to
send and receives messages up to 64 bytes long. Figure 11 shows
throughput as we increase the number of structures to get more par-
allelism). We see that even with one structure, we achieve more than
1000 messages per second, which is sufficient for our infrequent
coarse-grained control flow messages.

Cloud structures have low latency overhead and high through-
put, and can serve as a masterless control flow mechanism.

6.3 Relational Analytical Queries
To understand the performance and scalability of Quill, we run

the three queries defined in the SQL Big Data Benchmark changing
the selectivity in each case. The dataset size is fixed on a per

node basis to conform the benchmark description. This means
that we keep around 25 GB (152M rows) of the uservisits data
and 1 GB (18M rows) of the rankings data per node. With this
configuration we run the queries in 4 different cluster sizes of 10, 20,
30 and 40 nodes, which translates into datasets of 250, 500, 750 and
1000 GB respectively. We also run queries with larger data sizes
that, although not specified in the benchmark, helps to understand
better the performance characteristics of the systems.

6.3.1 Scan Queries
1) Scan performance. The first query defined by the benchmark is
the scan shown below, with selectivities of 5%, 50% and 95%.

SELECT pageURL , pageRank FROM Rankings
WHERE pageRank > X;

Both systems are columnar and scan only the query predicate col-
umn – around 72MB of pageRank data per machine (18M rows ×
4 bytes per row). Fig. 12,13, and 14 show the results for Quill and
Spark. The throughput in both systems is limited by overheads.

In Quill, with 10 nodes, over 93% of the time is spent on schedul-
ing; the total time using a client outside the datacenter is 300ms,
while the actual scan takes just 19ms. The overhead is slightly higher
than for an empty query due to additional costs such as client plan
construction, task and metadata serialization, and lineage tracking.
The bandwidth of the scan alone (ignoring scheduling overheads)
is also low (around 3.8GB/sec) because of the small dataset size.
Since scheduling overheads in Quill increase slowly with number of
nodes (see §6.2), scan throughput increases as the cluster grows. In
case of Spark, the overhead is higher, and grows faster with cluster
size, preventing its scalability (at 40 nodes, Quill is ∼ 6× faster).
2) Scans on larger data. To evaluate performance with non-trivial
compute, we ran additional scan queries with a bigger dataset per
node. We first micro-benchmark Quill by varying the replication
factor RF of the rankings dataset (each tuple is repeated RF times
to give a rankings dataset size of RF GB per worker. The query
scans RF × 72MB of pageRank data. Figure 15 shows total time
and overhead for 10 workers running the scan, as we vary RF .
With RF = 200, we scan 14.4GB of data in 982ms for the scan
alone and 1.2secs total including scheduling . As expected, the
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Figure 17: Complex scan queries;
varying predicate complexity

0
200
400
600
800

1000
1200
1400
1600
1800

10/240GB 20/480GB 30/720GB 40/960GB

T
h

ro
u

g
h

p
u

t 
(M

il
li

o
n

 

tu
p

le
s/

se
co

n
d

)

#Nodes/Dataset size

Quill Spark

Figure 18: Aggregate query with
2K groups
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Figure 19: Aggregate query with
67K groups
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Figure 20: Aggregate query with
40 million groups
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Figure 21: Aggregate query with
140 million groups
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Figure 22: Comparison of
different joins; 140M groups
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Figure 23: Comparison of
different joins; 67K groups

scheduling overhead does not change by much; thus, overhead is a
lower fraction of total runtime as we increase RF . Figure 16 shows
scan bandwidth; as the dataset size increases, overhead is lower
and the scan reaches 15.6GB/sec per worker (11.9GB/sec if we
include scheduling) for RF = 200. This is respectable because the
theoretical maximum memory bandwidth of 50GB/sec for these
machines is just around 3.2× our measured scan bandwidth.
3) Complex scans. Fig. 17 compares Quill and Spark for three com-
plex scans using the uservisits table with 10 workers. Q1 contains
an expensive LIKE predicate, where Quill benefits from columnar
RegEx matching [15] and achieves throughput 8× higher than Spark.
Q2 and Q3 contain 2 and 4 predicates (comparisons and a LIKE
predicate) respectively; Quill is around 4× faster for these queries.

