Patient Risk Stratification for Hospital-Associated
C. diff as a Time-Series Classification Task

Jenna Wiens John V. Guttag Eric Horvitz
jwiens@mit.edu guttag@mit.edu horvitz@microsoft.com
Abstract

A patient’s risk for adverse events is affected by temporal processes including the
nature and timing of diagnostic and therapeutic activities, and the overall evolu-
tion of the patient’s pathophysiology over time. Yet many investigators ignore this
temporal aspect when modeling patient outcomes, considering only the patient’s
current or aggregate state. In this paper, we represent patient risk as a time se-
ries. In doing so, patient risk stratification becomes a time-series classification
task. The task differs from most applications of time-series analysis, like speech
processing, since the time series itself must first be extracted. Thus, we begin
by defining and extracting approximate risk processes, the evolving approximate
daily risk of a patient. Once obtained, we use these signals to explore different
approaches to time-series classification with the goal of identifying high-risk pat-
terns. We apply the classification to the specific task of identifying patients at risk
of testing positive for hospital acquired Clostridium difficile. We achieve an area
under the receiver operating characteristic curve of 0.79 on a held-out set of sev-
eral hundred patients. Our two-stage approach to risk stratification outperforms
classifiers that consider only a patient’s current state (p<0.05).

1 Introduction

Time-series data are available in many different fields, including medicine, finance, information re-
trieval and weather prediction. Much research has been devoted to the analysis and classification of
such signals [1] [2]. In recent years, researchers have had great success with identifying temporal
patterns in such time series and with methods that forecast the value of variables. In most appli-
cations there is an explicit time series, e.g., ECG signals, stock prices, audio recordings, or daily
average temperatures.

We consider a novel application of time-series analysis, patient risk. Patient risk has an inherent
temporal aspect; it evolves over time as it is influenced by intrinsic and extrinsic factors. However, it
has no easily measurable time series. We hypothesize that, if one could measure risk over time, one
could learn patterns of risk that are more likely to lead to adverse outcomes. In this work, we frame
the problem of identifying hospitalized patients for high-risk outcomes as a time-series classification
task. We propose and motivate the study of patient risk processes to model the evolution of risk over
the course of a hospital admission.

Specifically, we consider the problem of using time-series data to estimate the risk of an inpatient
becoming colonized with Clostridium difficile (C. diff) during a hospital stay. (C. diff is a bacterial
infection most often acquired in hospitals or nursing homes. It causes severe diarrhea and can lead to
colitis and other serious complications.) Despite the fact that many of the risk factors are well known
(e.g., exposure, age, underlying disease, use of antimicrobial agents, efc.) [3], C. diff continues to
be a significant problem in many US hospitals. From 1996 to 2009, C. diff rates for hospitalized
patients aged > 65 years increased by 200% [4].



There are well-established clinical guidelines for predicting whether a test for C. diff is likely to
be positive [5]. Such guidelines are based largely on the presence of symptoms associated with
an existing C. diff infection, and thus are not useful for predicting whether a patient will become
infected. In contrast, risk stratification models aim to identify patients at high risk of becoming
infected. The use of these models could lead to a better understanding of the risk factors involved
and ultimately provide information about how to reduce the incidence of C. diff in hospitals.

There are many different ways to define the problem of estimating risk. The precise definition has
important ramifications for both the potential utility of the estimate and the difficulty of the problem.

Reported results in the medical literature for the problem of risk stratification for C. diff vary greatly,
with areas under the receiver operating characteristic curve (AUC) of 0.628-0.896 [6] [7][8][9][10].
The variation in classification performance is based in part on differences in the task definition, in
part on differences in the study populations, and in part on the evaluation method. The highest
reported AUCs were from studies of small (e.g., 50 patients) populations, relatively easy tasks (e.g.,
inclusion of large number of patients with predictably short stays, e.g., patients in labor), or both.
Additionally, some of the reported results were not obtained from testing on held-out sets.

