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Abstract

Recent work has demonstrated that it is possible to boost the efficiency of
combinatorial search procedures via the use of principled restart policies.
We present a coupling of machine learning and dynamic programming
that extends prior efforts by endowing restart policies with knowledge of
the hardness of the specific instance being solved. This ability allows a
restart policy to take into consideration an updated probability distribu-
tion over hardness as a previously unseen instance is being solved. We
discuss the methods, highlighting their importance for real-world appli-
cations of combinatorial search. Finally, we present the empirical results.

1 Introduction

A key observation made over the last decade is that procedures for solving difficult com-
binatorial search problems show great variance in running time [1, 2, 3, 4]. The large
variance in run time has been a significant obstacle to creating real-time reasoning systems
in numerous challenging domains.

In pursuit of fast and robust search algorithms, investigators have targeted the uncertainty in
run time directly with techniques including restarts and algorithm portfolios [5, 6, 7, 8, 9].
We describe new methods that complement recent efforts on developing sound probabilistic
restart policies [10, 11, 12]. The earlier work has centered on the use of machine learning
to inform a reasoner about the probability distribution over the time required to solve a
particular run of an instance drawn from a source distribution or ensemble. The efforts
in predictive modeling to date have not addressed the challenges of handling the great
variation in the hardness of different instances—as captured for example, by the median
run time required to solve an instance, derived by solving the instance multiple times.

Developing a means for recognizing the hardness of specific instances is important for
the real-world scenario of committing to the solution of a particular instance that has never
been seen before. We attack this problem directly by developing new machinery that allows
a solver to continue to update beliefs about the overall hardness of a specific instance that
must be solved, conditioning on information gathered with repeated restarts.

We shall first summarize prior work on restart policies. Then, we present new methods
for clustering an ensemble of instances into sub-ensembles to decrease hardness variation
within sub-ensembles. The creation of instance sub-ensembles enables a system to learn
and reason about the probability distribution over the hardness of the specific instance at
hand. We next review the dynamic-programming approach to identifying ideal restart poli-
cies [12], now taking into consideration the likelihood of different hardnesses. We describe
experiments we performed to test the methods. Finally, we discuss research opportunities.



2 Research on Restart Policies

The run time of backtracking heuristic search algorithms is notoriously unpredictable.
Gomes et al. [7] demonstrated the effectiveness of randomized restarts on a variety of
problems in scheduling, theorem-proving, and planning. In this approach, randomness is
added to the branching heuristic of a systematic search algorithm; if the search algorithm
does not find a solution within a given number of backtracks (referred to as the cutoff), the
algorithm is restarted with a new random seed. Luby et al. [13] described restart policies
for any stochastic process for two scenarios where runtime itself is the only observable: (i)
when each run is a random sample from a known distribution, one can calculate a fixed
optimal cutoff; (ii) when there is no knowledge of the distribution, a universal schedule
mixing short and longer cutoffs comes within a log factor of the minimal run time.

Horvitz et al. [10] showed that it is possible to do better than Luby’s fixed optimal policy by
making observations of a variety of features related to the nature and progress of problem
solving during an early portion of the run (referred to as the observation horizon) and
learning, and then using, a Bayesian model to predict the length of each run. Under the
assumption that each run is an independent random sample of one runtime distribution
(RTD), [11] used observations to discriminate the potentially short runs from the long ones
and then adopted different restart cutoffs for the two types of runs.

Ruan et al. [12] considered the case where there are k known distributions, and each run is
a sample from one of the distributions—but the solver is not told which distribution. The
paper showed how offline dynamic programming can be used to generate the optimal restart
policy, and how the policy can be coupled with real-time observations to control restarting.

All of these scenarios can be taken to be simplified versions of the real-world situation
where each distribution corresponds to a heterogeneous ensemble of instances, and the
same problem instance is used for each run. The analysis of the real-world scenario requires
machinery that relates the RTD of an ensemble to the RTD’s of its individual instances
under a randomized solver.

