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Abstract
We propose a method for verifying the security of protocol imple-
mentations. Our method is based on declaring and enforcing in-
variants on the usage of cryptography. We develop cryptographic
libraries that embed a logic model of their cryptographic structures
and that specify preconditions and postconditions on their functions
so as to maintain their invariants. We present a theory to justify the
soundness of modular code verification via our method.

We implement the method for protocols coded in F# and verified
using F7, our SMT-based typechecker for refinement types, that
is, types carrying formulas to record invariants. As illustrated by a
series of programming examples, our method can flexibly deal with
a range of different cryptographic constructions and protocols.

We evaluate the method on a series of larger case studies of
protocol code, previously checked using whole-program analyses
based on ProVerif, a leading verifier for cryptographic protocols.
Our results indicate that compositional verification by typecheck-
ing with refinement types is more scalable than the best domain-
specific analysis currently available for cryptographic code.
Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Specification techniques.
General Terms Security, Design, Languages

1. Introduction
Verifying the Code of Cryptographic Protocols The problem of
vulnerabilities in security protocol code is remarkably resistant to
the success of formal methods. Consider, for example, the vulnera-
bility in the public-key protocol of Needham and Schroeder (1978),
first discovered by Lowe (1996) in his seminal paper on model-
checking security protocols. This is the staple example of count-
less talks and papers on tools for analyzing security protocols. It
is hence well known in the formal methods research community,
and many tools can now discover it. In spite of these talks, papers,
and tools, Cervesato et al. (2008) discovered that the IETF issued a
public-key variant of Kerberos, shipped by multiple vendors, con-
taining essentially the same vulnerability.

What to do? Our position is that formal tools are more likely to
find such problems if they run directly on security protocol code.
Most current tools require a model described in some formalism,
such as a process algebra or a modal logic, but designers of new
or revised protocols are resistant to writing such models. They are
more concerned with functional properties like interoperability and
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so typically the first (and only) formal descriptions of protocol
behaviour are the implementation code itself. Another reason to
analyze code rather than models arises from gaps between the two:
even if a model is verified, the corresponding code may deviate,
and contain vulnerabilities absent from the model.

Several recent projects tackle the problem of verifying security
protocol code. The pioneers are Goubault-Larrecq and Parrennes
(2005) who use a tool to analyze C code (written in their group) for
the Needham-Schroeder public key protocol. Another early tool is
FS2PV (Bhargavan et al. 2006b), which compiles implementation
code in F# into the applied pi calculus, for analysis with ProVerif
(Blanchet 2001), a state-of-the-art domain-specific prover. In terms
of lines of code analyzed, the combination of FS2PV and ProVerif is
probably by now the leading tool chain for security protocol code.
Several substantial case studies have yielded F# reference imple-
mentations that interoperate with existing implementations and are
verified with FS2PV and ProVerif; these case studies include WS-
Security (Bhargavan et al. 2006a), CardSpace (Bhargavan et al.
2008b), and TLS (Bhargavan et al. 2008a).

Towards Modular Verification It is challenging to verify security
properties by compositional analysis. In particular, for systems in-
volving cryptographic communication protocols, realistic attacker
models tend to break modularity and abstraction: the attacker may
interact at different layers in the protocol stack, for instance by
injecting low-level network messages and controlling high-level
actions at the application layer. Moreover, the attacker may com-
promise parts of the system, for instance gaining access to some
cryptographic keys, and we are especially interested in the security
properties that still hold in such situations. Accordingly, all pro-
tocol verification tools to date rely on high-complexity algorithms
that operate on a complete description of the protocol.

The figure above presents the structure of our CardSpace imple-
mentation (our main case study), with one box for each F# module.
Intuitively, the security properties for these modules are largely in-
dependent. Still, the earlier verification using FS2PV ignores this
programming structure and passes a single, giant, untyped pi pro-



cess to ProVerif. On the one hand, ProVerif scales surprisingly well:
it often succeeds on input files orders of magnitude longer than the
examples in its test suite. On the other, its whole-program analy-
sis has long run times on large case studies such as CardSpace and
TLS. Analysis may take hours, or diverge, and small changes in
input files have unpredictable effects on run time.

In this paper, we aim for a modular and scalable technique that
avoids whole-program analysis. We develop a new methodology,
based on logical invariants for the cryptographic structures arising
in security protocols. We show how to implement this methodology
by typechecking with refinement types, and make several improve-
ments to the existing typechecker F7 (Bengtson et al. 2008).

By proposing a new pattern of using F7 we intend that this paper
may vindicate the promise of our initial work on refinement types
for secure implementations, and establish that F7 supports scalable
and flexible verification. It is flexible because we can formalize
as wide a range of cryptographic operations as in FS2PV, for
example. It is scalable because the time consuming part of analysis,
automated theorem proving, is done compositionally by repeatedly
calling an external solver on relatively small logical problems.

Our Method: Invariants for Cryptographic Structures As in the
standard method originated by Dolev and Yao (1983), we model
cryptographic structures as elements of a symbolic algebra. As in
other logical approaches (for example, Paulson 1998, Cohen 2000,
and Blanchet 2001), we rely on event predicates to record progress
through a protocol and on a public predicate to indicate whether
cryptographic structures are known to the adversary. For example,
a byte array x is known to the adversary only if the predicate Pub(x)
holds. For an example of an event predicate, consider the simple
protocol where a and b share a key kab, and a authenticates each
message sent to b by sending also its hash keyed with kab. Then the
event predicate Send(a,b,x) holds only if a has started the protocol
with the intention of sending message x to b.

The first key idea of our approach is to rely systematically on
predicates to define invariants on cryptographic structures. For ex-
ample, byte array x exists in a protocol run (whether or not it is
public) only if the predicate Bytes(x) holds. For another example, a
key kab is shared between principals a and b for the purpose of run-
ning our example protocol only if the predicate KeyAB(kab,a,b)
holds. Our definitions support deduction of useful properties of
these invariants. For instance, in the simple case when all prin-
cipals are uncompromised and comply with the protocol, our ex-
ample predicates have the property that Bytes(hash kab x) and
KeyAB(kab,a,b) imply that Send(a,b,x). This property captures the
intuition that, if we can exhibit a byte array x that has been hashed
with the key kab, which is known only to the protocol-compliant
principals a and b, then it can only have been hashed by a, during
a run of the protocol in which a intends to send x to b.

The second key idea is to rely on pre- and post-conditions
on cryptographic algorithms to ensure that the actual code of a
security protocol maintains these invariants. In our example, the
precondition on applying the hash function to argument kab and x is
the formula KeyAB(kab,a,b)∧Send(a,b,x), and as a postcondition,
we obtain Bytes(hash kab x). As a consequence of the implication
stated above, we obtain Send(a,b,x) as a postcondition of hash
verification with a key satisfying KeyAB(kab,a,b).

We develop our invariants as a collection of predicates defined
by axioms in first-order logic. The axioms form inductive defini-
tions of our predicates; during automated code verification we rely
on the axioms as well as additional formulas proved to hold in all
reachable states.

Our theory is inspired by prior work on proving secrecy and
authentication by using domain-specific type systems (Abadi 1999;
Gordon and Jeffrey 2003a). Intuitively, the essence of these type
systems is a collection of inductive definitions that define invariants

preserved by computation. Our work can be understood, in part,
as an extraction of this essence as direct inductive definitions of
predicates, largely independent of the host language.
Scalable Verification by Typechecking with F7 We implement
and evaluate our method for F#, a dialect of ML. We rely on the F7
typechecker, which verifies F# programs against types enhanced
with logical refinements. A refinement type is a base type qual-
ified with a logical formula; the formula can express invariants,
preconditions, and postconditions. F7 relies on type annotations,
including refinements, provided in specific interface files. While
checking code, F7 generates many logical problems which it solves
by submitting to Z3, an external theorem prover for first-order
logic (de Moura and Bjørner 2008). Finally, F7 erases all refine-
ments and yields ordinary F# modules and interfaces.

Our original paper on F7 (Bengtson et al. 2008) reported the
underlying type theory, and a treatment of cryptography based on
refinements types, public and tainted kinds (Gordon and Jeffrey
2003b), and seals (Morris 1973). It proposed refinement types as
a means for checking security properties in general; one example
showed how to enforce access control by typing, others concerned
a limited repertoire of cryptographic operations. The cryptographic
library described in this paper is far more expressive.

We adopt F7 as a basis for implementing our method; refine-
ment types are an excellent way to blend typechecking with verifi-
cation. Still, although effective, both the theory of kinds and the use
of seals necessarily depend on details of the host programming lan-
guage. (Kinds are predicates on the syntax of types, and seals are
λ -abstractions, only available in certain languages.) Therefore, we
implement our new method, based on invariants for cryptographic
structures, using F7 without seals and without the theory of kinds.

