
Towards Mixed-Initiative Access Control

Prasun Dewan
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599, USA

dewan@cs.unc.edu

Jonathan Grudin and Eric Horvitz
Microsoft Research
One Microsoft Way

Redmond, WA 98052
jgrudin@microsoft.com horvitz@microsoft.com

Abstract— The difficult task of providing access to shared objects
is, typically, carried out individually by access authorizers. Using
a presence-based “thought experiment” and an abstract
architecture, we motivate and explain here the idea of using
distributed collaborative environments to perform this activity.
In these environments, the initiative in distributing access rights
to shared objects can be taken by information guardians,
information consumers, and tools that act as agents of the
guardians and consumers. Information consumers are
responsible for sending access requests to information guardians;
their agents (partially or completely) automate this task for them.
Information guardians are responsible for authorizing accesses;
their agents automate this task for them.

Keywords- access authorization; information privacy models;
mixed-initiative dialogues; role-based access control; context-
specific presence; presence rights; right amplication; optimistic
access control; interactive access control; mixed-initiative
interaction.

I. INTRODUCTION

There are several components of security (Figure 1):
authentication, which checks that users are who they claim to
be; access control, which ensures that authenticated users to do
not make unauthorized changes to information stored in a
computer; cryptography, which guards information transmitted
on the network; and intrusion detection, which protects a
computer from attacks from other computers. This paper
focuses on access control.

Figure 1 Access Control vs. Computer Security

Access control is related to privacy. Privacy is used to
guard information about (a) users, such as their social security
numbers and buying information, and (b) users’ presence, that
is, their activities on the computer, such as whether they are
currently logged on. Access control is more general than
privacy as it guards any information stored on a computer. The
example we present focuses on presence-control, though the

general idea we propose should apply to arbitrary forms of
access control.

 Access control has been a fundamental component of
systems allowing multiple users to share resources. However,
despite being researched extensively in the last three decades,
existing access-control mechanisms continue to be difficult to
use. In theory, access control is not difficult as mechanisms can
be provided to guard any computer-stored information.
Moreover, there is a correctness criterion for exercising these
controls, called the “need to know” or “least privilege”
principle: People should have access to only the information
they need to know do their jobs. However, in practice, access
control is a difficult problem because of the following situation
we face today:

 Object-specific control: People wish to provide different
controls for different objects. For example, most people
are willing to share their work-telephone but not their
social-security numbers with co-workers [1].

 User-specific controls: For many objects, such as “in-
progress work,” users show a high degree of variability in
their privacy preferences [1].

 Task-based control: Users often care about the need to
know principle [1, 2]. For example, co-PIs on NSF
projects are willing to share their social security numbers
with a PI only because Fastlane does not allow them to be
made co-PIs without this information. However, it is
difficult to follow this principle without knowing the tasks
for which a right may be used. Traditional access control
does not directly tie access distribution to tasks. Not
surprising, then, an industrial survey found that one out of
three people in an organization has wrong access rights
[3].

 Obscure specification mechanisms: The reason for the
wrong access rights might be due to a misunderstanding of
not only the needs of users and but also the mechanisms
used to distribute rights. There is anecdotal evidence to
show that traditional access control is indeed hard to use.
For instance, while the first author was on sabbatical at
Microsoft, it was difficult for him to find and understand
the access controls provided by Microsoft’s SharePoint, a
wide-area repository. He had to send a message to a large
mailing group at Microsoft before he could set the desired
permissions, and only one person responded with the
correct answer. Moreover, he keeps a manual of AFS, a

AuthenticationAuthentication

Access ControlAccess Control

Encryption

Intrusion Detection

N
etw

ork
N

etw
ork

 This research was funded in part by Microsoft and NSF grants ANI
0229998, EIA 03-03590, IIS 0312328, and IIS 0712794

popular file system, on his physical desk at UNC solely for
the purpose of looking up the access control commands,
which he can never remember. Similarly, whenever he
teaches access control, he asks his students if they know
about right inheritance in AFS and Windows, and the
difference between (a) modify and write rights in
Windows and (b) read and lookup rights in AFS. Few
students understand these concepts. The situation for non-
CS majors is bound to be worse.