For small data, both systems are dominated by overheads,
with Quill scaling better with lower overheads. For larger data,
Quill’s scan runs at 15.6GB/sec (11.9GB/sec including schedul-
ing). Quill performs better for more complex scans as well.

6.3.2 Grouped Aggregate Queries
1) Aggregate performance. The second query of the benchmark is
an aggregate query (see below). The query compute the total rev-
enue originated per sourceIP. We want to control the complexity of
the query by modifying the number of groups. To do so, we modify
the length of the sourceIP prefix as suggested in the benchmark. We
run the query with 2K, 67K, 40M and 140M groups.
SELECT SUBSTR(sourceIP , 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourceIP , 1, 7);

Executing this query involves a local pre-aggregation, a shuffle
across the network to partition by (sourceIP), and a final aggrega-
tion. Thus, the data needed to be communicated across machines
depends on the number of groups. Interestingly, we found that for
a small number of groups (2K and 67K), the best strategy involves
aggregating per-core before re-keying and re-distributing for the
global shuffle. On the other hand, for larger number of groups,
the best strategy ended up being first re-keying and re-distributing
across cores, aggregating, and then shuffling globally. These strate-
gies correspond to the query plans of Fig. 1(b) and (d), which are
easily expressed using the ShardedStreamable API (§3). SparkSQL
uses the Catalyst optimizer that chooses plans automatically, and
does not provide users the ability to control or fine-tune the plan as
needed to optimally execute this experiment.

Fig. 18, 19, 20 and 21 show the results for the query for 2K, 67K,
40M and 140M respectively. The immediate difference with respect
to the scan query is that these graphs show how both Quill and

Spark scale with the cluster size. The reason is that overheads do
not dominate the query execution time, and thus more resources
lead to a reduced query completion time.

When the number of groups is small, the amount of data that is
required to shuffle is small, query time is dominated by the execution
of the aggregate function, such as in Fig. 18 and Fig. 19. Quill
outperforms Spark by a factor of 2×, due to the optimized physical
plan, lower scheduling overheads, and higher operator efficiency.
As the number of groups increases, shuffling time increases, which
explains the lower performance in both systems. With a higher
number of groups, the efficiency gains of Quill over Spark broaden,
showing an improvement of around 3.5× (see Fig. 20 and Fig. 21).
2) Aggregate execution time split-up in Quill. With smaller group
sizes (2K and 67K), execution is CPU-bound by the per-core pre-
aggregation because the dataset is highly reduced after that point.
For the larger group size (40M groups), different phases of the query
had different bottlenecks; a run in Quill that took 26secs overall
spent 38% on per-core aggregation (CPU-bound), 34.6% on intra-
machine shuffle and re-aggregation (memory-bound), 22.6% on
inter-machine shuffle (network and serialization-bound), and 4.8%
on the final aggregation (CPU-bound).

With efficient group-aggregation over columnar batches, fast
network communication, low scheduling overheads, the ability
to fine-tune the physical plan and avoid extra hash computa-
tions, Quill can run aggregate queries at high performance.

6.3.3 Join Queries
The last query of the benchmark is the join query shown below.

The purpose of the query is to calculate the sourceIP and associated
pageRank that gave rise to the highest revenue for a given period of
time, e.g. 1 week. We vary the complexity of this query by changing
the total number of groups according to the sourceIP attribute, as in
the case of the aggregate query.
SELECT INTO Temp sourceIP , AVG(pageRank) as avgPageRank ,

SUM(adRevenue) as totalRevenue
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL
AND UV.visitDate BETWEEN Date(’2000 -01 -15’)

AND Date(’2000 -01 -22’)
GROUP BY UV.sourceIP;
SELECT sourceIP , totalRevenue , avgPageRank FROM Temp
ORDER BY totalRevenue DESC LIMIT 1;

We implement the query using SparkSQL’s physical plan. This
plan first applies the time-range filter to reduce the UserVisits dataset,
after which both datasets are shuffled on the join key, which is in
this case pageURL and destURL. After the shuffle and join, the data
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Figure 24: Effect of modifying physical plan
for different join strategies
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Figure 25: Performance of tumbling window
query for different window sizes
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Figure 26: Performance of hopping window
query for different window slide/size values

is shuffled again, this time on sourceIP, before running the final
aggregate and top-K. We call this plan shuffle-shuffle to denote that
a shuffle occurs across machines and across cores in each machine
before the join (Fig. 4(a) shows this join strategy).