Another reason to choose F# is to enable a direct compari-
son with FS2PV and ProVerif, using previously-mentioned refer-
ence implementations for WS-Security and CardSpace. We develop
our new method for cryptographic libraries that extend those al-
ready supported by FS2PV. Thus, we illustrate the flexibility of
our method, and we can experimentally measure its performance
versus ProVerif. Still, our method relies on user-supplied program
invariants (within refinement types), while ProVerif can infer in-
variants. The previous F7 theory based on kinds and seals relied on
a different cryptographic library, which did not allow a comparison
with FS2PV code. To the best of our knowledge, the reference im-
plementations checked with FS2PV and ProVerif are currently the
most sizeable body of verified code for security protocols. So im-
plementing our method for F# and the same libraries as used with
FS2PV allows for a direct comparison against what is probably the
state of the art.
Summary of Contributions

(1) A new modular method for verifying the code of security pro-
tocols, based on invariants for cryptographic structures.

(2) An implementation for the F# language by embedding invari-
ants as refinement types, verified by the F7 typechecker.

(3) A collection of well-typed refined modules for cryptographic
primitives and constructions, more expressive than in previous
work with F7.

(4) Experimental evidence that typechecking is faster and succeeds
on more protocol code than whole-program analysis with the
leading automatic prover ProVerif.

Contents Section 2 reviews F7. Section 3 illustrates our method
on an RPC protocol. Section 4 provides a theory to justify proofs
of security by typechecking. Section 5 gives examples of crypo-
graphic libraries. Section 6 outlines more substantial case studies.
Section 7 evaluates the performance of our implementation. Sec-
tion 8 discusses related work.



A website http://research.microsoft.com/f7 hosts
a technical report with details, proofs, and examples omitted from
this version of the paper, as well as our typechecker with libraries
and sample code for all examples.

2. RCF, the Formal Foundation for F7 (Review)
We begin with a review of the syntax and semantics of RCF (Bengt-
son et al. 2008), our core language for F#. RCF consists of the
standard Fixpoint Calculus (Gunter 1992; Plotkin 1985) augmented
with local names and message-passing concurrency (as in the pi
calculus) and with refinement types. Formally, we slightly simplify
the original calculus by omitting the use of public and tainted kinds.

We state some syntactic conventions. Our phrases of syntax may
contain three kinds of identifier: type variables α , value variables x,
and names a. We identify phrases of syntax up to consistent renam-
ing of bound identifiers. We write ψ{φ/ι} for the capture-avoiding
substitution of the phrase φ for each free occurrence of identifier ι

in the phrase ψ . We say a phrase is closed to mean that it has no
free type or value variables (although it may contain free names).

Expressions and types of RCF contain formulas C to specify
intended properties. Specification formulas are written in first-order
logic with equality, with atomic formulas, p(M1, . . . ,Mn), built
from a fixed set of predicate symbols p applied to RCF values.

Syntax of FOL/F Formulas:
C ::= p(M1, . . . ,Mn) | (M = M′) | (M 6= M′) | False | True |

C∧C′ |C∨C′ |C⇒C′ | ¬C |C⇔C′ | ∀x.C | ∃x.C

We recall standard definitions for (untyped) first-order logic
with equality (see Paulson 2008 for example). An interpretation I
is a pair (D, I) where D is a set, the domain, and I is an operation
that maps function symbols to functions on D and predicate sym-
bols to relations on D. A valuation V is a function from variables
into D. An interpretation I satisfies a closed formula C, written
|=I C when, for all valuations V , we have |=I ,V C, which is de-
fined by structural induction on C, following Tarski.

We are only concerned with RCF-interpretations, that is, in-
terpretations (D, I) where D is the set of closed phrases of RCF
and I maps each function symbol f of arity n to the function
M1, . . . ,Mn 7→ f (M1, . . . ,Mn), and maps the equality predicate to
syntactic equality. (The only function symbols in our formulas are
the syntactic constructors of RCF. In an RCF-interpretation (D, I)
we fix the meaning of function symbols and equality, but allow the
meaning of predicates to vary.)

Core Syntax of the Values and Expressions of RCF:
a,b,c name
h ::= inl | inr | fold value constructor
M,N ::= value

x variable
() unit
fun x→ A function (scope of x is A)
(M,N) pair
h M construction

A,B ::= expression
M value
M N application
M = N syntactic equality
let x = A in B let (scope of x is B)
let (x,y) = M in A pair split (scope of x, y is A)
match M with h x→ A else B constructor match (scope of x is A)
(νa)A restriction (scope of a is A)
A � B fork: parallel composition
a!M transmission of M on channel a
a? receive message off channel
assume C assumption of formula C
assert C assertion of formula C

Much of RCF is standard functional notation. Expressions are in
the style of A-normal form; let-expressions are for sequencing and
not for polymorphism. In the style of the pi calculus, RCF includes
restriction (name generation), fork, and message transmission and
reception for communication and concurrency. Names range over
countable, pairwise-distinct constants, used to represent channels,
fresh values, and keys, for instance.

An expression context X is an expression with a hole ‘ ’. We
write X [A] for the outcome of filling the hole with expression or
expression context A, where variables free in A may be bound by
binders in X . (We use expression contexts to represent modules.)

The expressions assume and assert have no observable effect at
run-time, and are used only to specify logic-based safety properties.
Execution of assume C limits attention to logical interpretations in
which C holds. Assumptions are used to state inductive definitions
or to record events, for example. Execution of assert C indicates
an error unless C holds in interpretations satisfying the previously
executed assumptions.

The type system of RCF is based on FPC, but with dependent
function and pair types, plus refinement types x : T{C}. The values
of this type are the values M of type T such that C{M/x} holds.

Core Syntax of Types of RCF:
T,U,V ::= type

unit unit type
x : T →U dependent function type (scope of x is U)
x : T ∗U dependent pair type (scope of x is U)
T +U disjoint sum type
rec α.T iso-recursive type (scope of α is T )
α type variable (abstract or iso-recursive)
x : T{C} refinement type (scope of x is C)

As detailed by Bengtson et al. (2008), RCF supports standard
encodings of a wide range of F# programming constructs, including
let-polymorphism (eliminated by code duplication), mutable refer-
ences (channels), and algebraic types (recursive sums of product
types); it is closely related to the internal language of the F7 type-
checker. Our code examples rely on these encodings.

In addition, code written in RCF has access to a few pre-defined
trusted libraries, depicted at the bottom of the figure on the first
page. The library module Data defines standard datatypes such
as strings, bytestrings, lists, options, and provides functions for
manipulating and converting between values of these types; Crypto
provides primitive cryptographic operations; Db provides functions
for storing and retrieving values from a global, shared, secure
database; Xml provides functions and datatypes for manipulating
XML documents; Net provides functions for establishing TCP
connections and exchanging messages over them. We write Lib
for the composition of Data, Net, and Crypto, and LibX for the
composition of Lib, Db, and Xml. These libraries are trusted in the
sense that their concrete implementations are not verified. Instead,
we define idealized symbolic implementations, in the style of Dolev
and Yao (1983), for each of these five modules and show that they
meet their typed RCF interfaces.

Each judgment of the RCF type system is given relative to an
environment, E, which is a sequence µ1, . . . ,µn, where each µi may
be a subtype assumption α <: α ′, an abstract type α , or an entry
for a name a l T or a variable x : T . The two main judgments are
subtyping, E ` T <: U , and type assignment, E ` A : T . The full
rules for these judgments and the rest of RCF are in the companion
technical report.

F7 relies on various type inference algorithms, and calls out to
Z3 to handle the logical goals that arise when checking refinements.
F7 adds the formula C to the current logical environment when
processing assume C, and conversely checks that formula C is
provable when processing assert C.



3. Invariants for Authenticated RPCs (Example)
We consider a protocol intended to authenticate remote procedure
calls (RPC) over a TCP connection. We first informally discuss
the security of this protocol and identify a series of underlying
assumptions. We then explain how to formalize these assumptions,
and how to verify an implementation of the protocol.
Informal Description We have a population of principals, ranged
over by a and b. The security goals of our RPC protocol are that
(1) whenever a principal b accepts a request message s from a,
principal a has indeed sent the message to b and, conversely, (2)
whenever a accepts a response message t from b, principal b has
indeed sent the message in response to a matching request from a.

To this end, the protocol uses message authentication codes
(MACs) computed as keyed hashes, such that each symmetric
MAC key kab is associated with (and known to) the pair of princi-
pals a and b. Our protocol may be informally described as follows.

An Authenticated RPC Protocol:
1. a→ b : utf8 s | (hmacsha1 kab (request s))
2. b→ a : utf8 t | (hmacsha1 kab (response s t))

In this protocol narration, each line indicates the communication
of data from one principal to another. This data is built using five
functions: utf8 marshals the strings s and t into byte arrays (the
message payloads); request and response build message digests
(the authenticated values); hmacsha1 computes keyed hashes of
these values (the MACs); and ‘|’ concatenates the message parts.

We consider systems in which there are multiple concurrent
RPCs between any principals a and b of the population. The adver-
sary controls the network. Some keys may also become compro-
mised, that is, fall under the control of the adversary. Intuitively,
the security of the protocol depends on the following assumptions:

(1) The function hmacsha1 is cryptographically secure, so that
MACs cannot be forged without knowing their key.