We consider patients with at least a 7-day hospital admission who do not test positive for C. diff
until day 7 or later. This group of patients is already at an elevated risk for acquiring C. diff because
of the duration of the hospital stay. Focusing on this group makes the problem more relevant (and
more difficult) than other related tasks.

To the best of our knowledge, representing and studying the risk of acquiring C. diff (or any other
infection) as a time series has not previously been explored. We propose a risk stratification method
that aims to identify patterns of risk that are more likely to lead to adverse outcomes. In [11] we
proposed a method for extracting patient risk processes. Once patient risk processes are extracted,
the problem of risk stratification becomes that of time-series classification. We explore a variety
of different methods including classification using similarity metrics, feature extraction, and hidden
Markov models. A direct comparison with the reported results in the literature for C. diff risk
prediction is difficult because of the differences in the studies mentioned above. Thus, to measure
the added value of considering the temporal dimension, we implemented the standard approach as
represented in the related literature of classifying patients based on their current or average state and
applied it to our data set. Our method leads to a significant improvement over this more traditional
approach.

2 The Data

Our dataset comes from a large US hospital database. We extracted all stays >= 7days, from all
inpatient admissions that occurred over the course of a year.

To ensure that we are in fact predicting the acquisition of C. diff during the current admission, we
remove patients who tested positive for C. diff in the 60 days preceding or, if negative, following the
current admission [3]. In addition, we remove patients who tested positive for C. diff before day 7
of the admission. Positive cases are those patients who test positive on or after 7 days in the hospital.
Negative patients are all remaining patients.

We define the start of the risk period of a patient as the time of admission and define the end of
the risk period, according to the following rule: if the patient tests positive, the first positive test
marks the end of the risk period, otherwise the patient is considered at risk until discharge. The final
population consisted of 9,751 hospital admissions and 8,166 unique patients. Within this population,
177 admissions had a positive test result for C. diff.

3 Methods

Patient risk is not a directly measurable time series. Thus, we propose a two-stage approach to risk
stratification. We first extract approximate risk processes and then apply time-series classification
techniques to those processes. Both stages are described here; for more detail regarding the first
stage we direct the reader to [11].



3.1 Extracting Patient Risk Processes

We extract approximate patient risk processes, i.e., a risk time series for each admission, by inde-
pendently calculating the daily risk of a patient and then concatenating these predictions. We begin
by extracting more than 10,000 variables for each day of each hospital admission. Almost all of
the features pertain to categorical features that have been exploded into binary features; hence the
high dimensionality. Approximately half of the features are based on data collected at the time of
admission e.g., patient history, admission reason, and patient demographics. These features remain
constant throughout the stay. The remaining features are collected over the course of the admis-
sion and may change on a daily basis e.g., lab results, room location, medications, and vital sign
measurements.

We employ a support vector machine (SVM) to produce daily risk scores. Each day of an admission
is associated with its own feature vector. We refer to this feature vector of observations as the
patient’s current state. However, we do not have ground-truth labels for each day of a patient’s
admission. We only know whether or not a patient eventually tests positive for C. diff. Thus we
assign each day of an admission in which the patient eventually tests positive as positive, even though
the patient may not have actually been at high risk on each of those days. In doing so, we hope to
identify high-risk patients as early as possible. Since we do not expect a patient’s risk to remain
constant during an entire admission, there is noise in the training labels. For example, there may be
some days that look almost identical in the feature space but have different labels. To handle this
noise we use a soft-margin SVM, that allows for misclassifications. As long as our assumption does
not lead to more incorrect labels than correct labels, it is possible to learn a meaningful classifier,
despite the approximate labels. We do not use the SVM as a classifier but instead consider the
continuous prediction made by the SVM, i.e., the distance to the decision boundary. We take the
concatenated continuous outputs of the SVM for a hospital admission as a representation of the
approximate risk process. We give some examples of these approximate risk processes for both case
and non-case patients in Figure 1.
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Figure 1: Approximate daily risk represented as a time series results in a risk process for each
patient.

