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Abstract

Value-of-information analyses provide a straightforward means for selecting the best
next observation to make, and for determining whether it is better to gather additional
information or to act immediately. Determining the next best test to perform, given a
state of uncertainty about the world, requires a consideration of the value of making all
possible sequences of observations. In practice, decision analysts and expert-system de-
signers have avoided the intractability of exact computation of the value of information
by relying on a myopic approximation. Myopic analyses are based on the assumption
that only one additional test will be performed, even when there is an opportunity
to make a large number of observations. We present a nonmyopic approximation for
value of information that bypasses the traditional myopic analyses by exploiting the
statistical properties of large samples.
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1 Introduction

A person faced with a decision usually has the opportunity to gather additional information
about the state of the world before taking action. Decision-theoretic methods for determining
the value of gathering additional information date back to the earliest literature on the
principle of maximum expected utility (MEU). These methods form an integral part of
many probabilistic expert systems, such as Gorry’s congestive-heart-failure program (Gorry
and Barnett, 1968) and Pathfinder (Heckerman et al., 1989; Heckerman et al., 1990), an
expert system that assists pathologists with the diagnosis of lymph-node diseases. To decide
whether or not to perform a test, an expert system computes the value of information of
that test. The system recommends that the test be performed if and only if the value of
information exceeds the cost of the test.1

In most decision contexts, a decision maker has the option to perform several tests, and
can decide which test to perform after seeing the results of all previous tests. Thus, an
expert system should consider the value of all possible sequences of tests. Such an analysis is
intractable, because the number of sequences grows exponentially with the number of tests.
Builders of expert systems have avoided the intractability of complete value-of-information
analyses by implementing myopic or greedy value-of-information analyses. In such analyses,
a system determines the next best test by computing value of information based on the
assumption that the decision maker will act immediately after seeing the results of the single
test (Gorry et al., 1973; ?). In this paper, we present an approximate nonmyopic analy-
sis. The analysis avoids the traditional myopic assumption by making use of the statistical
properties of large samples.

2 Value-of-Information Computations for Diagnosis

We discuss myopic and nonmyopic value-of-information computations in terms of the simple
model for diagnosis under uncertainty represented by the influence diagram in Figure 1. In
this model, the chance node H represents a mutually exclusive and exhaustive set of possible
hypotheses, and the decision node D represents a mutually exclusive and exhaustive set of
possible alternatives. The value node U represents the utility of the decision maker, which
depends on the outcome of H and the decision D. The chance nodes E1, E2, . . . , En are
observable pieces of evidence or tests about the true state of H. This model is identical to
that for Pathfinder (Heckerman, 1990).

We make several simplifying assumptions. First, we assume that H is a binary chance
variable and D is a binary decision variable. We use H and ¬H to denote the two outcomes
of H, and D and ¬D to denote the two outcomes of D. For definiteness, we assume that the
decision maker chooses D (as opposed to ¬D), when H occurs. Second, we assume that each
piece of evidence, E1, E2, . . . , En, is binary. Finally, we assume that each piece of evidence
is conditionally independent of all other evidence, given H and ¬H. In Section 6, we relax
these assumptions.

1This prescription for action assumes that the delta property holds. See Section 3.
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Figure 1: An influence-diagram representation of the problem of diagnosis under uncertainty.
The decision-maker’s utility (rounded rectangular node, U) depends on a hypothesis (oval
node, H) and a decision (square node, D). The variables Ei are pieces of evidence or tests
about the true state of H.

Using the assumption of conditional independence of evidence, we can calculate the
posterior probability of the hypothesis by multiplying together all of the likelihood ratios,
p(Ei|H)

p(Ei|¬H)
, with the prior odds, p(H)

p(¬H)
.

p(H|Ei, . . . , Em)

P (¬H|Ei, . . . , Em)
=

p(E1|H)

p(E1|¬H)
. . .

p(Em|H)

p(Em|¬H)

p(H)

p(¬H)

We can write this equation more compactly in odds form as

O(H|Ei, . . . , Em) = O(H)
m∏

i=1

λi (1)

where λi is the likelihood ratio p(Ei|H)
p(Ei|¬H)