(2) The principals a and b are not compromised—otherwise the
adversary may just use kab to form MACs.

(3) The functions request and response are injective and their
ranges are disjoint—otherwise, an adversary may for instance
replace the first message payload with utf8 s′ for some s′ 6= s
such that request s′ = request s and thus get s′ accepted instead
of s, or use a request MAC to fake a response message.

(4) The key kab is a genuine MAC key shared between a and b, used
exclusively for building and checking MACs for requests from
a to b and responses from b to a—otherwise, for instance, if b
also uses kab for authenticating requests from b to a, it would
accept its own reflected messages as valid requests from a.

These assumptions can be precisely expressed (and verified) as
program invariants of the protocol implementation. Moreover, the
abstract specification of hmacsha1, request, and response given
above should suffice to establish the protocol invariant, irrespective
of their implementation details.
Adding Events and Assertions We use event predicates to record
the main steps of each run of the protocol, to record the association
between keys and principals, and to record principal compromise.
To mark an event in code, we assume a corresponding logical fact:

• Request(a,b,s) before a sends message 1;
• Response(a,b,s, t) before b sends message 2;
• KeyAB(k,a,b) before issuing a key k associated with a and b;
• Bad(a) before leaking any key associated with a.

We state each intended security goal in terms of these events, by
asserting that a logical formula always holds at a given location in

our code, in any system configuration, and despite the presence of
an active adversary. In our protocol, we assert:

• RecvRequest(a,b,s) after b accepts message 1;
• RecvResponse(a,b,s, t) after a accepts message 2;

where the predicates RecvRequest and RecvResponse are defined
by the two formulas:

∀a,b,s. RecvRequest(a,b,s)⇔ (Request(a,b,s) ∨Bad(a) ∨Bad(b))
∀a,b,s,t. RecvResponse(a,b,s,t)⇔

(Request(a,b,s) ∧Response(a,b,s,t)) ∨Bad(a) ∨Bad(b)

The disjunctions above account for the potential compromise of ei-
ther of the two principals with access to the MAC key; the disjunc-
tions would not appear with a simpler (weaker) attacker model.
Implementing the RPC Protocol We give below an implementa-
tion for the two roles of our protocol, coded in F#. Except for proto-
col narrations, all the code displayed in this paper is extracted from
F7 interfaces and F# implementations that have been typechecked.
Code for the Authenticated RPC Protocol:

let mkKeyAB a b = let k = hmac keygen() in assume (KeyAB(k,a,b)); k
let request s = concat (utf8(str "Request")) (utf8 s)
let response s t = concat (utf8(str "Response")) (concat (utf8 s) (utf8 t))

let client (a:str) (b:str) (k:keyab) (s:str) =
assume (Request(a,b,s));
let c = Net.connect p in
let mac = hmacsha1 k (request s) in
Net.send c (concat (utf8 s) mac);
let (pload’,mac’) = iconcat (Net.recv c) in
let t = iutf8 pload’ in
hmacsha1Verify k (response s t) mac’;
assert(RecvResponse(a,b,s,t))

let server(a:str) (b:str) (k:keyab) : unit =
let c = Net.listen p in
let (pload,mac) = iconcat (Net.recv c) in
let s = iutf8 pload in
hmacsha1Verify k (request s) mac;
assert(RecvRequest(a,b,s));
let t = service s in
assume (Response(a,b,s,t));
let mac’ = hmacsha1 k (response s t) in
Net.send c (concat (utf8 t) mac’)

(We omit the definition of the application-level service func-
tion.) Compared to the protocol narration, the code details message
processing, and in particular the series of checks performed when
receiving messages. For example, upon receiving a request, server
extracts s from its encoded payload by calling iutf8, and then ver-
ifies that the received MAC matches the MAC recomputed from k
and s. The code uses concat and iconcat to concatenate and split
byte arrays. (Crucially for this protocol, concat embeds the length
of the first array, and iconcat splits arrays at this length. Otherwise,
for instance, response is not injective and the protocol is insecure.)

In our example, the code assumes events that mark the genera-
tion of a key for our protocol and the intents to send a request from
a to b or a response from b to a. The code asserts two properties,
after receiving a request or a response, and accepting it as genuine.

We test that our code is functionally correct by linking it to a
concrete cryptographic library and performing an RPC between a
and b. The messages exchanged over TCP are:

Connecting to localhost:8080
Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080
Received Request 2 + 2?
Sending {AQA0NccjcuL/WOaYS0GGtOtPm...} (23 bytes)
Received Response 4



Modelling the Opponent We model an opponent as an arbitrary
program with access to a given public interface that reflects all
its (potential) capabilities. Thus, our opponent has access to the
network (modelling an active adversary), to the cryptographic li-
brary (modelling access to the MAC algorithms), and to a protocol-
specific setup function that creates new instances of the protocol for
a given pair of principals. This function returns four capabilities: to
run the client with some payload, to run the server, to corrupt the
client, and to corrupt the server (that is, here, to get their key). We
detail the code for setup below: it allocates a key, specializes our
client and server functions, and leaks that key upon request after
assuming an event that records the compromise of either a or b.

Protocol-Specific Implementation for the Opponent Interface:

let setup (a:str) (b:str) =
let k = mkKeyAB a b in
(fun s→client a b k s),
(fun →server a b k),
(fun →assume (Bad(a)); k),
(fun →assume (Bad(b)); k)

Formally, the opponent ranges over arbitrary F# code well-
typed against an interface that includes (at least) the declarations
below. Let an opponent O be an expression containing no assume
or assert. Our opponent interfaces declare functions that operate
on types of the form x:T { Pub(x)}; intuitively, these types reflect
the global invariant that the opponent may obtain and construct at
most the cryptographic values tracked as public in our logic model.
Hence, bytespub is defined as x: bytes {Pub(x)}. The types strpub
and keypub of public strings and public keys are defined similarly.

In our method, we explicitly give an inductive definition of Pub,
and the typechecker ensures that, whenever an expression is given a
public type (for instance when sending bytes on a public network),
the fact that the value will indeed be public logically follows from
that inductive definition.

Opponent Interface (excerpts):

val send: conn→bytespub→unit
val recv: conn→bytespub
val hmacsha1 : keypub→bytespub→bytespub
val hmacsha1Verify : keypub→bytespub→bytespub→unit
val setup: strpub→strpub→

(strpub→unit) ∗ (unit→unit) ∗ (unit→keypub) ∗ (unit→keypub)

As explained next, we write more refined interfaces for type-
checking our code: each value declaration will be given a refined
type that is a subtype of the one listed in the opponent interface.

We are now ready to formally state our target security theorem
for this protocol. We say that an expression is semantically safe
when every executed assertion logically follows from previously-
executed assumptions. Let IL be the opponent interface for our li-
brary. Let IR be the opponent interface for our protocol (the setup
function displayed above). Let X be the expression context repre-
senting the composition of the library with the protocol implemen-
tation. (We give a precise definition of X in Section 4.)

THEOREM 1 For any opponent O, if IL, IR ` O : unit, then X [O] is
semantically safe.

Refinement-Typed Interface for MACs Our example theorem
relies on typechecking our library and protocol code against their
opponent interfaces. For the library, this is done once for all, using
an intermediate, more refined interface that operates on values that
are not necessarily public. This interface and its logical model
are explained in the companion technical report, so here we only
outline their declarations and formulas as regards MACs. So the
main task for verifying the RPC protocol is to typecheck it.

We first outline the refined interface for MACs, then explain
how to define and enforce a logical model for the RPC protocol.

Refinement Types for MACs (from the Crypto library):

private val hmac keygen: unit→k:key{MKey(k)}
val hmacsha1:

k:key→
b:bytes{ (MKey(k) ∧MACSays(k,b)) ∨ (Pub(k) ∧Pub(b)) }→
h:bytes{ IsMAC(h,k,b) ∧ (Pub(b)⇒Pub(h)) }

val hmacsha1Verify:
k:key{MKey(k) ∨Pub(k)}→b:bytes→h:bytes→unit{IsMAC(h,k,b)}

(C1. By expanding the definition of IsMAC)
∀h,k,b. IsMAC(h,k,b) ∧Bytes(h)⇒MACSays(k,b) ∨Pub(k)
(C2. MAC keys are public iff they may be used with any logical payload)
∀k. MKey(k)⇒ (Pub(k)⇔∀m. MACSays(k,m))

This interface defines functions for creating keys, computing
MACs, and verifying them. (The private modifier indicates that
a value is not included in the opponent interface.) It is designed
for flexibility; simpler, more restrictive interfaces may be obtained
by subtyping, for instance, when key compromise need not be
considered. Its logical model is built from the following predicates:

• MKey(k) records that k has been produced by hmac keygen; the
adversary can produce other public keys from public values.
• MACSays(k,b) is defined by the protocol that relies on k, as its

precondition for computing a MAC and its postcondition after
verifying a MAC.
• IsMAC(h,k,b) holds when verification that h is a MAC for b

under k succeeds; it implies either MACSays(k,b) or Pub(k).

