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Abstract

Cascade detectors have been shown to operate extremely rapidly, with high ac-
curacy, and have important applications such as face detection. Driven by this
success, cascade learning has been an area of active research in recent years. Nev-
ertheless, there are still challenging technical problems during the training process
of cascade detectors. In particular, determining the optimal target detection rate
for each stage of the cascade remains an unsolved issue. In this paper, we propose
the multiple instance pruning (MIP) algorithm for soft cascades. This algorithm
computes a set of thresholds which aggressively terminate computation with no re-
duction in detection rate or increase in false positive rate on the training dataset.
The algorithm is based on two key insights: i) examples that are destined to be
rejected by the complete classifier can be safely pruned early; ii) face detection is
a multiple instance learning problem. The MIP process is fully automatic and re-
quires no assumptions of probability distributions, statistical independence, or ad
hoc intermediate rejection targets. Experimental results on the MIT+CMU dataset
demonstrate significant performance advantages.

1 Introduction

The state of the art in real-time face detection has progressed rapidly in recently years. One very
successful approach was initiated by Viola and Jones [11]. While some components of their work
are quite simple, such as the so called “integral image”, or the use of AdaBoost, a great deal of
complexity lies in the training of the cascaded detector. There are many required parameters: the
number and shapes of rectangle filters, the number of stages, the number of weak classifiers in each
stage, and the target detection rate for each cascade stage. These parameters conspire to determine
not only the ROC curve for the resulting system but also its computational complexity. Since the
Viola-Jones training process requires CPU days to train and evaluate, it is difficult, if not impossible,
to pick these parameters optimally.

The conceptual and computational complexity of the training process has led to many papers propos-
ing improvements and refinements [1, 2, 4, 5, 9, 14, 15]. Among them, three are closely related to
this paper: Xiao, Zhu and Zhang[15], Sochman and Matas[9], and Bourdev and Brandt[1]. In each
paper, the original cascade structure of distinct and separate stages is relaxed so that earlier com-
putation of weak classifier scores can be combined with later weak classifiers. Bourdev and Brandt
coined the term, “soft-cascade”, where the entire detector is trained as a single strong classifier
without stages (with 100’s or 1000’s of weak classifiers sometimes called “features”). The score
assigned to a detection window by the soft cascade is simply a weighted sum of the weak classifiers:
sk(T ) =

∑
j≤T αjhj(xk), where T is the total number of weak classifiers; hj(xk) is the jth feature

computed on example xk; αj is the vote on weak classifier j. Computation of the sum is terminated
early whenever the partial sum falls below a rejection threshold: sk(t) < θ(t). Note the soft cascade
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is similar to, but simpler than both the boosting chain approach of Xiao, Zhu, and Zhang and the
WaldBoost approach of Sochman and Matas.

The rejection thresholds θ(t), t ∈ {1, · · · , T − 1} are critical to the performance and speed of the
complete classifier. However, it is difficult to set them optimally in practice. One possibility is to set
the rejection thresholds so that no positive example is lost; this leads to very conservative thresholds
and a very slow detector. Since the complete classifier will not achieve 100% detection (Note, given
practical considerations, the final threshold of the complete classifier is set to reject some positive
examples because they are difficult to detect. Reducing the final threshold further would admit too
many false positives.), it seems justified to reject positive examples early in return for fast detection
speed. The main question is which positive examples can be rejected and when.

A key criticism of all previous cascade learning approaches is that none has a scheme to determine
which examples are best to reject. Viola-Jones attempted to reject zero positive examples until
this become impossible and then reluctantly gave up on one positive example at a time. Bourdev
and Brandt proposed a method for setting rejection thresholds based on an ad hoc detection rate
target called a “rejection distribution vector”, which is a parameterized exponential curve. Like the
original Viola-Jones proposal, the soft-cascade gradually gives up on a number of positive examples
in an effort to aggressively reduce the number of negatives passing through the cascade. Perhaps
a particular family of curves is more palatable, but it is still arbitrary and non-optimal. Sochman-
Matas used a ratio test to determine the rejection thresholds. While this has statistical validity,
distributions must be estimated, which introduces empirical risk. This is a particular problem for the
first few rejection thresholds, and can lead to low detection rates on test data.