This paper addresses the challenge of creating techniques for tackling the real-world sce-
nario. The method has three steps as follows:

1. Collecting Data. Training instances are randomly sampled from an ensemble
of instances and each training instance is solved many times with a randomized
solver to obtain its RTD. At the start of each run, we also collect a set of fea-
tures which will be used for learning a decision which classifies instances into
sub-ensembles, based on the observed features.

2. Partitioning Ensembles. Next, we partition the training instances into sub-
ensembles so that instances in a sub-ensembles have similar RTD’s. We employ
machine learning to to build a predictive model that provides a probability distri-
bution over the parent sub-ensemble for an instance.

3. Constructing Restart Policies. Then, we compose an optimal restart policy har-
nessing an offline dynamic programming approach [12]. As we shall see, such
policies require more than a simple combination of optimal cutoffs for all RTD’s.

We also undertook a set of experiments. After building the partitions and composing ideal
hardness-aware restart polices, we sample a new set of instances from the ensemble and
use them to test the efficacy of the constructed restart policies.

3 Variability in Problem Hardness

Many problem solving scenarios involve solving instances drawn from a distribution of
problems of mixed hardness and where every sampled problem must be solved. It has
proven extremely difficult in practice to define realistic problem ensembles where instances
do not vary widely in hardness [14]. Different instances have widely varying RTD’s (and
thus, widely varying optimal fixed cutoffs) even in the well-known random 3-SAT problem
ensembles with fixed clause-to-variable ratios [3].
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Figure 1: Left: Reduction of variability (MSE) within sub-ensembles with the number of
sub-ensembles for the 3-colorable graph-coloring problem (GCP). The x-axis represents
the number of sub-ensembles used, and the y-axis represents the average mean-squared er-
ror (MSE) measurement of the variability within each cluster. Right: Differences between
RTD’s of sub-ensembles and whole ensemble. The x-axis is the length of a run t, and the
y-axis q(t) is the probability of a run finishing in less than t steps. The middle curve is the
RTD for the whole ensemble; upper curve is the RTD for the easy sub-ensemble and the
lower curve is the RTD for the hard sub-ensemble.

Ideally, if all instances in an ensemble have the same run-time distribution, i.e., there is no
variability within the ensemble, the problem of finding the optimal restart policy for a newly
given an instance from the ensemble collapses to the problem of finding Luby’s optimal
cutoff [13] for the run-time distribution of the whole ensemble. In practice, it is typical
to see high variability in the intrinsic hardness of instances within an ensemble. Prior
work on quasigroup with holes (QWH) demonstrated that variability in hardness of QWH
instances with the same size of square and same number of holes is an order of magnitude
or more [15]. The high variability in hardness remains for this problem even when we
impose finer-grained properties on the ensemble. For example, we see great variation in
the time for solving QWH instances even when we consider only those instances that show
a balanced hole pattern [14]. Similar observation have been made on other domains, e.g.,
combinatorial auctions [16].

The high variability in the hardness of instances makes it infeasible to adopt a fixed-cutoff
restart policy. If the cutoff is set too low, some hard instances may have little chance being
solved. On the other hand, if the cutoff is set too high, we may waste too much time on
multiple unfruitful runs. Another candidate restart policy is Luby’s universal policy. But
as our experimental results will show, this policy is relatively inefficient.

We approach the problem of the high variability in run time by decomposing a given ensem-
ble into a mixture of ensembles. We seek to divide the mixture into several sub-ensembles
such that the variability in hardness within each sub-ensemble is significantly reduced and
the RTD of the sub-ensemble is a reasonable approximation of the RTD of instances within
the sub-ensemble.

4 Partition of a Problem Ensemble by Hardness

We can divide an ensemble into sub-ensembles by hardness in several different ways. We
have focused on two approaches: (1) segmenting the ensemble into sub-ensembles by me-
dian run times of instances, and (2) by clustering instances by Euclidean distances between
run-time distributions.

4.1 Median-Based Partition of Ensembles

With the median-based approach, we decompose a mixture of ensembles into sub-
ensembles with methods that consider the median run times of instances observed after
multiple runs.

We employed a straightforward approach to segmenting the instances: Instances whose



median run times are within certain ranges are clustered into the same sub-ensemble and
ranges are divided such that sub-ensembles have equal numbers of instances. We used
mean-squared error (MSE) to measure the variability within an ensemble or sub-ensemble.