Fig. 22 and Fig. 23 show the results for the join query when run
with both 140M and 67K groups. For shuffle-shuffle, the perfor-
mance of both Quill and Spark is mostly influenced by the time
it takes to transmit the datasets through the network. The slightly
better throughput of Quill in this case is likely due to more efficient
query processing and data movement.

We then implemented two additional plans for JOIN, that are
more efficient than the one chosen by the Spark query optimizer.
We run a strategy called Broadcast-Broadcast, depicted in Fig. 4(b),
that does not shuffle the Rankings dataset. Instead, it broadcasts the
filtered UserVisits dataset to all machines in the cluster, and then
to each core on each machine. Fig. 22 and Fig. 23 show how this
strategy is faster than naively shuffling both datasets. However, the
performance of broadcast-broadcast suffers when the dataset size
grows beyond 750 GB. The reason is that in this strategy, each core
needs to build a hash table over the entire dataset, which grows
linearly with the number of nodes. A better strategy is therefore
broadcast-shuffle, whose plan is depicted in Fig. 4(c). In this case,
we perform a broadcast across machines to avoid the expensive shuf-
fle of Rankings, but then we perform shuffle both datasets locally,
which partitions the hash table across cores, bringing additional
performance benefits, as shown in Fig. 22 and Fig. 23.

Fig. 24 shows how time is spent in the case of the three join strate-
gies. T1 and T2 are the time spent in applying the filter, rekeying
and redistributing the Rankings and UserVisits tables respectively.
This clearly shows how shuffling Rankings table is more expensive
than broadcasting UserVisits. T3 is the time spent performing the
join operation, while T4 is the time spent aggregating page rank
and ad revenue per source IP. We see that the broadcast-broadcast
strategy is more expensive due to the higher cost of maintaining a
hash table per core. Finally T5 is the time spent on Top-K.

By expressing a large physical plan space, Quill can run join
queries on large datasets with high performance.

6.4 Temporal Analytical Queries
We next evaluate temporal queries that compute various grouped

aggregates over tumbling and hopping (sliding) windows, on a clus-
ter with 10 machines. We vary the window size, and the slide in case
of hopping windows. We also run the queries on SparkSQL, since
time is a column in the GitHub schema, to compare performance.
1) Tumbling window query. Tumbling windows are easy to express
in SparkSQL, by grouping by the (coarsened) time field. The results
are shown in Fig. 25. Quill has a performance 3×-4× higher than
Spark. Both systems show a similar behavior for 1 day, 1 hour
and 1 min windows. Performance reduces severely in the case of 1
second windows for both systems. Quill becomes 2× slower, while
Spark performance drops by a factor of 8. The reasons for this

decrease in performance, however, differ between systems. Quill’s
performance reduces due to the higher amount of data generated, i.e.
the bottleneck is not query processing, but data delivery. Since Spark
groups by time, query processing suffers from a higher number of
groups created due to the smaller window size.
2) Hopping window query. The hopping window query is more
demanding for SparkSQL; while it can leverage the panes trick [24]
to implement hopping windows, the number of groups necessary to
maintain grows. We could only run the first three configurations of
the query, window slide/size of 1 day/1 week, 1 day/1 month, and 1
hour/1 week. Other configurations took too long or did not complete,
and we do not include them. The results of Fig. 26 show that the cost
for Quill does not change—computing a hopping window is similar
to a tumbling window, due to native temporal support. Quill’s
throughput is up to 120× higher than Spark (for queries that we
were able to complete on Spark). As before, throughput reduces for
a window slide of 1 second due to the cost of delivering results.

By carefully layering a temporal library and adding efficient
ReKey, ReDistribute, and time-ordered merge operations, Quill
can process temporal queries very efficiently.

6.5 Shuffle and Data Loading Performance
We often need to process raw data in timestamp order by key, for

example, to detect sequential patterns in the data. Such queries may
not benefit from pre-aggregation, resulting in the need to shuffle the
raw data. We generate a synthetic dataset with two random long
fields, and execute a Broadcast and a shuffle (ReKey+ReDistribute)
query (across all machines). For broadcast, we found the actual
shuffle throughput (incoming plus outgoing) to reach 9.79 Gbps
per node on a 40-machine cluster, which is close to the 10 Gbps
NIC bandwidth limit. Shuffle additionally involves computing hash
values and moving data by hash bucket before sending it on the wire;
we achieve an effective throughput of 8.35 Gbps per node. Note
that users could also materialize datasets after a ReKey to leverage
pre-computed keys and hash values.