This paper proposes a new mechanism for setting the rejection thresholds of any soft-cascade which
is conceptually simple, has no tunable parameters beyond the final detection rate target, yet yields
a cascade which is both highly accurate and very fast. Training data is used to set all reject thresh-
olds after the final classifier is learned. There are no assumptions about probability distributions,
statistical independence, or ad hoc intermediate targets for detection rate (or false positive rate).
The approach is based on two key insights that constitute the major contributions of this paper: 1)
positive examples that are rejected by the complete classifier can be safely rejected earlier during
pruning; 2) each ground-truth face requires no more than one matched detection window to maintain
the classifier’s detection rate. We propose a novel algorithm, multiple instance pruning (MIP), to set
the reject thresholds automatically, which results in a very efficient cascade detector with superior
performance.

The rest of the paper is organized as follows. Section 2 describes an algorithm which makes use
of the final classification results to perform pruning. Multiple instance pruning is presented in Sec-
tion 3. Experimental results and conclusions are given in Section 4 and 5, respectively.

2 Pruning Using the Final Classification

We propose a scheme which is simultaneously simpler and more effective than earlier techniques.
Our key insight is quite simple: the reject thresholds are set so that they give up on precisely those
positive examples which are rejected by the complete classifier. Note that the score of each example,
sk(t) can be considered a trajectory through time. The full classifier rejects a positive example if its
final score sk(T ) falls below the final threshold θ(T ). In the simplest version of our threshold setting
algorithm, all trajectories from positive windows which fall below the final threshold are removed.
Each rejection threshold is then simply:

θ(t) = min{
k
∣∣sk(T )>θ(T ),yk=1

} sk(t)

where {xk, yk} is the training set in which yk = 1 indicates positive windows and yk = −1 indicates
negative windows. These thresholds produce a reasonably fast classifier which is guaranteed to
produce no more errors than the complete classifier (on the training dataset). We call this pruning
algorithm direct backward pruning (DBP).

One might question whether the minimum of all retained trajectories is robust to mislabeled or
noisy examples in the training set. Note that the final threshold of the complete classifier will often
reject mislabeled or noisy examples (though they will be considered false negatives). These rejected
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Figure 1: Traces of cumulative scores of different windows in an image of a face. See text.

examples play no role in setting the rejection thresholds. We have found this procedure very robust
to the types of noise present in real training sets.

In past approaches, thresholds are set to reject the largest number of negative examples and only a
small percentage of positive examples. These approaches justify these thresholds in different ways,
but they all struggle to determine the correct percentage accurately and effectively. In the new
approach, the final threshold of the complete soft-cascade is set to achieve the require detection rate.
Rejection thresholds are then set to reject the largest number of negative examples and retain all
positive examples which are retained by the complete classifier. The important difference is that the
particular positive examples which are rejected are those which are destined to be rejected by the
final classifier. This yields a fast classifier which labels all positive examples in exactly the same
way as the complete classifier. In fact, it yields the fastest possible soft-cascade with such property
(provided the weak classifiers are not re-ordered). Note, some negative examples that eventually
pass the complete classifier threshold may be pruned by earlier rejection thresholds. This has the
satisfactory side benefit of reducing false positive rate as well. In contrast, although the detection
rate on the training set can also be guaranteed in Bourdev-Brandt’s algorithm, there is no guarantee
that false positive rate will not increase.

Bourdev-Brandt propose reordering the weak classifiers based on the separation between the mean
score of the positive examples and the mean score of the negative examples. Our approach is equally
applicable to a reordered soft-cascade.

Figure 1 shows 293 trajectories from a single image whose final score is above -15. While the re-
jection thresholds are learned using a large set of training examples, this one image demonstrates
the basic concepts. The red trajectories are negative windows. The single physical face is consistent
with a set of positive detection windows that are within an acceptable range of positions and scales.
Typically there are tens of acceptable windows for each face. The blue and magenta trajectories cor-
respond to acceptable windows which fall above the final detection threshold. The cyan trajectories
are potentially positive windows which fall below the final threshold. Since the cyan trajectories are
rejected by the final classifier, rejection thresholds need only retain the blue and magenta trajectories.

In a sense the complete classifier, along with a threshold which sets the operating point, provides
labels on examples which are more valuable than the ground-truth labels. There will always be a
set of “positive” examples which are extremely difficult to detect, or worse which are mistakenly
labeled positive. In practice the final threshold of the complete classifier will be set so that these
particular examples are rejected. In our new approach these particular examples can be rejected
early in the computation of the cascade. Compared with existing approaches, that set the reject
thresholds in a heuristic manner, our approach is data-driven and hence more principled.

3 Multiple Instance Pruning

The notion of an “acceptable detection window” plays a critical role in an improved process for
setting rejection thresholds. It is difficult to define the correct position and scale of a face in an image.
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For a purely upright and frontal face, one might propose the smallest rectangle which includes the
chin, forehead, and the inner edges of the ears. But, as we include a range of non-upright and
non-frontal faces these rectangles can vary quite a bit. Should the correct window be a function
of apparent head size? Or is eye position and interocular distance more reliable? Even given clear
instructions, one finds that two subjects will differ significantly in their “ground-truth” labels.