Some of these problems conflict with each other. In
particular, many users address the obscure-mechanism problem
by using a coarse-grained access control policy in which they
make all objects private except a special public directory,
which is accessible to all authenticated users. When an object
has to be shared, rather than worrying about how to set its
permissions, they simply copy it to the public directory. This
approach conflicts with their desire for object, user and task
specific controls. For the “privacy unconcerned” [1], it results
in increased security risks because some information (such as a
joint proposal) not intended for everyone is stored in public
directories. On the other hand, for the “privacy
fundamentalists” [1], it reduces the chances for possible
collaboration as certain collaboration-enabling data such as
calendars are not shared with potential collaborators. Finally, it
creates multiple copies of the same object, which can easily
become inconsistent.

Existing systems-research on this topic has tried to address
the usability problems by providing high-level languages to
specify access rights that allow a single specification to give a
large number of rights [4]. In this paper, we propose and
motivate a radically different, but complementary, approach
that is based on the following two observations (a) access-
control is an inherently complex collaborative activity (carried
out to support a more primary collaborative activity such as
document editing) involving one or more information
guardians and consumers, and (b) collaborative environments
can make it easier to perform group tasks by automating some
of these tasks and providing formal interactive channels for the
collaborators to communicate with each other.

Traditional systems provide abstractions that assume that
the difficult task of providing access to different users is carried
out individually by people manually playing the role of access
authorizers. Based on the two observations above, we propose
here the idea of designing collaborative environments to ease
the setting of both general and item-specific privileges. In these
environments, the initiative in distributing access rights to
shared objects can be taken by information guardians,
information consumers, and tools that act as agents of the
guardians and consumers. Hence, we refer to this form of
access control as mixed-initiative, which is special case of the
general idea of mixed-initiative interaction [23]. Information
consumers are responsible for sending access requests to
information guardians; their agents (partially or completely)
automate this task for them. Information guardians are
responsible for authorizing accesses; their agents automate this
task for them. Figure 2 shows the difference between
traditional and mixed-initiative access control. The box on the
left contains the shared objects to be protected. With
traditional access control, its guardians are individually

responsible of distributing access to different parts of it, though
they may use general-purpose, informal communication
channels such as email and instant messaging to consult with
others. With mixed-initiative access control, a special
collaborative environment, shown on the right, is created for
this task. The environment provides consumer and guardian
agents, and offers explicit support for the agents to work with
the humans. Our expectation is that the specialized controlling
collaborative environment can address key impediments to the
fluidity of access control, solving some long-standing security
problems that have been exacerbated with the increased interest
in distributed programmer-defined shared environments such
as web portals.

Figure 2 Traditional vs. Mixed-Initiative Access Control

Access control is needed to support collaborative systems –
without collaboration there would no sharing and thus no need
for protection. Put another way, collaboration is the problem
addressed by access control. Mixed-initiative access control,
interestingly, makes collaboration systems also part of the
solution to problems with current access-control problems.
Figure 3 shows this symbiotic relationship between
collaborative systems and (mixed-initiative) access control.

Figure 3 The Symbiotic Relationship Between
Collaborative Systems and Access Control

Mixed-initiative access control is related to both general
models of access control and specific applications developed
recently.