Next, we measure the performance of loading a 762GB comma-
separated text dataset with 16 fields, stored across 8 Azure storage
accounts. With 40 cloud workers, we load the data is 85secs, with
an average read throughput of around 9 Gbps per storage account,
close to the enforced limit of 10 Gbps per storage account.

7. RELATED WORK
In Section 1.1 and Table 1, we covered today’s analytics platforms

in terms of satisfying our target requirements; more details follow.
Databases & big data systems. DBMSs compile SQL queries into
plans with high performance, but the plans cannot be modified,
programmed, or transferred to real-time. They lack temporal opera-
tor support or deep integration into the HLL type-system. Beyond
broadcast and exchange operators, commercial DBMSs do not of-
fer more complex data-dependent duplication strategies for data
movement. As Fig. 2 shows, Quill offers an alternative to query
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hinting that allows users to control and validate their plans, or pro-
gram them directly in a HLL. By making it easy for optimizers
to express and execute plans, we expect to see the growth of HLL
optimizer libraries that target specific verticals or scenarios as well.
Systems such as map-reduce [19] and Spark RDDs [33] expose a
keyed computation model to exploit data-parallelism, but are unable
to express and optimize for the rich space of distributed execution
strategies we target. These systems also expose SQL front-ends
such as Hive [31] that have limitations as discussed in Section 1. In
contrast, Quill separates query logic, data movement, and logical
keying to allow the expression of a rich space of physical plans that
implement complex temporal logic and are transferable to real-time
as well. Moreover, existing systems implement a master-worker
architecture unlike Quill, which uses decentralized cloud structures
for client-driven coordination.
Streams & Physical Algebras. Single-node streaming systems [9,
15] have rich query models but are inadequate to meet high data
volumes and scale. Streaming systems such as Storm [7], Flink [4],
MillWheel [2], and Google Cloud Dataflow [3] expose a fine-grained
API using which users can process and produce 〈key, value〉 pairs,
with richer temporal APIs on top. As discussed in §3.3.2, the fine-
grained API results in several inefficiencies at the data plane. In
contrast, Quill provides functional transformations such as ReKey,
ReDistribute, and Multicast that are executed at the data plane in
batched columnar form by exploiting white-box lambda expression
parameters and code generation. Dryad’s physical algebra is an
arbitrary graph which cannot be programmed, unlike Quill which
exposes a small, readable, and powerful set of functional transforma-
tions to specify physical plans. DryadLINQ and SparkSQL operate
at the logical specification level like databases, and users cannot
tweak physical plans. Quill’s physical algebra explicitly separates
data movement from keying, and adds new data movement func-
tions beyond ReDistribute that expand query expressiveness without
giving up on performance. Further, existing systems do not support
primitives to optimize inter-node vs. intra-node plans. Finally, the
separation of Query as a layer allows temporal logic specification
(leveraging Trill) independent from dataflow specification, guar-
anteeing transferability without loss of performance, by exposing
batching and grouping to the innermost loop.

8. CONCLUSIONS
Quill is a library and distributed platform for analytics over large

datasets. We propose a new abstraction called ShardedStreamable,
that can express efficient distributed physical query plans that are
transferable between real-time and offline deployments Sharded-
Streamable decouples incremental query logic specification, data
movement, and keying; this allows Quill to express a broad space
of plans with complex querying functionality, while leveraging tem-
poral libraries such as Trill. Quill’s layered architecture provides a
separation of responsibilities with independently useful components,
while retaining high performance. We built Quill for the cloud, with
a master-less design that leverages off-the-shelf distributed compo-
nents found in cloud providers. Experiments on up to 400 cloud
machines, on benchmark and real datasets up to 1TB, find Quill
to incur low overhead and outperform SparkSQL by up to orders-
of-magnitude for temporal and 6× for relational queries, while
supporting significantly expanded temporal querying functionality.
Acknowledgments. We would like to thank Mike Barnett, Tyson
Condie, Ravi Ramamurthy, James F. Terwilliger, Markus Weimer,
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