Recall that the detection process scans the image generating a large, but finite, collection of over-
lapping windows at various scales and locations. Even in the absence of ambiguity, some slop is
required to ensure that at least one of the generated windows is considered a successful detection for
each face. Experiments typically declare that any window which is within 50% in size and within a
distance of 50% (of size) be considered a true positive. Using typical scanning parameters this can
lead to tens of windows which are all equally valid positive detections. If any of these windows is
classified positive then this face is consider detected.

Even though all face detection algorithms must address the “multiple window” issue, few papers
have discussed it. Two papers which have fundamentally integrated this observation into the train-
ing process are Nowlan and Platt [6] and more recently by Viola, Platt, and Zhang [12]. These
papers proposed a multiple instance learning (MIL) framework where the positive examples are
collected into “bags”. The learning algorithm is then given the freedom to select at least one, and
perhaps more examples, in each bag as the true positive examples. In this paper, we do not directly
address soft-cascade learning, though we will incorporate the “multiple window” observation into
the determination of the rejection thresholds.

One need only retain one “acceptable” window for each face which is detected by the final classifier.
A more aggressive threshold is defined as:

θ(t) = min
i∈P


 max{

k
∣∣k∈Fi∩Ri,yk=1

} sk(t)




where i is the index of ground-truth faces; Fi is the set of acceptable windows associated with
ground-truth face i and Ri is the set of windows which are “retained” (see below). P is the set of
ground-truth faces that have at least one acceptable window above the final threshold:

P =
{
i
∣∣ max{

k
∣∣k∈Fi

} sk(T ) > θ(T )
}

In this new procedure the acceptable windows come in bags, only one of which must be classified
positive in order to ensure that each face is successfully detected. This new criteria for success is
more flexible and therefore more aggressive. We call this pruning method multiple instance pruning
(MIP).

Returning to Figure 1 we can see that the blue, cyan, and magenta trajectories actually form a “bag”.
Both in this algorithm, and in the simpler previous algorithm, the cyan trajectories are rejected before
the computation of the thresholds. The benefit of this new algorithm is that the blue trajectories can
be rejected as well.

The definition of “retained” examples in the computation above is a bit more complex than before.
Initially the trajectories from the positive bags which fall above the final threshold are retained. The
set of retained examples is further reduced as the earlier thresholds are set. This is in contrast to the
simpler DBP algorithm where the thresholds are set to preserve all retained positive examples. In
the new algorithm the partial score of an example can fall below the current threshold (because it
is in a bag with a better example). Each such example is removed from the retained set Ri and not
used to set subsequent thresholds.

The pseudo code of the MIP algorithm is shown in Figure 2. It guarantees the same face detection
rate on the training dataset as the complete classifier. Note that the algorithm is greedy, setting earlier
thresholds first so that all positive bags are retained and the fewest number of negative examples pass.
Theoretically it is possible that delaying the rejection of a particular example may result in a better
threshold at a later stage. Searching for the optimal MIP pruned detector, however, may be quite
expensive. The MIP algorithm is however guaranteed to generate a soft-cascade that is at least as
fast as DBP, since the criteria for setting the thresholds is less restrictive.
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Input
• A cascade detector.
• Threshold θ(T ) at the final stage of the detector.
• A large training set (the whole training set to learn the cascade detector can be reused here).

Initialize
• Run the detector on all rectangles that match with any ground-truth faces. Collect all windows

that are above the final threshold θ(T ). Record all intermediate scores as s(i, j, t), where i =
1, · · · , N is the face index; j = 1, · · · , Mi is the index of windows that match with face i;
t = 1, · · · , T is the index of the feature node.

• Initialize flags f(i, j) as true.

MIP
For t = 1, · · · , T :

1. For i = 1, · · · , N : find ŝ(i, t) = max{j|f(i,j)=true} s(i, j, t).

2. Set θ(t) = mini ŝ(i, t)− ε as the rejection threshold of node t, ε = 10−6.
3. For i = 1, · · · , N, j = 1, · · · , Mi: set f(i, j) as false if s(i, j, t) < θ(t).

Output
Rejection thresholds θ(t), t = 1, · · · , T .

Figure 2: The MIP algorithm.

(a) (b)

Figure 3: (a) Performance comparison with existing works on MIT+CMU frontal face dataset. (b)
ROC curves of the detector after MIP pruning using the original training set. No performance
degradation is found on the MIT+CMU testing dataset.