One could risk stratify patients based solely on their current state, i.e., use the daily risk value from
the risk process to classify patients as either high risk or low risk on that day. This method, which
ignores the temporal evolution of risk, achieves an AUC of 0.69 (95% CI 0.61-0.77). Intuitively,
current risk should depend on previous risk. We tested this intuition by classifying patients based
on the average of their risk process. This performed significantly better achieving an AUC of 0.75
(95% CI1 0.69-0.81). Still, averaging in this way ignores the possibility of leveraging richer temporal
patterns, as discussed in the next section.

3.2 Classifying Patient Risk Processes

Given the risk processes of each patient, the risk stratification task becomes a time-series classifi-
cation task. Time-series classification is a well-investigated area of research, with many proposed
methods. For an in-depth review of sequence classification we refer the reader to [2]. Here, we
explore three different approaches to the problem: classification based on feature vectors, similarity
measures, and finally HMMs. We first describe each method, and then present results about their
performance in Section 4.



3.2.1 Classification using Feature Extraction

There are many different ways to extract features from time series. In the literature many have
proposed time-frequency representations extracted using various Fourier or wavelet transforms [12].
Given the small number of samples composing our time-series data, we were wary of applying such
techniques. Instead we chose an approach inspired by the combination of classifiers in the text
domain using reliability indicators [13]. We define a feature vector based on different combinations
of the predictions made in the first stage. We list the features in Table 1.

Table 1: Univariate summary statistics for observation vector x = [X1, X2, ..., Xp|

Feature Description

1 length of time series n,

2 average daily risk LT,

3 linear weighted average daily risk ﬁ Sovia,

4 quadratic weighted average daily risk TDEED) ot LT
5 risk on most recently observed day Tn,

6 standard deviation of daily risk o,

7 average absolute change in daily risk LS gy — @iy,
8 average absolute change in 1st difference L5072 |2f — 2y,
9 fraction of the visit with positive risk score  + 37 1,0,

10 fraction of the visit with negative risk score < >°7 14, <o,

n

11 sum of the risk over the most recent 3 days  >"_, x;,

12 longest positive run (normalized)

13 longest negative run (normalized)

14  maximum observation max &,

15 location of maximum (normalized) %argmax i,
16 minimum observation min x;,

17  location of minimum (normalized) %argmin xi,

Features 2-4 are averages; Features 3 and 4 weight days closer to the time of classification more
heavily. Features 6-10 are different measures for the amount of fluctuation in the time series. Fea-
tures 5 and 11 capture information about the most recent states of the patient. Features 12 and
13 identify runs in the data, i.e., periods of time where the patient is consistently at high or low
risk. Finally, Features 14-17 summarize information regarding global maxima and minima in the
approximate risk process.

Given these feature definitions, we map each patient admission risk process to a fixed-length feature
vector. These summarization variables allow one to compare time series of different lengths, while
still capturing temporal information, e.g., when the maximum risk occurs relative to the time of
prediction. Given this feature space, one can learn a classifier to identify high-risk patients. This
approach is described in Figure 2.
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Figure 2: A two-step approach to risk stratification where predefined features are extracted from the
time-series data.



3.2.2 Classification using Similarity Metrics

In the previous section, we learned a second classifier based on extracted features. In this section,
we consider classifiers based on the raw data, i.e., the concatenated time series from Step 2 in Fig-
ure 2. SVMs classify examples based on a kernel or similarity measure. One of the most common
non-linear kernels is the Gaussian radial basis function kernel: k(xi,x;) = exp(—7||xi — xj[?).
Its output is dependent on the Euclidean distance between examples x; and x;. This distance mea-
sure requires vectors of the same length. We consider two approaches to generating vectors of the
same length: (1) linear interpolation and (2) truncation. In the first approach we linearly inter-
polate between points. In the second approach we consider only the most recent 5 days of data,
Tn—4yLn—3y -y Ln-