.
Because D and H are binary, it follows from the MEU principle that there exists a

threshold probability p∗, such that we should take action D if and only if the probability
of H exceeds p∗. This threshold is the probability of H at which the decision maker is
indifferent between acting and not acting. That is, p∗ is the point where acting and not
acting have equal utility, or

p∗U(H, D) + (1− p∗)U(¬H, D) =

p∗U(H,¬D) + (1− p∗)U(¬H,¬D)
(2)

In Equation 2, U(H, D) is the decision maker’s utility for the situation where H occurs and
action D is taken, U(H,¬D) is the utility when H occurs and action D is not taken, and so
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on. Solving Equation 2 for p∗, we obtain

p∗ =
C

C + B
(3)

where C is the cost of the decision

C = U(¬H,¬D)− U(¬H, D) (4)

and B is the benefit of the decision

B = U(H, D)− U(H,¬D) (5)

If the decision maker has observed pieces of evidence E1, E2, . . . , Em, then the decision maker
should choose action D if and only if p(H|E1 . . . , Em) > p∗. In terms of the odds formulation,
he should act if and only if

O(H|E1, . . . , Em) ≥ p∗

1− p∗
(6)

The weight of evidence, wi, is defined as the log of the likelihood ratio, lnλi. Mapping
likelihood ratios into weights of evidence allows us to update the probability of H through
the addition of the weights of evidence. Referring to Equations 1 and 6, we can rewrite the
threshold-probability condition in terms of the log-likelihood ratio where wi = ln λi. The
decision maker should choose action D if and only if

W =
m∑

i=1

wi ≥ ln
p∗

1− p∗
− ln O(H) = W ∗ (7)

In this expression, W ∗ is the decision threshold in terms of weights of evidence.

3 Myopic Analysis

Let us assume that the user of a diagnostic system has instantiated zero or more pieces
of evidence in the influence diagram shown in Figure 1. We can propagate the effects of
these instantiations to the uninstantiated nodes, and remove the instantiated nodes from
the influence diagram. This removal leaves an influence diagram of the same form as that
shown in Figure 1. To simplify our notation, we continue to refer to the remaining pieces of
evidence as E1, E2, . . . , En; also, we use p(H) to refer to the probability of the hypothesis
H, given the instantiated evidence.

The decision maker now considers whether he should observe another piece of evidence
before acting. A myopic procedure for identifying such evidence computes, for each piece
of evidence, the expected utility of the decision maker under the assumption that the deci-
sion maker will act after observing only that piece of evidence. In addition, the procedure
computes his expected utility if he does not observe any evidence before making his deci-
sion. If, for each piece of evidence, the expected utility given that evidence is less than the
expected utility given no evidence, then the decision maker acts immediately in accordance
with Equation 6. Otherwise, the decision maker observes the piece of evidence with the
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highest expected utility; then, the myopic procedure repeats this computation to identify
additional evidence for observation. Because the myopic procedure allows for the gathering
of additional evidence, the procedure is inconsistent with its own assumptions. We return
to this observation in the next section.

In the remainder of this section, we examine the computation of expected utilities and
introduce notation. Let EU(E, CE) denote the expected utility of the decision maker who
will observe E at cost CE, and then act. Let CE(E, CE) be the certain equivalent of this
situation. That is,

U(CE(E, CE)) = EU(E, CE) (8)

or
CE(E, CE) = U−1(EU(E, CE)) (9)

where U(·) is the decision maker’s utility function: a monotonic increasing function that
maps the value of an outcome (e.g., in dollars) to the decision maker’s utility for that
outcome. Similarly, let EU(φ, 0) denote the expected utility of the decision maker if he acts
immediately, and let CE(φ, 0) denote the certain equivalent of this situation. Thus, in the
myopic procedure, a decision maker should observe the piece of evidence E for which the
quantity

CE(E, CE)− CE(φ, 0) (10)

is maximum, provided it is greater than 0.
In this paper, to simplify the discussion, we assume that the delta property holds.2 The

delta property states that an increase in value of all outcomes in a lottery by an amount 4
increases the certain equivalent of that lottery by4 (Howard, 1967). Under this assumption,
we obtain