MSE =
1
m

m∑
i=1

(median(i) − median(e))2

where median(i) and median(e) are the median run times of instance i and the ensemble
respectively, and m is the number of instances in the ensemble.

4.2 Distribution-Based Partition of Ensembles

In another approach to creating sub-distributions, we take into consideration a measure
of Euclidean distance among the run time distributions of different instances. We define
Euclidean distance between run-time distributions of instance i and j as

DistQ(i, j) =

√
1
n

∑
t<T

(qi(t) − qj(t))2

where qi(t) =
∑

t′≤t pi(t′) is the cumulative function of pi(t), the probability that a run
will stop exactly at t for instance i, and n is the number of data points such that t < T .

Another potentially useful measure of difference between probability distributions for run
time is the Kullback-Leibler (K-L) distance [17], based on a relative entropy formulation.
The K-L distance is an asymmetric measure that is not formerly a distance (e.g., it does
not observe triangular equality). However, the definition of K-L distance requires that it is
never the case that one probability distribution has a zero where the other does not, which
is not always satisfied by our experimental data.

In our experiments, we used mean-squared error (MSE) as a measure of the variability
within an ensemble or sub-ensemble and we employ a k-means clustering algorithm [18]
to minimize the variability within each sub-ensemble.:

MSE =
1
m

m∑
i=1

DistQ(i, e)2

where DistQ(i, e) is the Euclidean distance between run-time distributions of instance i
and the ensemble, and m is the number of instances in the ensemble.

4.3 Sample Results of Partitioning

We wish to partition given ensembles into sub-ensembles by hardness so as to produce sub-
ensembles with small variability in run time. As an example of how variability, represented
as mean-squared error, within sub-ensembles changes with the number of sub-ensembles,
we display, on the left side of Fig. 1 the results of the distribution-based partition method for
the 3-colorable graph coloring problem (GCP). The graph shows that the variability within
sub-ensembles decreases rapidly with an increasing number of sub-ensembles. We found
in our experiments that partitioning an ensemble into a modest number of sub-ensembles
significantly reduced the variance of run time.

The right side of Fig. 1 displays an example of the differences between the run-time distri-
butions of two sub-ensembles and the whole ensemble for the 3-colorable Graph Coloring
problem. The upper curve is the RTD for the easy sub-ensemble, the middle curve is the
RTD for the whole ensemble, and the lower curve is the RTD for the hard sub-ensemble.

5 Generating Restart Policies with Dynamic Programming

The dynamic programming approach described [12] is particularly interesting to our study
as we can apply it in a straightforward manner to construct restart policies for sub-



ensembles. We shall now review the dynamic programming solution within the framework
of sub-ensembles partitioned by hardness.

We denote the run-time distributions of sub-ensembles as D1, ...,Dn. Our goal is to find a
policy (t1, t2, ...), where ti is the cutoff for ith run, such that the total number of steps to a
solution is minimized. After each unsuccessful run, the solver’s beliefs about the likelihood
of the instance being generated by each sub-ensemble distribution are updated.

Let di be the prior probability of a run being chosen from distribution Di, pi(t) as the
probability that a run which has been selected from Di will stop exactly at t, and qi(t) =∑

t′≤t pi(t′) as the cumulative function of pi(t), where i = 1, ..., n. We shall assume that
pi is non-trivial in the sense that pi(inf) < 1. Each state is a tuple of (d1, ..., dn) and the
set of actions for all states is the set of cutoffs. Given an action t, i.e., cutoff = t, and state
S = (d1, ..., dn), the next possible state is either the termination state where the problem
is solved, or the a non-terminal state S′ = (d′1, ..., d

′
n), where d′1, ..., d

′
n are the updated

probabilities. We denote the termination state as S0 = (0, .., 0). The termination state is
a cost-free state; once the solver reaches that state it remains there at no further cost. The
objective of restart control policy is to reach the termination state with minimal expected
cost.

