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Abstract 

Context is a critical ingredient of ubiquitous com-
puting. While it is possible to use specialized sensors 
and beacons to measure certain aspects of a user’s 
context, we are interested in what we can infer from 
using the existing 802.11 wireless network infrastruc-
ture that already exists in many places. The context 
parameters we infer are the location of a client (with a 
median error of 1.5 meters) and an indicator of 
whether or not the client is in motion (with a classifica-
tion accuracy of 87%). Our system, called LOCADIO, 
uses Wi-Fi signal strengths from existing access points 
measured on the client to infer both pieces of context. 
For motion, we measure the variance of the signal 
strength of the strongest access point as input to a sim-
ple two-state hidden Markov model (HMM) for smooth-
ing transitions between the inferred states of “still” and 
“moving.” For location, we exploit the fact that Wi-Fi 
signal strengths vary with location, and we use another 
HMM on a graph of location nodes whose transition 
probabilities are a function of the building’s floor plan, 
expected pedestrian speeds, and our still/moving infer-
ence. Our probabilistic approach to inferring context 
gives a convenient way of balancing noisy measured 
data such as signal strengths against our a priori as-
sumptions about a user’s behavior. 

1. Introduction 

Context is a critical ingredient in many ubiquitous 
computing applications. Context -- for instance knowl-
edge of a person’s location, activity, or goals – can be 
used to tailor what information is presented, to present 
it in an appropriate way, and to trigger automatic behav-
iors that benefit the user. Elaborate context-measuring 
systems, such as MIT’s highly instrumented living 

spaces and self-reporting devices[1], can be used to 
make precise context inferences, but are generally con-
sidered too expensive and invasive for wide deploy-
ment. 

Location by itself is a useful component of context, 
because it enables reasoning about what a user is doing 
(e.g. in a meeting room), what a user is interested in 
(e.g. a painting at a museum), or what user interface 
devices are suitable (e.g. audio speakers in a given 
room). Beyond providing access to the current status of 
people, location information can support presence fore-
casting services that provide information about a user’s 
future presence or availability[2].  Recent research has 
shown how to make higher level context inferences 
based on location. For instance, Sparacino[3]  uses an 
indoor location system to classify museum visitors as 
either “greedy”, “busy”, or “selective”, and then tailors 
extra museum content appropriately. Patterson et al.[4] 
use GPS tracks to classify a user’s mode of transporta-
tion as either “bus”, “foot”, or “car”, and to predict his 
or her mostly likely route. 

Another important component of context is whether 
or not the user is in motion. A user in motion is likely 
not in a meeting and likely not to notice any messages 
put up on nearby displays. It is theoretically possible to 
compute motion by differentiating measured location 
over time, but location measurements are often too 
noisy for this to be reliable. Motion can be measured by 
wearing an accelerometer, such as in the SmartMoveX 
active badge[5], but this requires an extra device. 

For measuring location, outdoor applications can 
rely on decoding timing signals from the Global Posi-
tioning Service (GPS) or GLONASS satellite naviga-
tion systems to obtain high-confidence location infor-
mation. Unfortunately, no comparably ubiquitous means 
of measuring location is available for indoor applica-
tions. (See [6] for a review of location-measuring tech-
nologies for ubiquitous computing.) Although special-
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ized systems such as active badges (e.g. broadband 
ultrasonic[7]) or radio frequency identification (RFID) 
tags (e.g. the IntelliBadge™[8] ) can work well indoors, 
their installation costs can be prohibitive—and they 
require users to carry an extra device. 

A promising alternative to relying on such special-
ized context-measurement systems is to infer what we 
can by measuring signal strengths received from a 
building’s existing 802.11 (Wi-Fi) wireless infrastruc-
ture. Both Wi-Fi access points and mobile Wi-Fi clients 
are becoming more ubiquitous. Privacy is enhanced 
over systems that compute context on a central server, 
such as active badges, since our context inferences rely 
only on client-side data and computations. 

Our system for inferring motion and location from 
Wi-Fi signal strengths is called LOCADIO (LOCation 
from rADIO). For inferring motion, it uses a simple vari-
ance measure as input to a two-state hidden Markov 
model (HMM) to classify a client as either still or mov-
ing. This was based on our observation that when a Wi-
Fi receiver is moving, the signal strengths it receives are 
noisier than when it is not moving. Our goal for infer-
ring location was to exploit a priori assumptions about 
a person’s motion to enhance accuracy and minimize 
calibration effort.  This motivation led us to explore a 
combination of several methods, including (1) the spa-
tial interpolation of signal strengths from a sparsely 
sampled calibration set, (2) path constraints imposed by 
a building’s interior structure (walls and doors), (3) 
integrating a consideration of human pedestrian speeds, 
and (4) using our previous inference about whether or 
not a client device is in motion. These elements are 
combined in a second HMM whose states are discrete 

),( yx  location nodes. The motion, path, and speed 
constraints are encoded as dynamic transition probabili-
ties between the location nodes. 

In the next section, we review related research.  
Then we discuss basic methods employed in LOCADIO, 
first for inferring motion and then location. We then 
describe experiments on testing the efficacy of the 
methods. 