4 Experimental Results

More than 20,000 images were collected from the web, containing roughly 10,000 faces. Over
2 billion negative examples are generated from the same image set. A soft cascade classifier is
learned through a new framework based on weight trimming and bootstrapping (see Appendix).
The training process was conducted on a dual core AMD Opteron 2.2 GHz processor with 16 GB
of RAM. It takes less than 2 days to train a classifier with 700 weak classifiers based on the Haar
features [11]. The testing set is the standard MIT+CMU frontal face database [10, 7], which consists
of 125 grayscale images containing 483 labeled frontal faces. A detected rectangle is considered to
be a true detection if it has less than 50% variation in shift and scale from the ground-truth.

It is difficult to compare the performance of various detectors, since every detector is trained on
a different dataset. Nevertheless, we show the ROC curves of a number of existing detectors and
ours in Figure 3(a). Note there are two curves plotted for soft cascade. The first curve has very
good performance, at the cost of slow speed (average 37.1 features per window). The classification
accuracy dropped significantly in the second curve, which is faster (average 25 features per window).
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Final Threshold -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

Detection Rate 95.2% 94.6% 93.2% 92.5% 91.7% 90.3% 88.8%

# of False Positive 95 51 32 20 8 7 5

DBP 36.13 35.78 35.76 34.93 29.22 28.91 26.72

MIP 16.11 16.06 16.80 18.60 16.96 15.53 14.59

Approach Viola-Jones Boosting chain FloatBoost WaldBoost Wu et al. Soft cascade

Total # of features 6061 700 2546 600 756 4943

Slowness 10 18.1 18.9 13.9 N/A 37.1 (25)

(a)

(b)

Figure 4: (a) Pruning performance of DBP and MIP. The bottom two rows indicate the average
number of features visited per window on the MIT+CMU dataset. (b) Results of existing work.

Figure 4(a) compares DBP and MIP with different final thresholds of the strong classifier. The
original data set for learning the soft cascade is reused for pruning the detector. Since MIP is a more
aggressive pruning method, the average number of features evaluated is much lower than DBP.
Note both DBP and MIP guarantee that no positive example from the training set is lost. There
is no similar guarantee for test data, though. Figure 3(b) shows that there is no practical loss in
classification accuracy on the MIT+CMU test dataset for various applications of the MIP algorithm
(note that the MIT+CMU data is not used by the training process in any way).

Speed comparison with other algorithms are subtle (Figure 4(b)). The first observation is that higher
detection rates almost always require the evaluation of additional features. This is certainly true
in our experiments, but it is also true in past papers (e.g., the two curves of Bourdev-Brandt soft
cascade in Figure 3(a)). The fastest algorithms often cannot achieve very high detection rates. One
explanation is that in order to achieve higher detection rates one must retain windows which are
“ambiguous” and may contain faces. The proposed MIP-based detector yields a much lower false
positive rate than the 25-feature Bourdev-Brandt soft cascade and nearly 35% improvement on de-
tection speed. While the WaldBoost algorithm is quite fast, detection rates are measurably lower.
Detectors such as Viola-Jones, boosting chain, FloatBoost, and Wu et al. all requires manual tuning.
We can only guess how much trial and error went into getting a fast detector that yields good results.

The expected computation time of the DBP soft-cascade varies monotonically in detection rate.
This is guaranteed by the algorithm. In experiments with MIP we found a surprising quirk in the
expected computation times. One would expect that if the required detection rate is higher, it world
be more difficult to prune. In MIP, when the detection rate increases, there are two conflicting
factors involved. First, the number of detected faces increases, which increases the difficulty of
pruning. Second, for each face the number of retained and acceptable windows increases. Since
we are computing the maximum of this larger set, MIP can in some cases be more aggressive. The
second factor explains the increase of speed when the final threshold changes from -1.5 to -2.0.

The direct performance comparison between MIP and Bourdev-Brandt (B-B) was performed using
the same soft-cascade and the same data. In order to better measure performance differences we
created a larger test set containing 3,859 images with 3,652 faces collected from the web. Both
algorithms prune the strong classifier for a target detection rate of 97.2% on the training set, which
corresponds to having a final threshold of−2.5 in Figure 4(a). We use the same exponential function
family as [1] for B-B, and adjust the control parameter α in the range between −16 and 4. The
results are shown in Figure 5. It can be seen that the MIP pruned detector has the best detection
performance. When a positive α is used (e.g., α = 4), the B-B pruned detector is still worse than
the MIP pruned detector, and its speed is 5 times slower (56.83 vs. 11.25). On the other hand, when
α is negative, the speed of B-B pruned detectors improves and can be faster than MIP (e.g., when
α = −16). Note, adjusting α leads to changes both in detection time and false positive rate.

