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Abstract—As robots are introduced into human environments
for long periods of time, human owners and collaborators will
expect them to remember shared events that occur during exe-
cution. Beyond naturalness of having memories about recent and
longer-term engagements with people, such execution memories
can be important in tasks that persist over time by allowing
robots to ground their dialog and to refer efficiently to previous
events. In this work, we define execution memory as the capability
of saving interaction event information and recalling it for later
use. We divide the problem into four parts: salience filtering of
sensor evidence and saving to short term memory, archiving from
short to long term memory and caching from long to short term
memory, and recalling memories for use in state inference and
policy execution. We then provide examples of how execution
memory can be used to enhance user experience with robots.

I. INTRODUCTION

As robots are deployed long-term in human environments,
they will increasingly have roles in which they interact with
people on a continuing basis. People collaborating with robots
will expect robots to remember who they met, what conver-
sations they had, and what actions they took throughout their
deployment in order to ground future interactions. People will
come to expect that robots recall and refer to past engagements
in the same way that people encode and share memories
about events and activities [1]. Additionally, they will expect
robots to learn about their users, task, and environment us-
ing remembered data (e.g., through socially-guided machine
learning for robots [2], [3]). We call this capability of saving
and remembering interaction events execution memory.

Beyond the naturalness of encoding and sharing memories
with people about short- and long-term histories of activities
and engagements, execution memories can be crucial in ef-
fective collaborations on tasks that persist over time and span
multiple sessions. Shared memories are important to ground
dialog and allow human and robot to refer to one or more
aspects of a previous event with shorthand or gesture. Such
memories can also enable interrupted, incomplete, or persist-
ing tasks to be efficiently refined, extended, and continued. We
see opportunities for endowing robots with execution memory,
including knowledge about the ways that people selectively
encode and recall events about situations and activities.

Work to date on learning and using models of human
memory in human-computer interaction includes efforts to
learn and harness models of human memory from data in
search and retrieval and in reminding ([4], [5], [6]). We
see these ideas as framing directions with inferences and
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uses of execution memory in human-robot interaction. Unlike
active learning [2] and learning by demonstration [7], these
techniques focus on remembering specific instances of events
in order to ground actions, similar to what humans recollect
(8].

In this work, we formalize execution memory, breaking
it down into four main parts: salience filtering, archiving,
caching, and recall. Then, we describe the use of execution
memory to enhance the interactions with our robots.

II. EXECUTION MEMORY

Similar to human memory, we break down execution mem-
ory into two parts: the short-term task-related memory and
the long-term lifelong memory. The short-term memory can
be used to recall information including filtered salient features
from the sensor data as well as cached data from long-term
memory. Once a task is over, short-term memories can be
archived to long-term memory where they may later be cached
back into short-term memory. We define four distinct functions
over execution memory — salience filtering, archiving, caching,
and recall — that input to and output from short-term and long-
term parts. We provide an overview of each function. We then
provide examples of execution memory on our own robots.

Salience Filtering: The salience filtering function deter-
mines whether to save the current sensor evidence and/or state
or policy inferences into short-term memory. Salient filtered
information might include users’ answers to questions, face
recognition data, or the robots’ current location.

Archiving: We assume that robots’ current task time is
much shorter than its total deployment time, and that re-
membering every detail of every task is neither efficient nor
necessary to ground interactions with humans. For example, it
may not be necessary to remember exactly what a person said
during a previous task but only the last time the interaction
occurred. The archiving function determines which short-term
memories should be transferred to long-term memories.

Caching: The caching function determines which long-term
memories could be useful for the current task. In order to both
archive and cache effectively, we must identify when current
events will likely be relevant in future activities and when past
memories are relevant to current tasks, respectively.

Recall: Finally, robots will need to recall the cached memo-
ries and incorporate them with current sensor data in their task.
Determining which memories, if any, will be important for the



current state inference or policy execution depends highly on
user expectations and what they remember themselves [5].

III. EXAMPLES OF EXECUTION MEMORY

mObi, developed by Bossa Nova Robotics, is designed to
interact with people over extended periods of time. mObi
is approximately 1.5m tall, visually detects people, and can
talk with them about a number of topics. In order to avoid
repetitious dialog, mObi remembers what it has already said
during the task and changes its current dialog accordingly.
For example, mObi can answer questions about itself and
how it works without providing redundant information. To do
this, mObi’s filtering function remembers which topics it has
spoken about in the current dialog. When a person asks a
similar question to one it has already answered, it recalls this
information, reminding the user that it has already answered
their question and recommends other topics to ask about.

CoBot is an autonomous mobile robot that performs tasks
for people at Carnegie Mellon University [9]. One such task is
escorting visitors to meetings around one building throughout
the day, giving tour information along the way [10]. For this
task, CoBot remembers the locations it has passed and the
information it shared with its visitor (a competency that would
be expected by a person in the same situation). Later, when
it passes the same location, CoBot recalls what it has already
said throughout its tour to avoid repeating information. Instead,
it provides more detailed information about each location each
time it passes by the location, extending information that it
knows it has already shared. For example, near the Robot
Soccer Lab, it might introduce the location and the researchers,
later share motivation for the work, and finally talk about
recent research results.

The Personal Assistant at Microsoft Research is a pro-
totype developed as part of a study in physically situated
spoken dialog [11]. The system serves outside the door of its
owner as an automated secretary to help visitors and the owner
with calendar and scheduling. The Assistant engages people in
dialog to identify good times for dropping by, schedules new
meetings, relays messages from visitors, and sends information
about its encounters to the owner. When visitors wait for
the owner (after engaging) or leave and return to the area
and then re-engage the system on their meeting goals, they
expect shared memories of their recent encounters. Given the
system’s competencies in dialog and inference, lack of short-
and long-term memory would be a jarring and salient cognitive
deficiency.

To make re-engagements more natural and effective, we
implemented execution memory. In addition to dialog, the
Assistant uses face recognition and tracking to remember the
salient features of times when visitors come and go from its
proximity. The system considers the durations of waiting and
whether visitors are on the owner’s schedule. If a visitor moves
away after engaging with the Assistant to wait for the owner to
arrive or become available, the system archives their presence
and engagement. If the visitor reappears later, the system
caches previous recent engagements recognizes that they are

likely part of the same task of finding the owner, and shares its
common ground about the period of the waiting and persisting
goals. At re-engagement, the system recalls this data and uses
it to modify its dialog to provide revised information about
the owner’s status, considering explicitly the updated state and
goals of the visitor. Finally, unlike most dialog systems that
only remember information for the current task, the Assistant
also uses cached presence information to inform new non-
merged tasks over longer time frames to share and ground its
long-term memories with the visitor. When a person walks
up, the system caches the last known presence and recalls the
memory of a more distant collaboration, saying, e.g., “Nice
to see you again” or “Long-time no-see,” depending on the
recency of the last interaction.

IV. CONCLUSION

As robots such the Assistant, CoBot, and mObi are intro-
duced into human environments, people will expect them to
remember shared events and encounters experienced during
execution. We see opportunities for providing robotic systems
with knowledge about how people selectively encode and re-
call events into their memories and for leveraging such shared
memories in grounding conversations and activities. Encoding
and harnessing memories shared with human collaborators
about prior joint experiences can enable robots to refer to those
experiences more naturally as well as to enrich competencies
for collaborating over time in short, intra-session and longer-
term cross-session engagements. We present execution mem-
ory as an important direction for research for robots that are
in human environments long-term, splitting the problem into
four distinct processes: salience, archiving, caching, and recall.
We believe that each of these components warrants attention
to understand what humans and robots find natural and useful
to remember about activities and encounters.
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