The optimal expected solution time from state S = (d1, ..., dn) is the optimized sum of the
immediate cost R(S, t) and the optimal expected solution time of the two possible future
states, which is given by the following Bellman equation:

E∗(S) = min
t
{R(S, t) + P (S′|S, t)E∗(S′)}

As shown in [12], a Markov decision process (MDP) can be used to derive an optimal
restart policy for this case.

Methods presented in [12] also highlighted methods for folding in a consideration of ev-
idence observed over the course of runs, and continuing to update its beliefs about the
hardness of instances. We use these methods here to update beliefs about the instance
being drawn from each sub-ensemble Di. In particular, we explore the case where an evi-
dential feature F , reflecting the solver state or solver progress, is observed during a run. F
is a function of the initial trace of the solver as calculated by a decision tree over low-level
variables. F may be binary valued or multi-valued [12]. To encode F as part of a state, a
state S can be denoted as (d1, ..., dn, F ).

In state Sn = (d1, ..., dn, Fn), with cutoff setting to t, if a solution is found, the solver
will be in the termination state S0, or if no solution is found, in one of the states Sn+1 =
(d′1, ..., d

′
n, Fn+1) for all possible values of Fn+1. The transition probability from Sn to

any other states is 0. Similarly, we can define the optimal expected solution time from state
Sn = (d1, ..., dn, Fn) as the following equation:

E∗(Sn) = min
t
{R(Sn, t) +

∑
Fn+1

P (Sn+1|Sn, t)E∗(Sn+1)}

Similarly, the restart policy for the case with run-time observations can be computed with
the use of dynamic programming. As mentioned above, the specific series of cutoffs the
policy generates depends upon the features observed during each run of an instance. There-
fore the policy takes the general form of a tree rather than a list.

6 Experiments

We performed a set of empirical studies to explore our approach to finding optimal restart
policies with and without observations. The benchmark domains we considered were the
quasigroup domain (QCP and QWH) [5, 15, 14], graph coloring problems [19], and logis-
tics planning problems [20].



QCP (CSP) QWH (SATZ) GCP (SATZ) Planning (SATZ)
Restart Policy ERT % ERT % ERT % ERT %
DistQ(4), no predictor 95,846 50 74,191 39 21,172 68 13,502 44
Median(4), no predictor 93,797 51 68,720 43 19,542 70 13,238 45
Median(2), predictor 78,959 59 52,636 57 18,475 72 8,772 64
Median(3), predictor 82,346 57 58,894 52 18,814 71 8,910 63
Luby’s optimal, No sub-
ensemble

∞ - ∞ - ∞ - ∞ -

Luby’s optimal, RTD of
testing instances

33,869 83 30,084 76 15,083 77 4,005 84

Luby’s universal 191,060 0 120,363 0 64,793 0 23,723 0

Table 1: Results of comparative experiments of policies for sub-ensembles, with and
without observation, with Luby et al.’s universal restart policy. ERT is the expected run
time (choice points) and improvements are measured over Luby et al.’s universal policy.
Median(n) (DistQ(n)) uses median run time (distance between run-time distributions)
to cluster instances into n sub-ensembles.

6.1 Benchmark Domains and Solvers

Our first benchmark domain was the Quasigroup Completion Problem (QCP) [5]. For our
studies, we generated totally 1,000 instances, of which 600 are satisfiable and the rest are
unsatisfiable. All the instances are of order 30 with 337 unassigned variables or holes.

The second problem domain we explored is solving propositional satisfiability (SAT) en-
codings of the graph coloring problem (GCP). The instances used in our studies are gen-
erated using Culberson’s flat graph generator [19]. The challenge is to determine whether
an instance is 3-colorable. We generated 1,000 satisfiable instances. The instances are
generated in such a way that all instances are 3-colorable but not 2-colorable.

We also explored a planning problem in the logistics domain [20]. We generated instances
with 5 cities, 15 packages, 2 planes and 1 truck per city. We generate totally 1000 satisfiable
instances. To decrease the variance among instances, all of the instances can be solved with
12 parallel steps but cannot be solved with 11 steps.

The randomized backtracking solvers for the problems encoded as SAT was Satz-Rand [7],
a randomized version of the Satz system of Li and Anbulagan [21]. For the QCP problems,
we experimented a specialized randomized CSP solver built using the ILOG constraint
programming library.