Euclidean distance is a one-to-one comparison. In contrast, the dynamic time warping (DTW) dis-
tance is a one-to-many comparison [14]. DTW computes the distance between two time series by
finding the minimal cost alignment. Here, the cost is the absolute distance between aligned points.
We linearly interpolate all time series to have the same length, the length of the longest admission
within the dataset (54). To ensure that the warping path does not contain lengthy vertical and hor-
izontal segments, we constrain the warping window (how far the warping path can stray from the
diagonal) using the Sakoe-Chiba band with a width of 10% of the length of the time series [15]. We
learn an SVM classifier based on this distance metric, by replacing the Euclidean distance in the
RBF kernel with the DTW distance, k(x;,x;) = exp(—yDTW (x4,%;)) as in [16].

3.2.3 Classification using Hidden Markov Models

We can make observations about a patient on a daily basis, but we cannot directly measure whether
or not a patient is at high risk. Hence, we used the phrase approximate risk process. By applying
HMMs we assume there is a sequence of hidden states, x1, zo, ..., €, that govern the observations
Y1,Y2, ..., Yn. Here, the observations are the predictions made by the SVM. We consider a two-
state HMM where each state, s; and s», is associated with a mixture of Gaussian distributions over
possible observations. At an intuitive level, one can think of these states as representing low and
high risk. Using the data, we learn and apply HMMs in two different ways.

Classification via Likelihood

We hypothesize that there may exist patterns of risk over time that are more likely to lead to a posi-
tive test result. To test this hypothesis, we first consider the classic approach to classification using
HMMs described in Section VI-B [17]. We learn two separate HMMs: one using only observa-
tion sequences from positive patients and another using only observation sequences from negative
patients. We initialize the emission probabilities differently for each model based on the data, but
initialize the transition probabilities as uniform probabilities. Given a test observation sequence, we
apply both models and calculate the log-likelihood of the data given each model using the forward-
backward algorithm. We classify patients continuously, based on the ratio of the log-likelihoods.

Classification via Posterior State Probabilities

As we saw in Figure 1, the SVM output for a patient may fluctuate greatly from day to day. While
large fluctuations in risk are not impossible, they are not common. Recall that in our initial calcu-
lation while the variables from time of admission are included in the prediction, the previous day’s
risk is not. The predictions produced by the SVM are independent. HMMs allow us to model the
observations as a sequence and induce a temporal dependence in the model: the current state, x,
depends on the previous state, x;_1.

We learn an HMM on a training set. We consider a two state model in which we initialize the
emission probabilities as p(y¢|z: = s1) = N(1s1,1), p(yt|xs = s2) = N(us2,1) V¢t where pg1 =
—1 and puso = 1. Based on this initialization s; and sy correspond to “low-risk” and “high-risk”
states, as mentioned above. A key decision was to use a left-to-right model where, once a patient
reaches a “high-risk” state they remain there. All remaining transition probabilities were initialized
uniformly. Applied to a test example we compute the posterior probabilities p(x¢|y1, ..., yn) for
t = 1...n using the forward-backward algorithm. Because of the left-to-right assumption, if enough
high-risk observations are made it will trigger a transition to the high-risk state. Figure 3 shows two
examples of risk processes and their associated posterior state probabilities p(z; = sa|y1, .., Yn ) for
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(a) Patient is discharged on day 40 (b) Patient tests positive for C. diff on day 24

Figure 3: Given all of the observations from yy, ..., ¥, (in blue) we compute the posterior probability
of being in a high-risk state for each day (in red).

t = 1...n. We classify each patient according to the probability of being in a high-risk state on the
most recent day i.e., p(z, = S2|y1, ..-Yn)-

4 Experiments & Results

This section describes a set of experiments used to compare several methods for predicting a pa-
tient’s risk of acquiring C. diff during the current hospital admission. We start by describing the
experimental setup, which is maintained across all experiments, and later present the results.