II. RELATED WORK

A. General models

The classical matrix model, proposed by Lampson [5] and
refined by Graham and Denning [6], provides a general
framework for understanding and automating access control.
The protection state of the system is represented by the
abstraction of an access matrix, A. The columns of the matrix
represent the protected objects, the rows the subjects
(users/processes) from whom the objects are protected, and an
entry, A(s,o), denotes the access rights subject s has over object
o. As the access matrix is normally sparse, containing many

CalendarCalendar

File System

Presence

Consumer
Agents

Consumer
Agents

Guardian
Agents

Guardian
AgentsM

ix
ed

-I
ni

tia
tiv

e
A

C

T
ra

di
tio

na
l A

cc
es

s
C

on
tr

ol

Protected Objects Controlling Collaborative
Environment

Consumer

Guardian

Guardian Web PortalWeb Portal

Workspace

Collaborative
Systems

Collaborative
Systems

Access ControlAccess Control

Problem

Solution Problem

Solution

entries with no rights, it is stored as a series of lists. Some
systems store with each object an access control list, consisting
of (subject, rights) pairs, while others store with each subject a
capability (popularly known today as a cookie or token) list of
(object, rights) pairs. In either case, the list does not contain
entries that have empty rights. Even then, it is unacceptably
time consuming to specify all the elements of a list [7].
Therefore, most modern systems such as Unix, AFS, and
Windows allow one access-specification to be made for a
group of access matrix cells. In particular, they support roles,
that is, groups of users associated with access rights. By
assigning a user to a role, it is possible to give him/her all rights
associated with the role. Such grouping not only eases the
specification task, but also makes it easy to understand how
rights are distributed in an organization. Shen and Dewan [8,
9] have abstracted and generalized such grouping through
extensions to the matrix model (Figure 4). In the extended
model, the rows represent both subjects (e.g. Grudin) and
subject-groups (e.g. AllUsers), the columns represent both
objects (e.g. files) and object-groups (e.g. directories), and the
cells contain both rights (e.g. Read) and right-groups
(FullControl). When determining if subject s has right r to
object o, the system first checks if A(s,o) contains r. If not, it
determines if a predefined inference function, F(s,o,r,A)
evaluates to true. F searches matrix entries corresponding to
groups of subjects, objects and rights. To illustrate, assume that
user Horvitz tries to access file Abstract in directory Mixed-
Initiative, given the extended access matrix of Figure 4. He is
allowed to make the access as AllUsers have been given Read
access to all objects in the directory Mixed-Initiative. A
problem with this approach is that the access matrix may now
have inconsistent entries. Jajodia et al [10] have developed a
model that supports multiple approaches to resolve this issue.
Another problem is converting an existing access matrix
without grouping to one with grouping. Recent work in role
mining has addressed this problem for user-groups [11]. The
original access matrix associated an entry with a single owner.
Dewan and Shen have motivated and described a mechanism
for supporting joint ownership [12]. Another important issue,
required to support optimistic access control discussed below,
is revocation of granted rights. In capability-based systems,
indirect capabilities have been used to easily support this idea.
Traditional systems based on access control lists have required
a much more complex infrastructure [13] for revocation. For
such systems, Dewan and Shen [12] describe a simpler
mechanism based on indirect roles to revoke granted rights.
Tolone et al [4] provide a survey of access control mechanisms
in collaborative systems.

Specific applications: The vast majority of traditional and
new collaborative systems such as file systems, Web portals,
and conferencing systems implement various subsets of the
general models described above. Some recent applications do
have important novel ideas not included in the general models.
In the context of distribution of protected physical (paper)
documents, Stevens and Wulf [14] have identified a new
dimension in access control: when is access control exercised?
As in traditional systems, access definitions can be specified
before the document request, by associating permissions with
the documents. If the requested document does not have the
required permissions, the request can be sent to the owner, who