The precondition of hmacsha1 is a disjunction that covers two
cases for the key: either it is a correctly-generated key, or the
key is public. The latter case is necessary to type MAC compu-
tations using a key received from the opponent, and to show that
hmacsha1 has the type declared in the opponent interface. (In type
systems without formulas, such disjunctions in logical refinements
could instead be expressed using union types.) The postcondition
Pub(b)⇒Pub(h) states that the MACs produced by the protocol are
public (hence can be sent) provided the plaintext is public. Crypto-
graphically, this reflects that MACs provide payload authentication
but not secrecy.

The precondition of hmacsha1Verify similarly covers the two
cases for the key. A call hmacsha1Verify k b h raises an exception in
case the supplied hash h does not in fact match the MAC of b with
the key k. (At present, F7 does not support exception handling, and
treats an exception as terminating execution.) Otherwise, its post-
condition also leads to a disjunction (corollary C1), so the protocol
that verifies a MAC must also know that Pub(k)⇒MACSays(k,b),
for example because k is not public, to deduce that MACSays(k,b).

The library also assumes definitions and theorems relating these
predicates, and in particular the inductive definition of Pub. For
convenience, the display above includes two properties for MACs
that are corollaries of these definitions: C1 just inlines the defini-
tion of IsMAC; C2 expresses a secrecy invariant for MAC keys: a
key k is public if and only if its associated logical payload holds for
any value. Hence, as a prerequisite for releasing a key k as a pub-
lic value, a protocol must ensure that all potential consequences of
MAC verification with key k hold. Depending on how the protocol
defines MACSays, this may be established by assuming some com-
promise at the protocol level (predicate Bad(a) in our protocol).

Logical Invariants for the RPC Protocol To verify a protocol,
we state some of its intended logical properties (both defining its
specific usage of cryptography and stating theorems about it), we
typecheck the protocol code under those assumptions, and, if need
be, we prove protocol-specific theorems, as illustrated below.



We first introduce two auxiliary predicates for the payload for-
mats: Requested and Responded are the (typechecked) postcondi-
tions of the functions request and response; we omit their defi-
nition. Typechecking involves the automatic verification that our
formatting functions are injective and have disjoint ranges, as ex-
plained in informal assumption (3). Verification is triggered by as-
serting the formulas below, so that Z3 proves them.
Properties of the Formatting Functions request and response:

(request and response have disjoint ranges)
∀v,v’,s,s’,t’. (Requested(v,s) ∧Responded(v’,s’,t’))⇒ (v 6=v’)

(request is injective)
∀v,v’,s,s’. (Requested(v,s) ∧Requested(v’,s’) ∧v = v’)⇒ (s = s’)

(response is injective)
∀v,v’,s,s’,t,t’.
(Responded(v,s,t) ∧Responded(v’,s’,t’) ∧v = v’)⇒ (s = s’ ∧ t = t’)

For typechecking the rest of the protocol, we can instead as-
sume these formulas; this confirms that the security of our protocol
depends only on these properties, rather than a specific format. In
addition, typechecking involves the following three assumptions:
Formulas Assumed for Typechecking the RPC protocol:

(KeyAB MACSays)
∀a,b,k,m. KeyAB(k,a,b)⇒ ( MACSays(k,m)⇔
( (∃s. Requested(m,s) ∧Request(a,b,s)) ∨

(∃s,t. Responded(m,s,t) ∧Response(a,b,s,t)) ∨
(Bad(a) ∨Bad(b))))

(KeyAB Injective)
∀k,a,b,a’,b’. KeyAB(k,a,b) ∧KeyAB(k,a’,b’)⇒ (a=a’) ∧ (b=b’)

(KeyAB Pub Bad)
∀a,b,k. KeyAB(k,a,b) ∧Pub(k)⇒Bad(a) ∨Bad(b)

The formula (KeyAB MACSays) is a definition for the library
predicate MACSays. It states the intended usage of keys in this
protocol by relating MACSays to the protocol-specific predicates
Request, Requested, Respond, Responded, and Bad. The definition
has four cases: the MAC is for an authentic request s formatted by
function request, the MAC is for an authentic response to a prior
request formatted by function response, or the sender is compro-
mised, or the receiver is compromised.

The formula (KeyAB Injective) is a theorem stating that each
key is used by a single pair of principals. Our informal invariant
on key usage (assumption (4)) directly follows, since KeyAB(k,a,b)
is a precondition of both client and server. The proof is by induc-
tion on any run of a program that assumes KeyAB only in the body
of mkKeyAB. It follows from a more general property of our li-
brary: hmac kgen returns a key built from a fresh name, hence this
key is different from any value previously recorded in any event.
Whenever a new event KeyAB(k,a,b) is assumed, and for any event
KeyAB(k’,a’,b’) previously assumed, we have k 6= k′, so any new
instance of (KeyAB Injective) holds. Conversely, we would not be
able to prove the theorem if mkKeyAB also (erroneously) assumed
KeyAB(k,b,a), for instance, as that might enable reflection attacks.

The formula (KeyAB Pub Bad) is a secrecy theorem for the
MAC keys allocated by the protocol, stating that those keys remain
secret until one of the two recorded owners is compromised. This
theorem validates our key-compromise model. Its proof goes as
follows. Relying on the postcondition of the call to hmac keygen
within mkKeyAB, we always have MKey(k) when KeyAB(k,a,b) is
assumed, hence we establish the lemma ∀a,b,k. KeyAB(k,a,b)⇒
MKey(k). By corollary C2, KeyAB(k,a,b) and Pub(k) thus imply that
∀m. MACSays(k,m). By inspecting (KeyAB MACSays), it suffices
to show that there always exists at least one value M such that
we have neither Requested(M,s) nor Responded(M,s,t), for any s, t.
This trivially follows from the definitions of these two predicates;
not every bytestring is a well-formatted request or response.

Refinement Types for the RPC Protocol Using F7, we check that
our protocol code (with the Net and Crypto library interfaces, and
the assumed formulas above) is a well-typed implementation of the
interface below.

Typed Interface for the RPC Protocol:

type payload = strpub
val request: s:payload→m:bytespub{Requested(m,s)}
val response: s:payload→ t:payload→m:bytespub{Responded(m,s,t)}
val service: payload→payload
type (;a:str,b:str)keyab = k:key {MKey(k) ∧KeyAB(k,a,b) }
val mkKeyAB: a:str→b:str→k: (;a,b)keyab
val client: a:str→b:str→k: (;a,b)keyab→payload→unit
val server: a:str→b:str→k: (;a,b)keyab→unit

This interface is similar but more precise than the one in F#. The
type payload is a refinement of string (str) that also states that the
payload is a public value, so that in particular it may be sent in the
clear. The value-dependent type keyab is a refinement of key that
also states that the key is a MAC key for messages from a to b.

We briefly comment on the (fully automated) usage of our
logical rules during typechecking.

• To type the calls to hmacsha1, the precondition follows from
the refinement in the type of k from either the first or the second
disjunct of (KeyAB MACSays).
• To type the calls to send, we rely on the postcondition of

hmacsha1 to show that the computed MAC is public.
• To type the leaked key k as keypub within setup, we need to

show Pub(k). This follows from MKey(k) (from the refinement
in the type of k), corollary C2, and the definition of MACSays,
using the just-assumed formula Bad(a) or Bad(b) to satisfy
either the third or the fourth disjunct of (KeyAB MACSays).
• To type the RecvRequest protocol assertion, we must prove

the formula Request(a,b,s)∨Bad(a)∨Bad(b) in a context where
we have KeyAB(k,a,b), Requested(v,s), and IsMAC(h,k,v). By
corollary C1, we have MACSays(k,v)∨Pub(k). By corollary C2,
we have MKey(k)∧Pub(k)⇒∀v. MACSays(k,v), so we obtain
MACSays(k,v) in both cases of the disjunction. By definition
of (KeyAB MACSays), this yields

(Requested(v,s) ∧∃s. (Requested(v,s) ∧Request(a,b,s))) ∨
(Requested(v,s) ∧∃s,t. (Responded(v,s,t) ∧Response(a,b,s,t))) ∨
Bad(a) ∨Bad(b)

which implies Request(a,b,s)∨Bad(a)∨Bad(b) by using the
properties of our formatting functions.

4. Semantic Safety by Modular Typing
This section develops the theory underpinning our verification tech-
nique. First, we introduce semantic safety, which allows us to make
inductive definitions of predicates in RCF. Second, we formalize
F7 modules within RCF, and in particular introduce refined mod-
ules, which are modules packaged with inductive definitions of
predicates and associated theorems.

Syntactic Safety by Typing (Review) We recall the operational
semantics and notion of syntactic safety for RCF, together with one
of the main theorems of Bengtson et al. (2008). The semantics of
expressions is defined by a small-step reduction relation, written
A→ A′, which is defined up to structural rearrangements, written
AV A′. We represent all reachable run-time program states using
expressions in special forms, named structures, ranged over by S. A
structure is a parallel composition of active subexpressions running
in parallel, within the same scope for all restricted names. (We
say a subexpression is active to mean that it occurs in evaluation
context, that is, nested within restriction, fork, or let-expressions.)