4.1 Experimental Setup

In order to reduce the possibility of confusing the risk of becoming colonized with C. diff with the
existence of a current infection, for patients from the positive class we consider only data collected
up to two days before a positive test result. This reduces the possibility of learning a classifier based
on symptoms or treatment (a problem with some earlier studies).

For patients who never test positive, researchers typically use the discharge day as the index event
[3]. However, this can lead to deceptively good results because patients nearing discharge are typi-
cally healthier than patients not nearing discharge. To avoid this problem, we define the index event
for negative examples as either the halfway point of their admission, or 5 days into the admission,
whichever is greater. We consider a minimum of 5 days for a negative patient since 5 days is the
minimum amount of data we have for any positive patient (e.g., a patient who tests positive on day
7).

To handle class imbalance, we randomly subsample the negative class, selecting 10 negative exam-
ples for each positive example. When training the SVM we employ asymmetric cost parameters as
in [18]. Additionally, we remove outliers, those patients with admissions longer than 60 days. Next,
we randomly split the data into stratified training and test sets with a 70/30 split. The training set
consisted of 1,251 admissions (127 positive), while the test set was composed of 532 admissions (50
positive). This split was maintained across all experiments. In all of the experiments, the training
data was used for training purposes and validation of parameter selection, and the test set was used
for evaluation purposes. For training and classification, we employed SVM'“9"* [19] and Kevin
Murphy’s HMM Toolbox [20].

4.2 Results

Table 2 compares the performance of eight different classifiers applied to the held-out test data.
The first classifier is our baseline approach, described in Section 3.1, it classifies patients based
solely on their current state. The second classifier RP+Average is an initial improvement on this
approach, and classifies patients based on the average value of their risk process. The remain-
ing classifiers are all based on time-series classification methods. RP+Similaritypyc 5days clas-
sifies patients using a non-linear SVM based on the Euclidean distance between the most recent



Table 2: Predicting a positive test result two days in advance using different classifiers. Current
State represents the traditional approach to risk stratification, and is the only classifier that is not

based on patient Risk Processes (RP).

Approach AUC 95% CI F-Score 95% CI

Current State 0.69 0.61-0.77 0.28 0.19-0.38

RP+Average 0.75 0.69-0.81 0.32 0.21-0.41

RP+Similarity gyc.5days 0.73 0.67-0.80 0.27 0.18-0.37

RP+HMM ;1c1ihood 0.74 0.68-0.81 0.30 0.20-0.38

RP+Similarity guyc.interp. 0.75 0.69-0.82 0.31 0.22-0.41

RP+Similarityprw 0.76 0.69-0.82 0.31 0.22-0.41

RP+HMM stcrior 0.76 0.70-0.82 0.30 0.21-0.41

RP+Features 0.79 0.73-0.85 0.37 0.24-0.49
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Figure 5: Feature weights from SVMs learned us-
ing different folds of the training set. The defini-
tion of features is given in Table 1

Figure 4: Results of predicting a patient’s risk of
testing positive for C. diff in the held-out test set
using RP+Features.

5 days. RP+Similarity pyc.interp. Uses the entire risk process by interpolating between points.
These two methods in addition to DTW are described in Section 3.2.2. The difference between
RP+HMM);1c1ih00a and RP+HMM,,,s1cri0r 1s described in Section 3.2.3. RP+Features classifies
patients based on a linear combination of the average and other summary statistics (described in
Section 3.2.1) of the risk process. For all of the performance measures we compute 95% point wise
confidence intervals by bootstrapping (sampling with replacement) the held-out test set.

Figure 4 gives the ROC curve for the best method, the RP+Features. The AUC is calculated by
sweeping the decision threshold. The RP+Features performed as well or better than the Current
State and RP+Average approach at every point along the curve, thereby dominating both traditional
approaches.