can then interactively authorize it at time of access. An
alternative is to grant the access automatically under the
optimistic assumption that this will cause no harm. The grant
is, however, recorded, and can later be revoked. Legal
arrangements ensure that the users do not make use of the
paper documents taken back from them. This optimistic
approach was first proposed by Povey [15], who gave several
motivating scenarios for it. For example, “Bob is a nurse at a
small rural hospital which has been physically isolated due to a
heavy storm. Communications are down, and the local doctor
is unable to be located. Bob has to attend to a life-threatening
emergency, for which he needs immediate access to a patient’s
medical records. However, Bob is not authorised to access the
information, putting the patient’s life at risk.” The optimistic
policy is supported in auto distribution lists. There is data to
indicate that an optimistic policy may be applicable in many
other situations. For instance, Palen and Grudin found that
office workers’ fear that public calendars would result in
managers and other co-workers constantly snooping on them
and spreading the information was unfounded because of social
conventions [27, 28]. The popular Wikis take the even more
optimistic approach of not providing any access control - they
do not even authenticate users. Related ideas are seen in some
other existing systems. Parental control allows children to
access blocked Web pages that are authorized interactively by a
parent. Bauer et al [25, 26] present and evaluate a system using
interactive access control to authorize entry to a physical room
with a networked smart lock. Instant messaging applications
support interactive grant of dynamic reciprocal access: user A’s
request to send messages to user B is interactively granted by
B, and results in B being granted the reciprocal right to send
messages to A during the IM session. Yahoo buddy lists also
support such reciprocal access – user A’s request to add user B
to A’s buddy list is interactively granted by B, and results in A
being added to B’s buddy list. Ackerman and Cranor [16]
provide two privacy critics or agents that aid the task of
interactive web-based access control by warning users when
they try to send data to web sites that (a) in another session
they had blocked and (b) are known to send information to junk
mailers.

Figure 4 Extended Access Matrix

III. ILLUSTRATING & MOTIVATING THOUGHT

EXPERIMENT

As we see above, modern applications have several access-
control features missing in the general models. It is a
hypothesis of our work that many of these features can be
applied to other domains including traditional file systems. In
fact, we believe more strongly that all of them can be applied to

S
u

b
jects &

 gro
up

s

Objec ts & groups

Proposa lsMixed-Initiative

A
llU

sers
G

ru
din Read

Re ad

Full
Control

all domains, and the choice depends on the nature of the
collaboration and collaborators rather than the application.
More important, we believe, the modern applications have not
overcome many of the limitations of the traditional access
control models. The impact of these limitations is exacerbated
when we consider the new kinds of information that (a) are
shared today, and (b) can be shared, but are not, because of
access-control concerns. To illustrate (a) consider Facebook,
which makes it possible for others to see our photos, friends
list, status updates, the applications we have added, and when
we execute these applications. Facebook provides traditional
mechanisms for controlling access to most of this information,
but anecdotal evidence shows that few users use these
mechanisms, simply using the default settings, despite their
desire for object-, user-, and task- based access control,
mentioned earlier. To illustrate (b), consider the fact that it is
not possible for others to see the nature of our editing activities
without being in a joint editing session with us. The potential
usefulness of such sharing will be illustrated below.

The intuition behind our proposed solution to this problem,
given in the introduction, is that distributing access rights is
inherently a complex collaborative activity that can be better
supported by an interactive mixed-initiative collaborative
environment in which information guardians, consumers, and
agents participate in the access distribution process. Naturally,
in-depth research of this idea is needed to determine the extent
to which this belief is true. To motivate this research, we have
created an example application that provides sharing of
information about our editing activities. As the basis of the
example, we took the collaboration involved in creating a
research proposal on mixed-initiative access control involving
the three authors, and considered what it would mean to
provide mixed-initiative access control for this activity. The
result of this “thought experiment” is the following
hypothetical scenario, which serves to illustrate and motivate
this new form of access control.

 The proposal is stored in a Groove like workspace, which
is essentially a wide-area directory associated with the set of
users working on it (Figure 5). The day before the deadline, the
three researchers are ironing out the last few wrinkles in the
proposal documents. In particular, they are trying to ensure that
their definitions are correct and consistent. Almost every
change must be approved quickly by the others. Moreover, they
must not make concurrent inconsistent changes. Therefore,
they send each other notifications explaining what they have
finished working on and what they are going to next work on.
However, notifications create problems when users make
further changes to pieces of work they had earlier declared to
be “finished.” When they don’t send the notifications, they do
not give their collaborators a chance to look at the final version,
which is particularly unfortunate if the final change was made
before the collaborators saw the last change mailed to them.
When they do send others the notifications, their collaborators
can be inundated with unwelcome messages.