In particular, from a given structure, one can extract a finite set
of active assumptions and assertions. (This extraction is defined
for the whole structure, up to injective renamings on the restricted
names.)

• A C-structure is a structure whose active assumptions are ex-
actly {assume C1, . . . ,assume Cn} with C =C1∧·· ·∧Cn.
• A C-structure is syntactically statically safe if every RCF-

interpretation to satisfy C also satisfies each active assertion.
• An expression A is syntactically safe if and only if, for all

expressions A′ and structures S, if A→∗ A′ and A′ V S, then
S is syntactically statically safe.

THEOREM 2 (Bengtson et al. 2008)
If ∅ ` A : T , then A is syntactically safe.

Inductive Definitions and Semantic Safety by Typing A key
technique in this paper is to consider in RCF predicates given by
inductive rules, such as the predicates Bytes and Pub mentioned in
the previous section. We intend to define these predicates in RCF
by assuming Horn clauses corresponding to the inductive rules.
Formally, we introduce a standard notion of logic program, which
is guaranteed by the Tarski-Knaster fixpoint theorem to have a least
interpretation.

• A Horn clause is a closed formula ∀x1, . . . ,xk.(C1∧ ·· ·∧Cn⇒
C) where C1, . . . , Cn range over atomic formulas and equations
and C ranges over atomic formulas.
• A logic program, P, is a finite conjunction of Horn clauses.
• If P is a logic program, let IP be the least RCF-interpretation

to satisfy P (which exists uniquely, by Tarski-Knaster).

Syntactic safety asks assertions to hold in all interpretations
that satisfy the assumptions. Instead, if we move to considering
assumptions as inductive definitions, we want a weaker notion,
which we name semantic safety, that asks assertions to hold only in
the least interpretation that satisfies the assumptions. Considering
only the least interpretation allows us to prove safety by exploiting
theorems proved by induction and case analysis on the inductive
definitions.

• An expression is factual if and only if each of its assumptions
(active or not) is a logic program.
• A C-structure is semantically statically safe if the least RCF-

interpretation to satisfy C also satisfies each asserted formula.
• An expression A is semantically safe if and only if, for all

expressions A′ and structures S, if A→∗ A′ and A′ V S, then
S is semantically statically safe.

Semantic safety may not be well-defined if least interpretations
do not exist. A sufficient condition for semantic safety of expres-
sion A to be well-defined is when A is factual, for then the active as-
sumptions in each reachable structure form a logic program. Given
this condition, syntactic safety implies semantic safety, but not the
converse, since semantic safety may rely on properties of the least
interpretations.

In the following, we call such a property a “theorem of A”, and
state a new result for proving semantic safety for A.

• Let C be a theorem of A if and only if A is factual and, for all P,
IP satisfies C for all P-structures reachable from A.

THEOREM 3 Consider closed expression A and formula C where:
(1) the expression assume C � A is syntactically safe; and (2) C is
a theorem of A. Then A is semantically safe.

A Simple Formalization of Modules We formalize F7 modules
(including whole programs) and interfaces as RCF expression con-
texts and environments.

• A module X is an expression context of the form let x1 =
A1 in . . . let xn = An in where n≥ 0 and the bound variables xi
are distinct. We let bv(X) = {x1, . . . ,xn}. We treat the concrete
syntax for composing F# modules as syntactic sugar, writing
X1 X2 for the module X1[X2[ ]].
• An interface I is a typing environment µ1, . . . ,µn where each µi

is either an abstract type αi or a variable typing xi : Ti.
• We lift subtyping to interfaces by the following axioms and

rules, plus reflexivity and transitivity, and well-formedness con-
ditions (so that I <: I′ always implies I ` � and I′ ` �).

I0,(I1{T/α})<: I0,α, I1

I0,µ, I1 <: I0, I1

I0 ` T <: U
I0,x : T, I1 <: I0,x : U, I1

• A module X implements I in E, written E ` X ; I, when
E `X [(x1, . . . ,xn)] : (x1 : T1 ∗ . . . ∗ xn : Tn) and (xi : Ti)i=1..n <: I.

Refined Modules We use an expression context assume P � Y
to formalize the idea of a module Y packaged with a (closed) logic
program P to make inductive definitions of predicates. We call such
contexts refined modules. We want to exploit theorems following
from P when typechecking Y . To do so, we introduce the notion
of a contextual theorem, a theorem that holds in any expression
containing assume P � Y as a component.

• The support of a logic program is the set of predicate symbols
occurring in the head of any clause. The support of an expres-
sion or expression context is the support of its assumptions.
(Intuitively, the support is the set of predicates being defined.)
Logic programs, expressions, or expression contexts are inde-
pendent when their supports are disjoint.
• Let C be a contextual theorem of expression context assume P �

Y if and only if C is a theorem of assume P � Z[Y [A]] whenever
Z and A are factual and independent of assume P � Y .

When the following lemma applies, we can prove contextual
theorems from the inductive definitions P of assume P �Y , without
explicit consideration of the operational semantics.

LEMMA 1 (Contextual). Let C be a formula and P a logic pro-
gram such that, for all Q independent from P, the least RCF-
interpretation to satisfy P∧Q also satisfies C. If Y is an expres-
sion context independent from P, then C is a contextual theorem of
assume P � Y .

• Let a refined module be a triple M = (E,X , I) such that there
are closed formulas Mdef and Mthm, and a module Y where:

(1) X is factual and X = assume Mdef � Y ;

(2) E,Mdef,Mthm ` Y ; I;

(3) Mthm is a contextual theorem of X .

(When we write a formula such as Mdef as an environment entry,
we mean it as a shorthand for : {Mdef}where the type {Mdef}= :
unit{Mdef}, where each occurrence of stands for a fresh variable.
This type is only populated when Mdef holds, so the effect of the
entry is simply to add Mdef as a logical assumption.)

Our example relies on Lib, the composition of the library mod-
ules Data, Net, and Crypto, which together form a refined mod-
ule. Let Lib be the F# code of the library, that is, the composi-
tion Data Net Crypto of the code of the libraries. Let I7

L be the
F7 interface, which includes, for example, the functions labelled



“Refinement Types for MACs” in Section 3. The inductive defi-
nitions Libdef include formulas defining the Pub and Bytes predi-
cates, while Libthm includes the corollaries C1 and C2 in Section 3.

LEMMA 2 Lib = (∅,assume Libdef � Lib, I7
L) is a refined module.

As another example, our RPC protocol consists of a refined
module of the form: RPC = (I7

L ,assume RPCdef � RPC,(IL, IR)).
Let RPC be the F# code for the protocol. The inductive defini-
tions RPCdef include the right to left form of (KeyAB MACSays)
from Section 3. The theorems RPCthm include (KeyAB Injective),
(KeyAB Pub Bad), and the left to right form of (KeyAB MACSays)
from Section 3. The exported interface (IL, IR) is made available to
the opponent. Let IL be the library’s opponent interface, which is
excerpted in Section 3. Let IR be the protocol-specific opponent
interface from Section 3. As mentioned in that section, the mod-
ule below imports I7

L and exports its members at the more abstract
interface IL, by introducing abstract types such as bytespub with
representation type x: bytes {Pub(x)}.

LEMMA 3 RPC is a refined module.

Composition of Refined Modules
• We say M1 = (E1,X1, I1) composes with M2 = (E2,X2, I2) iff

I1 <: E2 and X1 and X2 are independent.

• For any triples M1 = (E1,assume Mdef
1 � Y1, I1) and M2 =

(E2,assume Mdef
2 � Y2, I2) their composition M1;M2 is the

triple (E1,assume (Mdef
1 ∧Mdef

2 ) � Y1[Y2], I2).

LEMMA 4 (Composition). If refined module M1 composes with
refined module M2 then M1;M2 is a refined module.

For example, the triple Lib;RPC is: (∅,assume (Libdef ∧
RPCdef) � L[Y ],(IL, IR)). By Lemma 4 (Composition), Lib;RPC is
a refined module.
Safety and Robust Safety by Typing for Modules
• A refined module (∅,X ,∅) is semantically safe if and only if,

the expression X [()] is semantically safe.
• An I-opponent is an opponent O such that I ` O : unit.
• A refined module (∅,X , I) is robustly safe if and only if, the

expression X [O] is semantically safe for every I-opponent O.

THEOREM 4 (Safety).
Every refined module (∅,X ,∅) is semantically safe.

THEOREM 5 (Robust Safety).
Every refined module (∅,X , I) is robustly safe.

We can now prove Theorem 1. We have that Lib;RPC =
(∅,X ,(IL, IR)) where X = assume (Libdef ∧RPCdef) � Lib[RPC]
is a refined module. By Theorem 5 (Robust Safety), (∅,X ,(IL, IR))
is robustly safe, which is to say that X [O] is semantically safe for
every opponent O with IL, IR ` O : unit.