In practice, both MIP and B-B can be useful. MIP is fully automated and guarantees detection rate
with no increase in false positive rate on the training set. The MIP pruned strong classifier is usually
fast enough for most real-world applications. On the other hand, if speed is the dominant factor,
one can specify a target detection rate and target execution time and use B-B to find a solution.
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Figure 5: The detector performance comparison after applying MIP and Bourdev-Brandt’s
method [1]. Note, this test was done using a much larger, and more difficult, test set than MIT+CMU.
In the legend, symbol #f represents the average number of weak classifiers visited per window.

Note such a solution is not guaranteed, and the false positive rate may be unacceptably high (The
performance degradation of B-B heavily depends on the given soft-cascade. While with our detector
the performance of B-B is acceptable even when α = −16, the performance of the detector in [1]
drops significantly from 37 features to 25 features, as shown in Fig. 3 (a).).

5 Conclusions

We have presented a simple yet effective way to set the rejection thresholds of a given soft-cascade,
called multiple instance pruning (MIP). The algorithm begins with a conventional strong classifier
and an associated final threshold. MIP then adds a set of rejection thresholds to construct a cascade
detector. The rejection thresholds are determined so that every face which was detected by the orig-
inal strong classifier is guaranteed to be detected by the soft cascade. The algorithm also guarantees
that the false positive rate on the training set will not increase. There is only one parameter used
throughout the cascade training process, the target detection rate for the final system. Moreover,
there are no required assumptions about probability distributions, statistical independence, or ad hoc
intermediate targets for detection rate or false positive rate.

Appendix: Learn Soft Cascade with Weight Trimming and Bootstrapping

We present an algorithm for learning a strong classifier from a very large set of training examples. In
order to deal with the many millions of examples, the learning algorithm uses both weight trimming
and bootstrapping. Weight trimming was proposed by Friedman, Hastie and Tibshirani [3]. At each
round of boosting it ignores training examples with the smallest weights, up to a percentage of the
total weight which can be between 1% and 10%. Since the weights are typically very skewed toward
a small number of hard examples, this can eliminate a very large number of examples. It was shown
that weight trimming can dramatically reduce computation for boosted methods without sacrificing
accuracy. In weight trimming no example is discarded permanently, therefore it is ideal for learning
a soft cascade.

The algorithm is described in Figure 6. In step 4, a set A is predefined to reduce the number of weight
updates on the whole training set. One can in theory update the scores of the whole training set after
each feature is learned if computationally affordable, though the gain in detector performance may
not be visible.Note, a set of thresholds are also returned by this process (making the result a soft-
cascade). These preliminary rejection thresholds are extremely conservative, retaining all positive
examples in the training set. They result in a very slow detector – the average number of features
visited per window is on the order of hundreds. These thresholds will be replaced with the ones
derived by the MIP algorithm. We set the preliminary thresholds only to moderately speed up the
computation of ROC curves before MIP.
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Input
• Training examples (x1, y1), · · · , (xK , yK), where yk = −1, 1 for negative and positive exam-

ples. K is on the order of billions.
• T is the total number of weak classifiers, which can be set through cross-validation.

Initialize
• Take all positive examples and randomly sample negative examples to form a subset of Q exam-

ples. Q = 4× 106 in the current implementation.
• Initialize weights ω1,i to guarantee weight balance between positive and negative examples on

the sampled dataset.
• Define A as the set {2, 4, 8, 16, 32, 64, 128, 192, 256, · · ·}.

Adaboost Learning
For t = 1, · · · , T :

1. For each rectangle filter in the pool, construct a weak classifier that minimizes the Z score [8]
under the current set of weights ωt,i, i ∈ Q.

2. Select the best classifier ht with the minimum Z score, find the associated confidences αt.
3. Update weights of all Q sampled examples.
4. If t ∈ A,

• Update weights of the whole training set using the previously selected classifiers h1, · · · , ht.
• Perform weight trimming [3] to trim 10% of the negative weights.
• Take all positive examples and randomly sample negative examples from the trimmed train-

ing set to form a new subset of Q examples.
5. Set preliminary rejection threshold θ(t) of

∑t

j=1
αjhj as the minimum score of all positive

examples at stage t.

Output
Weak classifiers ht, t = 1, · · · , T , the associated confidences αt and preliminary rejection thresholds θ(t).

Figure 6: Adaboost learning with weight trimming and booststrapping.
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