When Jonathan realizes this problem, he decides to use a
research tool that allows him to watch in real time the edits of

Prasun (Figure 5, menu item). Such awareness has been found
to be useful in many situations [17]. Prasun, however, has not
given him rights to watch his actions, as he, like most people
[1], is normally uncomfortable with others seeing his
incomplete incremental changes. An agent running on his
computer asks Jonathan if he would like to send Prasun a
request for these rights. As the collaboration has now moved to
a stage where the goal is to watch and approve each other’s
finishing touches, Jonathan sends the request along with a
message explaining why the access was needed. After reading
the message, Prasun grants the requested rights completely
(Figure 6). He also had the choice of discussing (through
instant messages), denying, reducing or amplifying the
requested rights. For example he could have reduced the rights
by allowing Jonathan to watch him for only a day. Conversely,
he could have amplified them by allowing Jonathan to forward
them to others.

The grant approval is intercepted automatically by
Jonathan’s watch tool, which responds by creating windows
tracking Prasun’s changes to the watched documents (left
window, Figure 7). In addition, it creates a summary window
(right window, Figure 7) indicating, among other things, which
documents are being actively edited, a portion of text around
the cursor of an active window, and whether Jonathan’s
accesses to a watched document are being audited, that is, put
in a log that can be viewed later by Prasun.

Figure 5 Execution of unauthorized operation

Figure 6 Manually processing a request

Figure 7 Consumer tool processes grant notification by re-issuing operation and watching Prasun

Figure 8 Consumer, Consumer Agent, and Guardian Interaction

Figure 9 Interacting with an automatically granted request

Figure 8 illustrates the abstract steps involved in the
interaction above. The resource consumer, Jonathan, tries to
access the protected object. A consumer agent determines
that he does not have the requisite rights, and sends a
message to the guardian requesting these rights, who then
has the choice to grant them, after possibly
reducing/amplifying them, or deny them.

As we see later in the discussion of the abstract
architecture, in a practical implementation, the “consumer
agent” of Figure 8 would consist of several generic and
application-specific software components, which would
together determine and communicate the access rights.

Continuing the example, next time Jonathan sees Eric, he
tells him that watching is working much better than
notification. So Eric goes through a similar process to send a
watch request. However, when the request arrives at Prasun’s
computer, he is away from his desk, teaching his class. His
agent realizes that Prasun is inactive and, based on
preferences set by him earlier, checks if the request can be
granted automatically. It determines that Eric is part of the

workspace to be watched and that another workspace
member was recently given watch access. Therefore, it
automatically grants Eric the access. Based on a user
preference about automatic grants, it turns on auditing in the
granted permission. The watch tool on Eric’s computer
informs him that his accesses are being audited.

When Prasun returns to his desk, he is informed about the
automatically granted access and given the reason for the
grant (Figure 9, left window). At this point, he has many
options such as seeing the details of the permission given,
revoking it, looking at the audited log to see if any misuse
has occurred, and determining other people to whom the
inference rule used could be applied. He exercises the last
option, and removes Marie Tarjan from the list (Figure 9,
right window) as she is performing purely administrative
tasks and thus does not need to watch the incremental
changes - she just needs to know when the proposal is
complete so she can submit it to the administrators. He could
also have “preemptively” given other candidates the access
using traditional access control, without waiting for requests
from them.

Grant/Deny/
Amplify/
Reduce

Grant/Deny/
Amplify/
Reduce

Resource
Consumer

Resource
Guardian

NotificationNotification

Access objectAccess object
C
A
C
A

Request rightsRequest rights

Figure 10 Consumer, Consumer Agent, Guardian Agent, Guardian Interaction

Figure 10 illustrates the abstract steps involved in the
interaction. The request composed by the consumer agent is
processed by the guardian agent. If the guardian agent grants
the right, it tells the consumer that the authorized accessed will
be audited. In addition, it informs the guardian about the
request, the decision made by it, and the criteria used for the
decision. The guardian can revoke the right, modify the criteria
used by the agent, and/or initiate a grant to others using
traditional access control.