CE(E, CE) = CE(E, 0)− CE (11)

where CE(E, 0) is the certain equivalent of observing E at no cost. Therefore, we have

CE(E, CE)− CE(φ, 0) = V I(E)− CE (12)

where
V I(E) = CE(E, 0)− CE(φ, 0) (13)

is the value of information of observing E.3 The quantity V I(E) represents the largest
amount that the decision maker would be willing to pay to observe E. When we compare
Expression 10 with Equation 12, we see that, in the myopic procedure, a decision maker
should observe the piece of evidence E (if any) for which the quantity

V I(E)− CE ≡ NV I(E) (14)

is maximum and positive. We call NV I(E) the net value of information of observing E.

2The primary result of this research—that we can use the central-limit theorem to make tractable an
approximate nonmyopic analysis—is unaffected by this assumption.

3Other names for V I(E) include the value of perfect information of E and the value of clairvoyance on
E.
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The decision maker usually specifies directly the cost of observing evidence. In contrast,
we can compute V I(E) from the decision maker’s utilities and probabilities. Specifically,
from Equations 9 and 13, we have

V I(E) = U−1(EU(E, 0))− U−1(EU(φ, 0))

To simplify notation, we use the abbreviations

EU(E, 0) ≡ EU(E) and EU(φ, 0) ≡ EU(φ)

Thus, we obtain
V I(E) = U−1(EU(E))− U−1(EU(φ)) (15)

The computation of EU(φ) is straightforward. We have

EU(φ) =



p(H)U(H,¬D) + p(¬H)U(¬H,¬D),

p(H) ≤ p∗

p(H)U(H, D) + p(¬H)U(¬H, D),

p(H) > p∗

(16)

by definition of p∗.
To compute EU(E), let us assume that E is defined such that the observation of E

increases the probability of H. If p(H|E) > p∗ and p(H|¬E) > p∗, then V I(E) = 0, because
the decision maker will not change his decision if he observes E. Similarly, if p(H|E) < p∗

and p(H|¬E) < p∗, then V I(E) = 0. Thus, we need only to consider the case where
p(H|E) > p∗ and p(H|¬E) < p∗. Let us consider separately the cases H and ¬H. We have

EU(E|H) =

p(E|H)U(H, D) + p(¬E|H)U(H,¬D)
(17)

and
EU(E|¬H) =

p(E|¬H)U(¬H, D) + p(¬E|¬H)U(¬H,¬D)
(18)

where EU(E|H) and EU(E|¬H) are the expected utilities of observing E, given H and ¬H,
respectively. To obtain the expected utility of observing E, we average these two quantities

EU(E) = p(H)EU(E|H) + p(¬H)EU(E|¬H) (19)

To compute V I(E), we combine Equations 15, 16, and 19.

4 Nonmyopic Analysis

As we mentioned in the previous section, the myopic procedure for identifying cost-effective
observations includes the incorrect assumption that the decision maker will act after observ-
ing only one piece of evidence. This myopic assumption can affect the diagnostic accuracy
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of an expert system because information gathering might be halted even though there exists
some set of features whose value of information is greater that the cost of its observation.
For example, a myopic analysis may indicate that no feature is cost effective for observation,
yet the value of information for one or more feature pairs (were they computed) could exceed
the cost of their observation.

There has been little investigation of the accuracy of myopic analyses. In one analysis,
Kalagnanam and Henrion, 1990, showed that a myopic policy is optimal, when the decision
maker’s utility function U(·) is linear, and the relationship between hypotheses and evidence
is deterministic. In an empirical study, Gorry, 1968, demonstrated that the use of a myopic
analysis does not diminish significantly the diagnostic accuracy of an expert system for
congenital heart disease.

In a correct identification of cost-effective evidence, we should take into account the fact
that the decision maker may observe more than one piece of evidence before acting. This
computation must consider all possible ordered sequences of evidence observation, and is,
therefore, intractable.