Compared to the other classifiers the classifier based on the RP+Features dominates on both AUC
and F-Score. This classifier is based on a linear combination of statistics (listed in Table 1) computed
from the patient risk processes. We learned the feature weights using the training data. To get a sense
of the importance of each feature we used repeated sub-sampling validation on the training set. We
randomly subsampled 70% of the training data 100 times and learned 100 different SVMs; this
resulted in 100 different sets of feature weights. The results of this experiment are shown in Figure
5. The most important features are the length of the time series (Feature 1), the fraction of the time
for which the patient is at positive risk (Feature 9), and the maximum risk attained (Feature 14).
The only two features with significantly negative weights are Feature 10 and Feature 13, the overall
fraction of time a patient has a negative risk, and the longest consecutive period of time that a patient
has negative risk.

It is difficult to interpret the performance of a classifier based on these results alone, especially since
the classes are imbalanced. Figure 6 gives the confusion matrix for mean performance of the best



classifier, RP+Features. To further convey the ability of the classifier to risk stratify patients, we split
the test patients into quintiles (as is often done in clinical studies) based on the continuous output
of the classifier. Each quintile contains approximately 106 patients. For each quintile we calculated
the probability of a positive test result, based on those patients who eventually test positive for C.
diff. Figure 7 shows that the probability increases with each quintile. The difference between the 1st
and 5th quintiles is striking; relative to the 1st quintile, patients in the 5th quintile are at more than a

25-fold greater risk.
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Figure 6: Confusion Matrix Using the best ap- Figure 7: Test patients with RP+ Features predic-
proach, the RP+ Features, we achieve a Sensitivity  tions in the 5th quintile are more than 25 times
of 50% and a Specificity of 85% on the held-out more likely to test positive for C. diff than those
data. in the 1st quintile.

5 Discussion & Conclusion

To the best of our knowledge, we are the first to consider risk of acquiring an infection as a time
series. We use a two-stage process, first extracting approximate risk processes and then using the
risk process as an input to a classifier. We explore three different approaches to classification:
similarity metrics, feature vectors, and hidden Markov models. The majority of the methods based
on time-series classification performed as well if not better than the previous approach of classifying
patients simply based on the average of their risk process. The differences were not statistically
significant, perhaps because of the small number of positive examples in the held-out set. Still,
we are encouraged by these results, which suggest that posing the risk stratification problem as a
time-series classification task can provide more accurate models.

There is large overlap in the confidence intervals for many of the results reported in Table 2, in part
because of the paucity of positive examples. Still, based on the mean performance, all classifiers that
incorporate patient risk processes outperform the Current State classifier, and the majority of those
classifiers perform as well or better than the RP+Average. Only two classifiers did not perform better
than the latter classifier: RP+Similaritygyc.5days and RP+HMM);gciihood- RP+Similarity gy 5days
classifies patients based on a similarity metric using only the most recent 5 days of the patient risk
processes. Its relatively poor performance suggests that a patient’s risk may depend on the entire risk
process. The reasons for the relatively poor performance of the RP+HMMj;keiihood @pproach are
less clear. Initially, we thought that perhaps two states was insufficient, but experiments with larger
numbers of states led to overfitting on the training data. It may well be that the Markovian assump-
tion is problematic in this context. We plan to investigate other graphical models, e.g., conditional
random fields, going forward.

The F-Scores reported in Table 2 are lower than often seen in the machine-learning literature. How-
ever, when predicting outcomes in medicine, the problems are often so hard, the data so noisy, and
the class imbalance so great that one cannot expect to achieve the kind of classification performance
typically reported in the machine-learning literature. For this reason, the medical literature on risk
stratification typically focuses on a combination of the AUC and the kind of odds ratios derivable
from the data in Figure 7. As observed in the introduction, a direct comparison with the AUC
achieved by others is not possible because of differences in the datasets, the inclusion criteria, and
the details of the task. We have yet to thoroughly investigate the clinical ramifications of this work.
However, for the daunting task of risk stratifying patients already at an elevated risk for C. diff, an
AUC of 0.79 and an odds ratio of >25 are quite good.
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