Like the consumer agent of Figure 8, the consumer and
guardian agents of Figure 10, in a practical implementation,
would consist of several generic and application-specific
software components.

This scenario illustrates the nature of mixed-initiative
control and how it could address the access control problems.
None of the participants (the information consumers or
guardian) had to find or understand the underlying permissions.
They were mainly concerned with using the operations
necessary to perform their tasks. When an operation was not
authorized, that is, when an access fault occurred, the computer
tool that invoked the operation automatically determined the
rights needed, received notifications about grants of these
rights, and retried the operation (Figure 11). An information
consumer had to take the extra step of filling an optional field
explaining why it was necessary to perform the operation. The
overhead for the information guardian was to use a general
interface to make a decision. Moreover, it is easier to make the
decision in the context of some current task as the information
guardian has an idea of what the consumer needs to know.
Furthermore, this decision can sometimes be taken
automatically without interrupting the guardian. Finally, on
receiving a request for a specific access, as in traditional access
control, an access granter can use grouping methods such as
roles to grant a whole set of accesses. In fact, agents can advise
the granter about potential groups based on mined data such as
the researchers listed in an NSF proposal. Thus, mixed-access
control has the potential of simultaneously reducing the (a)
effort required to specify access control and (b) the chance that
wrong rights are given.

Figure 11 Access Fault

We have seen here the use of mixed-initiative access
control for an interactive collaborative environment allowing
controlled sharing of users’ editing activities. In fact, it is
equally applicable to traditional non-interactive shared
environments such as file systems. In particular, a private
directory could have been transformed to a shared one through
mixed-initiative control. When Prasun created the proposal
directory, he could have announced it to his collaborators
without setting any permission. When Jonathan tries to access
it, a request is sent and approved in the fashion described above
(Figure 12). Later Eric could be automatically given the same
rights based on the fact that both Jonathan and Eric are listed in
the NSF Fastlane project to which files in the directory have
been uploaded. Alternatively, when Prasun accepts Jonathan’s
request, Prasun could be asked if all other collaborators who
have the same role as Jonathan – researcher on the NSF project
– should be preemptively given access (Figure 12). Such role
discovery and grant amplification is crucial to ensuring that
information guardians are not interrupted frequently. Moreover,
schemes for managing interruption could be used for
requesting and processing access rights such as maintaining
multiple accounts and activity awareness [18-23].

Information
Consumer

Information
Guardian

Grant with
Audit/Deny

Access object
C
A

Request rights
with criteriaG

A

Revoke/
Modify
Criteria/
Initiate grant

2. Access Object

Protected
Object

Collaborative
Tool

3. Access Fault
4. R

equest R
ights

5.
 G

ra
nt

 N
ot

if
ic

at
io

n

6. Access Object

1. User
Command

7. Result

Figure 12 Mixed-Initiative Access Control for Files

IV. ABSTRACT ARCHITECTURE

To understand some of the implementation issues raised by
mixed-initiative access control, consider the abstract
architecture of a system supporting the above model.
Traditionally, a controlled shared environment is guarded by
software that either allows an access or gives an access fault,
based on the contents of the access matrix defined by
authorizers. Figure 13 shows how such a tool would be
extended with a collaborative environment to support mixed-
initiative control. An access fault is trapped by a consumer
agent, which translates it into an automatically generated
access request and allows the consumer to change the request
before sending it to the guardian. It would also act more
autonomously by automatically generating requests for
accesses it predicts based on past actions, as illustrated above.
Consumer agents can directly communicate with guardian
agents, but that requires the design of special communication
protocols, clients, and servers. A better approach is for them to
communicate via clients and servers of existing interactive
communication infrastructures such as instant messaging and
email. However, this approach requires the ability to separate
normal messages from access requests (shown as white and
shaded boxes, respectively), which must be delivered to
appropriate guardian agents. This is, in turn, means that
existing clients must be extended, as shown by the shaded rings