Let us consider, however, the following nonmyopic approximation for identifying features
that are cost effective to observe. Again, we assume that the delta property holds. First,
under the myopic assumption, we compute the net value of information for each piece of
evidence. If there is at least one piece of evidence that has a positive net value of infor-
mation, then we identify for observation the piece of evidence with the highest net value
of information. Otherwise, we arrange the pieces of evidence in descending order of their
net values of information. Let us label the pieces of evidence E1, E2, . . . , En, such that
NV I(Ei) > NV I(Ej), if and only if i > j.

Next, we compute the net value of information of each subsequence of E1, E2, . . . , En.
That is, for m = 1, 2, . . . n, we compute the difference between the value of information for
observing E1, E2, . . . , Em, and the cost of observing this sequence of evidence. If any such
net value of information is greater than 0, then we identify E1 as a piece of evidence that
is cost effective to observe. Once the decision maker has observed E1, we repeat the entire
computation described in this section.

This approach does not consider all possible test sequences, but it does overcome one
limitation of the myopic analysis. In particular, the method can identify sets of features that
are cost effective for observation, even when the observation of each feature alone is not cost
effective.

5 Value of Information for a Subset of Evidence

As in the myopic analysis, we assume that the decision maker can specify the cost of observing
a set of evidence. In this section, we show how we can compute the value of information for
a set of evidence from the decision maker’s utilities and probabilities.

As in the previous section, let us suppose that the decision maker has the option to
observe a particular subset of evidence {E1, E2, . . . , Em} before acting. There are 2m possible
instantiations of the evidence in this set, corresponding to the observation of Ei or ¬Ei for
every i. Let E denote an arbitrary instantiation; and let ED and E¬D denote the set of
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instantiations E such that p(H|E) > p∗ and p(H|E) ≤ p∗, respectively.
The computation of the value of information for the observation of the set {E1, E2, . . . , Em}

parallels the myopic computation. In particular, we have

EU(E1 . . . Em) =

p(H)EU(E1 . . . Em|H)+

p(¬H)EU(E1 . . . Em|¬H)

(20)

where
EU(E1 . . . Em|H) =[∑

E∈ED p(E|H)
]
U(H, D)+[∑

E∈E¬D
p(E|H)

]
U(H,¬D)

(21)

and
EU(E1 . . . Em|¬H) =[∑

E∈ED p(E|¬H)
]
U(¬H, D)+[∑

E∈E¬D
p(E|¬H)

]
U(¬H,¬D)

(22)

To obtain V I(E), we combine Equations 15, 16, and 20.
When m is small, we can compute directly the sums in Equations 21 and 22. When m

is large, we can compute these sums using an approximation that involves the central limit
theorem as follows. First we express the sums in terms of weights of evidence. We have∑

E∈ED
p(E|H) = p(W > W ∗|H) (23)

∑
E∈ED

p(E|¬H) = p(W > W ∗|¬H) (24)

∑
E∈E¬D

p(E|H)) = 1− p(W > W ∗|H) (25)

∑
E∈E¬D

p(E|¬H)) = 1− p(W > W ∗|¬H) (26)

where W and W ∗ are defined in Equation 7. The term p(W > W ∗|H), for example, is the
probability that the sum of the weight of evidence from the observation of E1, E2, . . . , Em

exceeds W ∗. That is, p(W > W ∗|H) is the probability that the decision maker will take
action D after observing the evidence, given that H is true.

Next, let us consider the weight of evidence for one piece of evidence. We have

wi p(wi|H) p(wi|¬H)

ln p(Ei|H)
p(Ei|¬H)

p(Ei|H) p(Ei|¬H)

ln p(¬Ei|H)
p(¬Ei|¬H)

p(¬Ei|H) p(¬Ei|¬H)
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To simplify notation, we let p(Ei|H) = α and p(Ei|¬H) = β. The expectation and variance
of w, given H and ¬H, are then

EV (w|H) = α ln
α

β
+ (1− α) ln

(1− α)

(1− β)
(27)

V ar(w|H) = α(1− α)ln2α(1− β)

β(1− α)
(28)

EV (w|¬H) = β ln
α

β
+ (1− β) ln

(1− α)

(1− β)
(29)

V ar(w|¬H) = β(1− β)ln2α(1− β)

β(1− α)
(30)