5. Library Modules for Cryptographic Protocols
In this section, we describe intermediate refined modules, built on
top of the Crypto module, that implement derived mechanisms
and composite patterns commonly used in cryptographic protocol
implementations. We refer to the companion paper for a more
complete description, and for a detailed presentation of the Crypto
module. (Section 3 also presents its interface for MACs.) Both
modules are fully verified, and demonstrate the flexibility of our
approach. Relying on these libraries, their logical definitions, and
their theorems, we build (and verify) a series of modular protocols,
leading to Windows CardSpace.

Key Management The Principals library generalizes the treat-
ment of keys and principals illustrated in the example protocol of
Section 3. (To facilitate the comparison, we illustrate mostly the
treatment of MAC keys.) Instead of a fixed population of princi-
pals and keys, the library maintains a database of keys shared be-
tween an extensible set of principals. Pragmatically, this function-
ality may be implemented using some existing public-key infras-
tucture, or an in-memory database recording the outcome of prior
key-exchange protocols. Formally, our implementation of Princi-
pals relies on Db, a channel-based abstraction for databases.The
main purpose of the library is to systematically link cryptographic
keys to application-level principals, while keeping track of their
potential compromise.

Principal identifiers are represented by a type prin defined as
a public string. Each principal may have a number of MAC keys,
encryption keys, and public/private key pairs. The library maintains
a database that may be used by multiple protocols to store and
retrieve keys. Keys are grouped by usage (set by the protocol that
generates the key) to distinguish between the intended usage of
each key, and associated with one (for public/private keypairs) or
two principals. For instance, a MAC key mk managed by the library
for some usage "RPC" shared between principals a and b is given
the type (mk:key){MACKey("RPC",a,b,mk)} (where key is the type
of keys in Crypto). For managed MAC keys, Principals provides
functions:

private val mkMACKey: u:usage→a:prin→b:prin→
mk:key{MACKey(u,a,b,mk)}

val genMACKey: u:usage→a:prin→b:prin→unit
private val getMACKey: u:usage→a:prin→b:prin→

mk:key{MACKey(u,a,b,mk)}

The function mkMACKey generates and returns a fresh MAC;
genMACKey calls mkMACKey then stores the key in the database;
getMACKey retrieves a key from the database. Of these three func-
tions, only genMACKey is available in the opponent interface.

Managed keys can be used for standard cryptographic opera-
tions. To this end, Principals links key-level predicates used in
Crypto (defined by Principals) to principal-level predicates (to
be defined by the protocol): Send(u,a,b,s) means that the princi-
pal a intends to MAC s before sending it to b; Encrypt(u,a,b,s)
records that s may be encrypted towards b using symmetric encryp-
tion; SendFrom and EncryptTo similarly record intended asymmet-
ric signatures and asymmetric encryption with a managed key. The
Principals library also provides functions for compromising keys.
Compromise is dealt with at the level of principals: Bad(a) indi-
cates that principal a has been compromised, and thus that all the
keys it could access may have been leaked. For MACs, for instance,
the library interface assumes the formulas below.

MAC Key Usage:

(MACKey MACSays Send)
∀u,a,b,mk,m. MACKey(u,a,b,mk) ∧Send(u,a,b,m)⇒MACSays(mk,m)
(MACKey MACSays Bad)
∀u,a,b,mk,m. MACKey(u,a,b,mk) ∧ (Bad(a) ∨Bad(b))⇒MACSays(mk,m)
(Inv MACKey MACSays)
∀u,a,b,mk,m. MACKey(u,a,b,mk) ∧MACSays(mk,m)⇒

(Send(u,a,b,m) ∨Bad(a) ∨Bad(b))
(MACKey Secrecy)
∀u,a,b,mk. MACKey(u,a,b,mk) ∧Pub(mk)⇒

(Bad(a) ∨Bad(b) ∨∀v. Send(u,a,b,v))

The two first clauses are definitions, enabling hmacsha1 to be
called with a managed MAC key once the protocol has assumed
an adequate definition of Send, with a more liberal precondition
in case of compromise. The third and fourth clauses are theorems:
MAC verification with a managed key yields a principal-level guar-



antee; and a MAC key shared between two principals remains se-
cret until one of them gets compromised.

Our model of key compromise is among the most general mod-
els for protocol verification. It supports three kinds of keys: those
generated by the attacker, those generated by the principals library
and kept secret, and those generated by the principals library and
leaked to the attacker. It allows cryptographic operations to be per-
formed with all three categories of keys. Moreover, all keys may be
encrypted, MACed, or signed under other keys. For instance, if a
key is used to encrypt some collection of other keys (as tracked by
Send), our logical model rightfully demands, as a precondition for
compromising any principal with access to that key, that the condi-
tions for leaking each of these encrypted keys be also recursively
satisfied. Although this leads to complex refinement types and as-
sumptions, most of this complexity is factored out in the library and
can be used with a low overhead.

Recall that LibX is the composition of Lib, Db, and Xml.

LEMMA 5 LibX;Principals is a refined module.

Authenticated Encryption The Crypto module provides plain
(unauthenticated) symmetric encryption:
Refinement Types for Encryption (from the Crypto library):

private val aes keygen: unit→k:key{SKey(k)}
val aes encrypt: (* AES CBC *)

k:key→
b:bytes{(SKey(k) ∧CanSymEncrypt(k,b)) ∨ (Pub(k) ∧Pub(b))}→
e:bytes{IsEncryption(e,k,b)}

val aes decrypt: (* AES CBC *)
k:key{SKey(k) ∨Pub(k)}→e:bytes→
b:bytes{(∀p. IsEncryption(e,k,p)⇒b = p) ∧ (Pub(k)⇒Pub(b))}

The function aes keygen generates symmetric keys, logically
tracked by SKey; aes encrypt can be called in two ways: either with
a “good” key k generated by aes keygen and a plaintext b such that
CanSymEncrypt(k,b) holds, or with any public k and b (known to
or provided by the attacker); it returns encrypted bytes e, tracked
by IsEncryption; aes decrypt takes a key k and bytes e and extracts
a plaintext b. Since encryption is unauthenticated, decryption may
succeed even if e is not a valid encryption, returning some unspec-
ified (garbage) bytes, so the first postcondition of aes decrypt just
says that, if the caller knows that e is an encryption of some (pos-
sibly unknown) plaintext p under e, then decryption does returns p.
(The second postcondition enables re-encryptions.)

The Patterns module shows how to derive authenticated en-
cryption, for each of the three standard composition methods for
encryption and MACs (see, e.g., Bellare and Namprempre 2008).
Encrypt-then-MAC (as in IPSEC in tunnel mode):
a→ b: e | hmacsha1 km

ab e where e = aes ke
ab t

MAC-then-Encrypt (as in SSL/TLS):
a→ b: aes ke

ab (t | hmacsha1 km
ab t)

MAC-and-Encrypt (as in SSH):
a→ b: aes ke

ab t | hmacsha1 km
ab t

Depending on the method, the message is first encrypted, then
the encryption is MACed, or the message is first MACed and then
both the message and the MAC are encrypted, or the message is
first MACed but the MAC is left unencrypted. For each method,
the goal is to securely communicate plaintexts t from a to b relying
on pre-established shared keys, but the underlying cryptographic
assumptions slightly differ. Cryptographers prefer the first method,
as it prevents chosen-ciphertext attacks and does not require se-
crecy assumptions on the MAC function. We implemented and ver-
ified all three (using a secrecy-preserving MAC in the third case,

as expected). We focus on encrypt-then-MAC, since this was not
implementable in our previous work with F7.
Authenticated Encryption API:

val authenc keygen: unit→ (ek:key ∗ mk:key){AuthEncKeyPair(ek,mk)}
val encrypt then mac: ek:key→mk:key→

b:bytes{(AuthEncKeyPair(ek,mk) ∧CanSymEncrypt(ek,b)) ∨
(Pub(ek) ∧Pub(mk) ∧Pub(b))}→

e:bytes{IsAuthEncryption(e,ek,mk,b)}
val verify then decrypt:

ek:key→
mk:key{(AuthEncKeyPair(ek,mk) ∨ (Pub(ek) ∧Pub(mk)))}→
e:bytes→
b:bytes{(CanSymEncrypt(ek,b) ∨Pub(ek)) ∧ (Pub(ek)⇒Pub(b))}

The function AuthEncKeyPair links pairs of keys for the method;
encryption returns a concatenation of an encryption and a MAC,
tracked by IsAuthEncryption. verify then decrypt has a stronger
postcondition than aes decrypt; its result must have been encrypted
using encrypt then mac, thereby excluding garbage. To verify these
functions and obtain both integrity and confidentiality for b, for
each key pair, we link MACSays(mk,b) and CanSymEncrypt(ek,e)
to get both integrity and confidentiality for b:
Authenticated Encryption Key Usage:
(AuthEncKeyPair MACSays)
∀mk,ek,c,p. AuthEncKeyPair(ek,mk) ∧ IsEncryption(c,ek,p) ∧

CanSymEncrypt(ek,p)⇒MACSays(mk,c)

The correctness of verify then decrypt relies on theorems stat-
ing that this is the only use of these keys, and linking their potential
compromise.
Hybrid encryption Hybrid encryption is the standard method of
implementing public-key encryption for large plaintexts: generate
a fresh symmetric key; use it to encrypt the plaintext; then encrypt
the key using the public key of the intended receiver.
Hybrid Encryption:
a→ b: rsa oaep pkb kab | aes kab t