around the communication client ovals in Figure 13. (Such
extensions would be in the spirit of the approach described in
[29] for providing an email interface to version control
systems.) A guardian agent would ask its user to interactively
authorize the access and/or provide automatic grant support. In
an environment supporting joint ownership, a guardian agent
would check with the guardian agent of another user. For
example, if a user A asks user B for the contact information
about user C, user B’s guardian agent would contact user C’s
guardian agent before granting the access either because B does
not have the authority or B and C are joint authorizers. If a
grant has been given as a result of an access fault, the result
could be delivered to the tool that attempted the access so that
it can try that access again. For example, the watch tool of Fig.
4, on receiving the grant notification, would create the display
of Fig. 6.

V. CONCLUSION AND FUTURE WORK

The new forms of access control will not be a silver bullet
in all situations. It is for this reason that traditional access
control is a fundamental part of our model. The thesis of this
position paper is that the new paradigms are applicable in a
significant number of situations. In fact, in many cases, we
expect the concepts to be used when traditional access
specifications have not granted the necessary accesses. Just as
servicing of page faults relieved programmers from
anticipating all possible concurrent accesses to memory,
servicing of access faults should relieve guardians of
information from anticipating all possible valid consumers of
the information. Further research is needed to define and
evaluate the specific protocols used by consumers, guardians
and their agents to interact with each other, and system
abstractions for easily implementing these protocols. The goal
of this paper is to motivate such research.

Figure 13 Mixed-Initiative Abstract Architecture

JG C
A

G
A

Grant
PD

Communication
Servers

Communication
Servers

Consumer Guardian

Consumer
Agents

Consumer
Agents

Communication
Clients

Communication
Clients

Controlled
Collaborative

Tools

Controlled
Collaborative

Tools

Guardian
Agents

Guardian
Agents

Access Right

Descriptions;
Object & User
Relationships;
Preferences &
Rules;
Interaction,
Email, Request
& Grant
Histories.

Communication
Clients

Communication
Clients

Access F
ault

A
ccess R

esultA
cc

es
s

R
eq

ue
st

Access Result

M
an

ua
l

Req
ue

st

Grant

Man
ual

Gran
t

Access Requests

Acc
es

s R
es

ult
s

ReadRead

Send &

Receive

Send & Receive

REFERENCES
[1] Judith S. Olson, Jonathan Grudin., Eric Horvitz. Toward Understanding

Preferences for Sharing and Privacy. in Proc. CHI. 2005.

[2] Palen, L. and P. Dourish. Unpacking privacy for a networked world. in
CHI. 2003.

[3] Newsletter, I.M., Rules and policies vs. actual practice, in Network
World. 2005.

[4] Tolone, W., et al., Access control in collaborative systems. ACM
Computing Surveys, 2005. 37(1): p. 29-41.

[5] Lampson, B.W., Protection. ACM Operating System Review, 1971.
8(1): p. 18-24.

[6] Graham, G.S. and P.J. Denning, Protection - principles and practice.
Proc. Spring Jt. Computer Conf. 40: p. 417-42.

[7] Ackerman, M., L.F. Cranor, and J. Reagle. Privacy in e-commerce:
Examining user scenarios and privacy preferences. in ACM Conference
on Electronic Commerce. 1999.

[8] Shen, H. and P. Dewan. Access Control for Collaborative Environments.
in Proceedings of the ACM Conference on Computer Supported
Cooperative Work. November 1992.

[9] Dewan, P. and H. Shen, Access Control for Multiuser Interfaces. ACM
Transactions on Computer Human Interaction, March 98. 5(1): p. 34-62

[10] S. Jajodia, P. Samarati, V. Subrahmanian, E. Bertino. A unified
framework for enforcing multiple access control policies. in SIGMOD.
1997.