Now, we take advantage of the additive property of weights of evidence. The central-
limit theorem states that the sum of independent random variables approaches a normal
distribution when the number of variables becomes large. Furthermore, the expectation and
variance of the sum is just the sum of the expectations and variances of the individual random
variables, respectively. Because we have assumed that evidence variables are independent,
given H or ¬H, the expected value of the sum of the weights of evidence for E1, E2, . . . , Em

is

EV (W |H) =
m∑

i=1

EV (wi|H) (31)

The variance of the sum of the weights is

V ar(W |H) =
m∑

i=1

V ar(wi|H) (32)

Thus, p(W |H), the probability distribution over W , is

p(W |H) ∼ N(
m∑

i=1

EV (wi|H),
m∑

i=1

V ar(wi|H)) (33)

The expression for ¬H is similar.
Finally, given the distributions for H and ¬H, we evaluate Equations 23 through 26

using an estimate or table of the cumulative normal distribution. We have

p(W > W ∗|H) =
1

σ
√

2π

∫ ∞
W ∗

e
−(t−µ)2

2σ dt (34)

where µ = EV (W |H) and σ = V ar(W |H). The probability that the weight will exceed W ∗

corresponds to the shaded area in Figure 2. Again, the expression for ¬H is similar. In this
analysis, we assume that no probability (p(Ei|H) or p(Ei|¬H)) is equal to 0 or 1. Thus, all
expected values and variances are finite. We relax this assumption in the next section.
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W *

Figure 2: The probability that the total weight of evidence will exceed the threshold weight
is the area under the normal curve above the threshold weight W ∗ (shaded region).

6 Relaxation of the Assumptions

We can relax the assumption that evidence is two-valued with little effort. In particular,
we can extend easily the odds-likelihood inference rule, Equation 1, and its logarithmic
transform, to include multiple-valued evidential variables. In addition, the computation of
means and variances for multiple-valued evidential variables (see Equations 27 through 30)
is straightforward.

In addition, we can relax the assumption that no probability is equal to 0 or 1. For
example, let us suppose that

0 < p(Ej|H) = α < 1

p(Ej|¬H) = β = 1

0 < p(Ei|H) < 1, i = 1, 2, . . . , n (i 6= j)

0 < p(Ei|¬H) < 1, i = 1, 2, . . . , n (i 6= j)

Using Equations 27 through 30, we obtain

EV (wj|H) = +∞
V ar(wj|H) = +∞

EV (wj|¬H) < 0

V ar(wj|¬H) = 0

Therefore, although the computation of p(W > W ∗|¬H) is straightforward, we cannot com-
pute p(W > W ∗|H) as described in the previous section. Instead, we compute p(W >
W ∗|H), by considering separately the cases Ej and ¬Ej. We have

p(W > W ∗|H) = p(Ej|H) p(W > W ∗|HEj) +

p(¬Ej|H) p(W > W ∗|H¬Ej)

(35)
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If ¬Ej is observed, W = +∞, and p(W > W ∗|H¬Ej) = 1. Consequently, Equation 35
becomes

p(W > W ∗|H) = p(Ej|H) p(W > W ∗|HEj) +

p(¬Ej|H)

We compute p(W > W ∗|HEj) as described in Equations 31 through 34, replacing EV (wj|H)
with wj in the summation of Equation 31, and V ar(wj|H) with 0 in the summation of
Equation 32. The other terms in the summations remain the same, because we have assumed
that evidence variables are independent, given H or ¬H. This approach generalizes easily
to multiple-valued evidence variables and to cases where more than one probability is equal
to 0 or 1.

We can extend our analysis to special cases of conditional dependence among evidence
variables. For example, Figure 3 shows a schematic of the belief network for Pathfinder.
In this model, there are groups of dependent evidence, where each group is conditionally
independent of all other groups. We can apply our analysis to this model by using a clustering
technique described by Pearl (Pearl, 1988) (pp. 197-204). As in the previous section, suppose
we want to compute the value of information for the set of evidence S = {E1, E2, . . . , Em}.
For each group of dependent features Gk, we cluster those variables in the intersection of S
and Gk into a single variable. Then, we average out all variables in the belief network that
are not in S. What remains is a set of clustered variables that are conditionally independent,
given H and ¬H. We can now apply our analysis—generalized to multiple-valued variables—
to this model.