This hybrid encryption combines authenticated asymmetric en-
cryption (RSA-OAEP) with unauthenticated symmetric encryption,
and provides unauthenticated asymmetric encryption (analogous to
RSA without OAEP). The library has three functions for it:
Hybrid Encryption API:

val hybrid keygen: unit→ (pk:key ∗ sk:key)
{HyPubKey(pk) ∧HyPrivKey(sk) ∧PubPrivKeyPair(pk,sk)}

val hybridEncrypt: k:key→b:bytes
{(HyPubKey(k) ∧CanHyEncrypt(k,b)) ∨ (Pub(k)∧Pub(b)) }→
e:bytes{IsHyEncryption(e,k,b)}

val hybridDecrypt: sk:key→
e:bytes{HyPrivKey(sk)∨ (Pub(sk)∧Pub(e))}→
b:bytes{(∀pk,x. (PubPrivKeyPair(pk,sk)
∧ IsHyEncryption(e,pk,x))⇒x = b) ∧ (Pub(sk)⇒Pub(b))}

Their code is straightforward, but their verification is chal-
lenging (since it must rely on the assumption that the symmetric
key is used for a single hybrid encryption). Predicates HyPubKey,
HyPrivKey, and HySymKey track the three kinds of keys used in the
code. The protocol-defined precondition of hybridEncrypt is linked
to the underlying CanSymEncrypt and CanAsymEncrypt crypto-
graphic predicates as follows:
Hybrid Encryption Key Usage:

(HyPubKey CanAsymEncrypt)
∀pk,kb. HyPubKey(pk) ∧HySymKey(SymKey(kb),pk)⇒

CanAsymEncrypt(pk,kb)
(HySymKey CanSymEncrypt)
∀pk,k,b. HySymKey(k,pk) ∧CanHyEncrypt(pk,b)⇒CanSymEncrypt(k,b)



To typecheck hybridDecrypt, we establish theorems stating that
hybrid encryption keys are used only as above, and linking the com-
promise of the inner symmetric encryption key to that of the outer
private key. After hiding auxiliary predicates, hybrid encryption has
exactly the same interface as plain RSA in Crypto, showing that
the derivation does not entail any loss of flexibility.

Derived Keys and Endorsing Signatures The library also pro-
vides support for deriving separate keys from a secret seed, and for
endorsing signatures (that is, composing MACs and asymmetric
signatures).

LEMMA 6 LibX;Patterns is a refined module.

Example: The Otway-Rees Protocol Using the Principals and
Patterns libraries, we can build up several protocol implementa-
tions and establish their security with minimal effort. We outline
our implementation of the Otway-Rees protocol, a well-known aca-
demic protocol for establishing a fresh short-term key between two
principals a and b.

Otway-Rees Protocol:
1. a→ b: id | a | b | aenc ka (na | id | a | b)
2. b→ s: id | a | b | aenc ka (na | id | a | b)

| aenc kb (nb | id | a | b)
3. s→ b: id | aenc ka (na | kab) | aenc kb (nb | kab)
4. b→ a: id | aenc ka (na | kab)

Here, aenc k x stands for the authenticated encryption of x
under the key pair k, implemented using the Encrypt-Then-MAC
mechanism. Using Principals we create a population of principals,
ranged over by p, together with a server s. The server shares a set
of long-term key pairs with principals. Each long-term key pair kp
is associated with and known to principal p and to s.

The main authentication goal is that a, b, and s agree on all the
main parameters of the protocol: the principals involved a, b, s, the
session identifier id, and the established key kab. The main secrecy
goal is that kab must be known only to a, b, and s. These goals are
established mainly by typing the code against the Principals and
Patterns interfaces. The only theorems proved by hand state the
freshness of nonces and keys generated in the protocol.

LEMMA 7 LibX;Patterns;Principals;OtwayRees is a refined
module.

Example: Secure Conversations Next, we build a protocol for
authenticated conversations between two principals. To illustrate
compositionality, the key k is established by the Otway-Rees pro-
tocol, then used for authenticated encryption, as described above.

Session Sequence Integrity (initially i = 1):
i . a→ b: id | aenc k (i | mi)
i+1. b→ a: id | aenc k (i+1 | mi+1)

After key establishment, the conversation protocol loops be-
tween request and response messages, incrementing a sequence
number at each step. The authentication goal is that a and b must
agree on the full sequence of messages (mi)i≥1 sent and received
(possibly excluding the last message in transit). Verification of such
unbounded protocols is typically beyond the reach of automated
verification tools, since it requires a form of induction. Nonethe-
less, we are able to implement and verify this protocol by typing,
relying on recursive predicates that record the entire history of the
session, and show that the local histories at both a and b are consis-
tent.

LEMMA 8 LibX;Patterns;Principals;OtwayRees;Sessions is a
refined module.

6. Case Study: Windows CardSpace
We describe our main
case study, verifying
an implementation of
the federated identity-
management protocol
Windows CardSpace.
The protocol con-
sists of three roles, a
client C, a web server
(named relying party) RP, and an identity provider IP. To ac-
cess RP, C first obtains an identity token from IP, and then uses this
token to authenticate its messages to RP. Hence, the protocol uses
two message exchanges, between C and IP then between C and RP.
Structurally, CardSpace is similar to many other server-based iden-
tification protocols, such as Kerberos, Passport, and SAML. A dis-
tinguishing feature is that it is built using the standard mechanisms
of web services security.

Our code is written in F# and was developed for an earlier
verification case study (Bhargavan et al. 2008b) using ProVerif.
Its modular structure is shown in the figure on the first page. In
addition to the trusted libraries LibX and the protocol libraries
Principals and Patterns, the implementation consists of library
modules implementing various web services security specifications
and modules implementing the CardSpace protocol. (We added
type annotations, but did not need to change any code for the XML
protocol stack.)
Flexible Message Formats: XML Digital Signatures In stan-
dardized protocols such as CardSpace, most of the programming
effort is in correctly implementing the message formats for inter-
operability. Protocols built on web service security must also deal
with the inherently flexible nature of the XML message format.

An XML signature is far more than a few bytes containing a
MAC or signature value; it carries XML metadata indicating how
those bytes were computed (in two stages) and how to use the
signature. For the first stage, it embeds a list of references to the
XML elements it is authenticating, a cryptographic hash of each of
these elements, and the names of algorithms used to canonicalize
and hash those elements; for the second stage, it embeds a signature
computed on those hashes, its algorithm, and a reference to its
signing key. For example, a typical signature of n elements t1, . . . ,
tn using an RSA signing key ska takes the form:
<Signature>
si= <SignedInfo> ...

<Reference uri="#1">
<Transforms> <Transform Algorithm=C14n /> </>
<DigestMethod Algorithm=SHA1 />
<DigestValue> base64 (sha1 (utf8 (c14n t1))) </>

</Reference>
...
<Reference uri="#n"> ...
</Reference>

</SignedInfo>
<SignatureValue> base64 (rsa sign ska (utf8 (c14n si)))</>
<KeyInfo>... a’s X.509 Certificate ...</>

</Signature>

To process such a signature, the verifier retrieves the elements,
verification key, and the algorithms, and reconstructs the signature
value. The signature may include any number of target elements,
so the verifier may have to check a signature of unbounded length.
This is beyond most cryptographic verification techniques: earlier
analyses of XML signature protocols limit the maximum number
of signed elements, essentially treating lists as tuples (Bhargavan
et al. 2006a; Kleiner and Roscoe 2005). With explicit type an-
notations, however, we capture the full flexibility of XML signa-
tures. We use a recursive predicate IsReferenceList to represent the
list of <Reference> elements, and use it to define a predicate



Protocols and Libraries F# Program F7 Typechecking FS2PV Verification
Modules Implementation Interface Checking Time Queries Verifying Time

Trusted Libraries (Symbolic) 5 926 lines∗ 1167 lines 29s (Not Verified Separately)
RPC Protocol (Section 3) 5+1 + 91 lines + 103 lines 10s 4 6.65s
Principals (Section 5) 1 207 lines 253 lines 9s (Not Verified Separately)
Cryptographic Patterns (Section 5) 1 250 lines 260 lines 17.1s (Not Verified Separately)
Otway-Rees (Section 5) 2+1 + 234 lines + 255 lines 1m 29.9s 10 8m 2.2s
Otway-Rees (No MACs) 2+1 + 265 lines - (Type Incorrect) 10 2m 19.2s
Secure Conversations 2+1+1 + 123 lines + 111 lines 29.64s (Cannot Be Verified)
Web Services Security Library 7 1702 lines 475 lines 48.81s (Not Verified Separately)
X.509-based Client Auth (Section 6) 7+1 + 88 lines + 22 lines + 10.8s 2 20.2s
Password-X.509 Mutual Auth 7+1 + 129 lines + 44 lines + 12.0s 15 44m
X.509-based Mutual Auth (Section 6) 7+1 + 111 lines + 53 lines + 10.9s 18 51m
Windows CardSpace (Section 6) 7+1+1 + 1429 lines + 309 lines + 6m 3s 6 66m 21s∗

IsSignedInfo that reflects the schema of the <SignedInfo> ele-
ment. We enforce the invariant that all messages signed with XML
signature keys have the structure defined in IsSignedInfo.