[11] Schlegelmilch, J.r. and U. Steffens, Role mining with ORCA in
Proceedings of the tenth ACM symposium on Access control models and
technologies 2005 ACM Press: Stockholm, Sweden p. 168-176

[12] Dewan, P. and H. Shen. Flexible Meta Access-Control for Collaborative
Applications. in Proceedings of ACM Conference on Computer
Supported Cooperative Work. Nov 1998.

[13] Astrahan, M.M., System R relational approach to database
management. ACM TODS, 1976. 1(2): p. 97-137.

[14] Stevens, G. and V. Wulf. A new dimension in access control: Studying
maintenance engineering across organizational boundaries. in Proc.
ACM CSCW. 2002.

[15] Povey, D. Optimistic security: A new access control paradigm. in Proc.
ACM New Security Paradigms Workshop. 1999.

[16] Ackerman, M. and L.F. Cranor. Privacy Critics: UI components to
safeguard users' privacy. in CHI Extended Abstracts. 1999.

[17] Tee, K., S. Greenberg, and C. Gutwin. Providing Artifact Awareness to a
Distributed Group through Screen Sharing. in Proc. ACM CSCW
(Computer Supported Cooperative Work). 2006.

[18] Begole, J.B., et al., Work rhythms: analyzing visualizations of awareness
histories of distributed groups in Proceedings of the 2002 ACM
conference on Computer supported cooperative work 2002 ACM Press:
New Orleans, Louisiana, USA p. 334-343

[19] Begole, J.B., N.E. Matsakis, and J.C. Tang, Lilsys: Sensing
Unavailability in Proceedings of the 2004 ACM conference on
Computer supported cooperative work 2004 ACM Press: Chicago,
Illinois, USA p. 511-514

[20] Czerwinski, M., E. Cutrell, and E. Horvitz. Instant Messaging and
Interruption: Influence of Task Type on Performance. in OZCHI. 2000.

[21] Dabbish, L. and R.E. Kraut, Controlling interruptions: awareness
displays and social motivation for coordination in Proceedings of the
2004 ACM conference on Computer supported cooperative work 2004
ACM Press: Chicago, Illinois, USA p. 182-191

[22] Fogarty, J., et al., Predicting human interruptibility with sensors ACM
Trans. Comput.-Hum. Interact. , 2005 12 (1): p. 119-146

[23] Horvitz, E., P. Koch, and J. Apacible, BusyBody: creating and fielding
personalized models of the cost of interruption in Proceedings of the
2004 ACM conference on Computer supported cooperative work 2004
ACM Press: Chicago, Illinois, USA p. 507-510

[24] Horvitz, E. Reflections on Challenges and Promises of Mixed-Initiative
Interaction 2 AAAI Magazine 28, Special Issue on Mixed-Initiative
Assistants (2007)

[25] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse, and P.
Rutenbar. Device-enabled authorization in the Grey system. In
Proceedings of the 8th Information Security Conference, p. 431–445,
Sept. 2005.

[26] L. Bauer, L. F. Cranor, M. K. Reiter and K. Vaniea Lessons learned
from the deployment of a smartphone-based access-control system.
Proceedings of the 3rd Symposium on Usable Privacy and Security, p.
64–75, July 2007

[27] Palen, Leysia . Social, Individual & Technological Issues for Groupware
Calendar Systems, Proceedings of the 1999 ACM Conference on Human
Factors in Computing Systems (CHI 99),pp. 17-24

[28] Palen, Leysia and Grudin, Jonathan. Discretionary adoption of group
support software: Lessons from calendar applications. B.E. Munkvold
(Ed.), Implementing Collaboration Technologies in Industry. Springer
Verlag, 159-180, 2002.

[29] Dewan, Prasun and McEuen, Henry. Active Notifications. IEEE
CollaborateCom 2007.