6.2 Learning Models to Predict Hardness

We pursued the construction from data of decision trees we refer to as distribution-
predictors. Such models serve to provide probabilities that an instance is derived from each
of the different sub-ensembles under consideration, based on observations. To generate the
predictive models, we implemented the methods introduced by Horvitz et al..

For distribution predictors for instances solved by the Satz-rand solver, we found that the
most predictive features for the domains explored are LambdaPos, a measure of interaction
among binary clauses, and number of backtracks; for the CSP solver, the most predictive
base features are the average number of colors available for filling squares and the average
number of holes (See [10] for details about the features).

6.3 Comparative Analysis of Policies

In the experiments, each ensemble contains 1,000 instances with 1,000 runs each, of which
800 instances are used as training dataset and the other 200 are used as testing dataset. To
identify ensembles, we used both DistQ and median run times to clusters instances into a
small number of sub-ensembles (not exceeding four ensembles).

We constructed the restart policies for sub-ensembles offline by using policy iteration for
dynamic programming. In the procedure, we transform the continuous and infinite state
space into a discrete state space and then apply finite-state dynamic programming methods.



For all of the experiments, we discretized the search space uniformly into 100 segments,
taking into consideration the tradeoff between computational efficiency and accuracy. In
another method, implemented to increase computational efficiency, we tested one cutoff
for each 100 steps, instead of exhausting all possible cutoffs. The construction of policies
via dynamic programming with policy iteration required from several minutes to hours
depending on the number of feature values on a Pentium-800 machine with one gigabyte
of memory.

To characterize the improvements gained with the dynamic dependent restart policies, we
ran comparative experiments with Luby’s optimal fixed restart policy for the known distri-
bution of the whole training ensemble (i.e., without the partitioning of the ensemble into
sub-ensembles), and Luby’s universal restart policy. Except for the case for the univer-
sal restart policy1, we constructed restart policies, including all dynamic dependent restart
policies for sub-ensembles and fixed optimal restart policies for the whole ensembles, from
training data. We tested the policies on hold-out cases that had not been used for training.
We also compared the results with the ideal cases where we have knowledge of the RTD’s
of testing instances. In this ideal case, the optimal expected run times of testing instances
can be obtained by applying Luby’s fixed optimal restart policy to the RTD for the partic-
ular instance being solved. (In practice, of course, the actual RTD of the instance being
solved is not known.) All the comparison results are shown in Table 1.

For the problem domains studied, we found that the optimal fixed cutoff restart policy of
Luby et al. for the training ensemble could not solve all the testing instances. The policy
fails because the high variability of hardness within the ensembles leads to a situation where
a low fixed cutoff indicated by the policy has little chance of solving hard instances.

We found that the hardness-aware restart policies, taking observations into consideration,
are more efficient than the restart policies overlooking observations. We attributed the im-
provement in solution time, ranging from about 6% to 34% for the domains, to effectively
harnessing the predictive models for identifying the proper sub-ensemble.

We found that for the restart policy with observations, the expected run times for a parti-
tioning into two sub-ensembles are slightly better than those for three sub-ensembles. We
believe that the slight degradation associated with the finer-grained partitioning is based
in an induced tradeoff. Because we held the number of training cases constant, we could
generate more accurate predictive models for the situation of fewer sub-ensembles; the
gains in the predictive accuracy of models for the smaller partitioning overcame the higher
variabilities within the sub-ensembles.

7 Summary and Directions

We introduced a method for constructing restart policies that leverage a continually updated
probability distribution over sub-ensembles of different hardness during problem solving.
The methods address the high variability in hardness of instances seen in attempts to solve
real world problems. To illustrate the value of the methods, we performed several experi-
ments that compare the new policies with static restart procedures. We developed learning
predictors that can provide probability distributions over the hardness of a new instance.

In our ongoing work, we are working to enhance the efficiency of the restart policies
through building more powerful predictive models. We are pursuing more powerful models
for predicting both the hardness of an instance and the likely execution time of individual
runs of an instance, conditioned on different sub-ensembles.
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