Using similar predicates, we verify modules implementing
each of the needed web services security specifications. We write
LibWS for our web services security library composed of LibX,
Principals, Patterns, SOAP, WS-Addressing, XML-Signature,
XML-Encryption, WS-Security, and WS-Trust.

LEMMA 9 LibWS is a refined module.

Composing Cryptographic Patterns: Secure XML Request/Re-
sponse Each message exchange in CardSpace implements a se-
cure request/response protocol built on top of the web services se-
curity library. Unlike the RPC protocol of Section 3, this protocol
guarantees both authentication and confidentiality, and uses many
of the composite cryptographic patterns introduced in Section 5.
XML flexibility also has a cost: the messages we verify are large
(up to 15k) and complex (up to 17 cryptographic operations).

We describe an instance of the protocol using asymmetric keys.
Assume principal a has a private key ska, b has a public key pkb,
and both a and b have exchanged their public keys using X.509
certificates. The protocol below uses four cryptographic patterns
implemented for XML: derived keys, hybrid encryption, sign-then-
encrypt, and endorsing signatures.

Secure XML Request/Response (X.509 Mutual Authentication):
a: Generate kab, n1, n2
a: Derive k1 = psha1 kab n1, k2 = psha1 kab n2

1. a→ b: rsa pkb kab | n1 | n2
| XML-Encrypt k2 S1 (where S1 = XML-Sign k1 [m1])
| XML-Encrypt k2 S2 (where S2 = XML-Sign ska [S1])
| XML-Encrypt k2 m1

b: Generate n3, n4
b: Derive k3 = psha1 kab n3, k4 = psha1 kab n4

2. b→ a: n3 | n4
| XML-Encrypt k4 S3 (where S3 = XML-Sign k3 m2)
| XML-Encrypt k4 m2

Before sending the request (message 1), a generates a fresh
keyseed kab and two nonces n1 and n2. It uses kab and the nonces
to derive a MAC key k1 and an encryption key k2. It signs the
message m1 with k1 to obtain the XML signature S1, and then signs
S1 with ska to obtain the endorsing XML signature S2. Finally, it
separately encrypts S1, S2, and m1 with the encryption key k2. The
response (message 2) is simpler; b derives two keys k3 and k4 and
uses them to sign and then encrypt the response message m2.

The security goals are mutual authentication of a and b, plus
authentication and secrecy of m1 and m2. These goals are verified
by typechecking the protocol code against the web services security
library LibWS (including Patterns).

LEMMA 10 LibWS;SecureRPC is a refined module.

Composing Protocols: CardSpace We assemble CardSpace by
composing two XML request/response exchanges. To avoid repeat-
ing the message formats, we abstractly represent each request mes-
sage by Requesti k1 k2 [m1; . . . ;mn], where k1 and k2 are the keys
of the sender and recipient (ska and pkb in the XML request/re-
sponse protocol above), and [m1; . . . ;mn] is the list of message el-
ements protected by the protocol (m1 above). The corresponding
responses are represented by Responsei [m1; . . . ;mn].

CardSpace Protocol (using X.509 Mutual Authentication):
1. C→ IP: Request1 skC pkIP [TokenRequest(RP, pkRP)]

IP: Issue token t = Token(id,C,RP,kt)
2. IP→C: Response1 [t;XML-Encrypt pkRP t]
3. C→ RP: Request2 kt pkRP [t;m1]
4. RP→C: Response2 [m2]

In the first exchange, the client C requests a token from identity
provider IP for use at RP. The IP responds with a signed token t (in
the syntax of SAML), containing C’s identity information id, and
a key kt that C may use at RP to prove its possession of t. The IP
also encrypts t for RP and sends it to C; C forwards this token in
its subsequent request to RP, and uses the key kt to authenticate the
request (m1). The RP decrypts the token t and checks IP’s signature
on it to convince itself of C’s identity, before responding with m2.

The security goal of the protocol is the authentication of C’s
identity id at RP, and the secrecy and authentication of m1 and m2.

LEMMA 11 LibWS;SecureRPC;CardSpace is a refined module.

7. Performance Evaluation
The table above summarizes our verification results for the proto-
cols and libraries described in this paper. Each row lists the number
of modules and lines of code in the F# protocol implementation,
the number of lines in the F7 typed interface, and the time for ver-
ification by typechecking. The F7 interface extends the F# module
interface with security assumptions, theorems, and goals, as well
as type annotations needed for verification. For comparison, the ta-
ble also lists, where applicable, the results of verifying the proto-
col implementation through the FS2PV/ProVerif tool chain: it lists
the number of queries (security goals) proved and their verification
time. All experiments were performed on an Intel Xeon workstation
with two processors at 2.83 GHz, with 32GB memory, and running
Windows Server 2008. (Most of these ProVerif results have been
published in earlier work.)

The first part of the table corresponds to the RPC protocol
of Section 3. The first row is for the trusted libraries Lib; the ∗
indicates that we verify their idealized symbolic implementation,
not their concrete code. The second row is for the RPC protocol;
since the libraries are verified once and for all, this row shows only
the incremental lines of code and type checking for verifying RPC.
In contrast, ProVerif verifies both Lib and RPC together. For small
examples such as this, we find that the domain-specific analysis of
ProVerif is faster than F7.



The second part corresponds to the libraries and protocols of
Section 5. The first and second rows are for Principals and Pat-
terns. The third row corresponds to the Otway-Rees protocol. We
find that the incremental typechecking time of Otway-Rees is only
1m 29.9s, whereas ProVerif takes 8m 2.2s to verify the protocol.
Even adding verification times for the libraries, we find that type-
checking with F7 is much faster than ProVerif. Our typed cryp-
tography is more realistic than typical ProVerif models; for in-
stance it tells the difference between authenticated and unauthen-
ticated encryption: with unauthenticated encryption, typechecking
fails to verify Otway-Rees (fourth row) but ProVerif still succeeds.
(Weaker assumptions can sometimes be coded in ProVerif but are
not provided by default.) The protocol in the fifth row implements
the unbounded secure conversations protocol. The typechecker eas-
ily verifies this recursive code, but ProVerif cannot, and fails to
terminate. For recursive code, typechecking let the programmer
provide hand-written (recursive) invariants; fully automated model
checkers and theorem provers (like ProVerif) lack this facility.

The third part corresponds to protocols of Section 6, arranged
in increasing complexity leading up to the CardSpace protocol.
The first row presents verification results for the web services se-
curity libraries LibWS. We then present verification results for
a single-message client authentication protocol, two secure re-
quest/response protocols, and the CardSpace protocol. We find that
the incremental typechecking time scales almost linearly with the
size of the protocol code. In contrast, the ProVerif verification time
increases exponentially with the protocol complexity (for each ex-
tra layer of encryption or signature, or each extra message). For
instance, ProVerif takes less than a minute to analyze the client
authentication protocol but up to an hour to verify mutual authen-
tication protocols. The jump in analysis time is primarily because
ProVerif has to account for all possible dependencies between the
two messages, such as whether the adversary may use the second
message of a session to compromise the first message of another
session. The increase in verification complexity makes it infeasi-
ble to verify the whole CardSpace protocol using ProVerif. Indeed,
in the last row of the table, the ∗ indicates that the ProVerif ver-
ification only applies when the number of clients and servers are
limited to at most two each (one honest and one compromised prin-
cipal for each role) and when the full XML message formats in the
web services security libraries are abstractly represented as tuples.
Even with these restrictions, ProVerif takes 66m 21s to verify the
protocol implementation. In contrast, typechecking incrementally
verifies CardSpace in a few minutes.

We conclude that typechecking scales far better than whole-
program analyses for security protocols. As a trade-off, the pro-
grammer must declare their usage of cryptography by providing
annotations in the typed interface of each protocol.

8. Related Work
FS2CV (Bhargavan et al. 2008a) is the first tool to verify properties
in the computational model of implementation code of security
protocols. FS2CV generates inputs to CryptoVerif (Blanchet 2006)
from the implementation code in F#. It has been applied to an F#
implementation of TLS.

ASPIER (Chaki and Datta 2009) has been applied to verify
code of the central loop of OpenSSL. It performs no interproce-
dural analysis and relies on unverified user-supplied abstractions
of all functions called from the central loop. ASPIER is based
on software model-checking techniques, and proves properties of
OpenSSL assuming bounded numbers of active sessions

The RCF system of refinement types is similar to that of recent
systems such as SAGE (Flanagan 2006) and Dsolve (Rondon et al.
2008), although neither of these systems allows full first-order

formulas as refinements. Still, we expect with a little adaptation
tools such as these could support our method.
Acknowledgements François Dupressoir, Nataliya Guts, and
Cătălin Hriţcu suggested improvements to the paper.
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