There are special classes of dependent distributions for which the central-limit theorem
is valid. We can use this fact to extend our analysis to other cases of dependent evidence.
For example, the central-limit theorem applies to distributions that form a Markov chain,
provided the transition probabilities in the chain are not correlated (Billingsley, 1968). Thus,
we can extend our analysis to belief networks of the form shown in Figure 4. We can
generalize the value-of-information analysis even further, if we use the Markov extension in
combination with the clustering approach described in the previous paragraph.

It is difficult for us to extend the analysis to include multiple-valued hypotheses and
decisions. The algebra becomes more complex, because the simple p∗ model for action
no longer applies. There is, however, the opportunity for applying our technique to more
complex problems. In particular, we can abstract a given decision problem into one involving
a binary hypothesis and decision variable. For example, we can abstract the problem of
determining which of n diseases is present in a patient into one of determining whether
the disease is benign or malignant. In doing so, we ignore details of the decision maker’s
preferences, and we introduce dependencies among evidence variables. Nonetheless, the
benefits of a nonmyopic analysis may outweigh these drawbacks in some domains.

7 An Experiment

We tested the nonmyopic approximation to the value of information of observations with a
small belief network for reasoning about lymph-node diseases. The based upon the appear-
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Figure 3: A schematic belief network for Pathfinder. (a) The features in Pathfinder can be
arranged into groups of evidence variables G1, G2, . . . Gj. The variables within each group
are dependent, but the groups are conditionally independent, given the disease variable H.
(b) A detailed view of the evidence variables Ei, Ei+1, and Ei+2 within group Gk.

Figure 4: A conditional Markov chain. The evidence variables form a Markov chain condi-
tioned on the variable H. We can extend our analysis involving the central-limit theorem to
this case.
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Figure 5: A porition of a belief network for lymph-node pathology representing relevant
observations for determining the likelihood of benign versus malignant follicles.

ance of histologic features. The small belief network used in the experiment is displayed in
Figure 5. This belief network is a small piece of a larger lymph-node pathology knowledge
base used in the Pathfinder expert system. The network can be used to assign probabilities
to whether an important structure appearing in lymph nodes, named follicles, are benign or
malignant. Several features are conditionally independent of one another, given information
about the status of the follicles. However, other features are interdependent.

The comprehensive Pathfinder belief network, which served as the source of the smaller
experimental network, was structured and assessed from an expert pathologist. To avoid
biases, the smaller test network was generated with a dependency-learning procedure devel-
oped by Herskovits and Cooper (?). In this procedure,... A program named Kutato was
used to generate the belief network.

7.1 Methods

In the validation, we compared the cumulative, p(W < W ∗|Benign), for nonmyopic approx-
imation with an exact computation. The results of analyses for a reduced knowledge base
of five dependent features and of eight dependent features were tabulated. These graphs are
displayed in Figures 6 and 7.

7.2 Results

8 Summary and Conclusions

We presented work on the use of the central-limit theorem to compute the value of infor-
mation for sets of tests. Our technique provides a nonmyopic, yet tractable alternative to
traditional myopic analyses for determining the next best piece of evidence to observe. We
pose the nonmyopic methodology as a new special-case tool for identifying cost-effective
observations. The nonmyopic approximation is limited to information-acquisition decisions
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Figure 6: Results for full knowledge base of five dependent features.

Figure 7: Results for full knowledge base of eight dependent features.
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for problems involving (1) specific classes of dependencies among evidence variables, and
(2) binary hypothesis and action variables. Additional research, however, may help to relax
these restrictions. We tested the nonmyopic analyses on a small belief network for reason-
ing about pathology disorders. Our tests demonstrated that, even with small numbers of
observations, the nonmyopic analysis yields good approximations. Nevertheless, we expect
that the results of such evaluations will be sensitive to the details of the application areas.
We hope to see additional empirical comparisons of the relative accuracy of the nonmyopic
analysis with that of traditional myopic analyses.
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