2. Related Work 

Several teams have demonstrated how to identify 
the location of wireless clients indoors by measuring 
signal strengths from multiple 802.11 access points 
(APs). Matching signal strength signatures is the same 
basic technique used by all location-from-802.11 tech-
niques, including the first one, called RADAR, devel-
oped by Bahl and Padmanabhan[9]. Using a manually 

calibrated table of signal strengths, their nearest 
neighbor algorithm gave a median spatial error of 2.94 
meters. This error was reduced to 2.37 meters using a 
Viterbi-like algorithm in follow-on work [10]. As part 
of their research, Bahl and Padmanabhan also precom-
puted signal strength signatures using a model of radio 
propagation and a floor plan of the building. This re-
duced calibration effort at the expense of increasing 
their median location error to 4.3 meters.  

Perhaps the most accurate 802.11 location system 
to date is described by Ladd et al.[11]. Their system 
used Bayesian reasoning and a hidden Markov model 
(HMM). They took into account not only signal 
strengths, but also the probability of seeing an access 
point from a given location. LOCADIO does this as well. 
Like other work, it was based on a manual calibration. 
Their system explicitly modeled orientation and 
achieved a median spatial error of about one meter 
using calibration samples taken approximately every 1.5 
meters (five feet) in hallways. LOCADIO’s added sophis-
tication includes an interpolation technique to allow for 
sparse calibration data, an explicit probabilistic model 
of pedestrian speeds, transition probabilities that reflect 
the building’s floor plan, and an independent inference 
on whether or not the client machine is in motion. 

UCSD’s ActiveCampus[14] project uses 802.11 to 
compute the location of wireless PocketPCs both in-
doors and outdoors. Instead of manual calibration, they 
use a formula that approximates the distance to an AP 
as a function of signal strength. Using a hillclimbing 
algorithm, their system computes location to an accu-
racy of about 10 meters (35 feet) using signal strengths 
from multiple APs. 

Previous work on inferring a user’s motion state 
has normally been based on time-stamped location 
inferences and a numerical derivative to estimate veloc-
ity. For instance, the MIT Activity Zones project[15] 
used camera tracking to measure ( )yx,  and then differ-
entiated to compute instantaneous velocity. Patterson et 
al.[4] take their velocity readings directly from their 
GPS sensor, which presumably differentiates as well. 
We know of no other work that uses radio signal 
strength to directly infer motion of a client. 

3. Inference of “Still” versus “Moving” 

Motion is one important part of a user’s context. 
We conjectured that it might be possible to classify a 
user as either still or moving based on Wi-Fi signal 
strength features. Such a conjecture was supported by 
our qualitative observation that signal strengths from 



APs appear to jump around more vigorously when the 
device is in motion than when it is still. Our approach is 
to classify a user as either still or moving based on the 
variance of a temporally short history of signal strengths 
from the currently strongest access point. We found that 
this classification transitioned too often between the two 
states, so we smoothed the classifications over time with 
a two-state HMM. The remainder of this section ex-
plains our approach and our accuracy assessment based 
on an experiment in our building. 

3.1. Unsmoothed State Probabilities 

We capture the “jumpiness” of a time series of sig-
nals quantitatively by computing a temporally win-
dowed, running sample variance of the received signal 
strength of the strongest AP at the given time. That is, at 
any given time, we first find the AP with the strongest 
signal and then compute the variance of that AP’s signal 
over a short interval ending at the given time. 

For training we collected a set of labeled signal 
strengths by alternately walking around and stopping 
within an office building over a 30 minute period while 
recording signal strengths on our wirelessly networked 
laptop PC. As we walked and stopped, we manually 
indicated to our data-logging program whether we were 
moving or still. The variances were computed with a 
20-second window, which translates to about 63 read-
ings per AP at our signal strength sampling rate of 3.16 
Hz. 

The normalized histograms of the variances for the 
still and moving cases are shown in Figure 1. Using 

2
maxσ  to represent the windowed variance of the cur-

rently strongest AP, we take the normalized histograms 
to represent the conditional probability distributions 

( )stillp 2
maxσ  and ( )movingp 2

maxσ . Given a value of 
2
maxσ , we want to estimate the probability of moving, 

( )2
maxσmovingp , and the probability of being still, 

( ) ( )2
max

2
max 1 σσ movingpstillp −= . By using Bayes rule, 

we know that the posterior probability of the client 
moving is 
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Here ( )stillp  and ( )movingp  are the a priori probabili-
ties of the dynamic state of the device. In lieu of any 
other information about the priors, we set them equal at 
0.5. The classification rule was then simply based on 
the state-conditional probabilities, which are the same 
as the normalized histograms: 
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Using the histograms from Figure 1 on a set of 
3200 test readings taken several days after the training 
data, we were correctly able to classify approximately 
85% of the data into the “still” and “moving” catego-
ries. 

3.2. Smoothed Probabilities 

The top of Figure 2 shows the ground truth state for 
our still vs. moving test data as a function of time. 
Shown below is a plot of the a posteriori 

( )2
maxσmovingp  from Equation (1). It is clear that the a 

posteriori probability jumps from high to low too often 
given the process that is being modeled, so we seek to 
smooth the a posteriori probabilities by imposing ex-
plicit transition probabilities governing the two states. 

Instead of simply trying to estimate the probability 
of a state Tq  at time T  from a single feature 2

max,Tσ  at 
that time, we will find the most likely sequence of states 

TqqqQ ,,, 21 K=  from a sequence of observations 
2
max,

2
2max,

2
1max, ,,, TO σσσ K= . In our case there are only 
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Figure 1: Normalized histograms of the vari-
ance of signal strength for a nonmoving and 
moving device. In general, moving devices 
show more variance. 



two possible states, “still” and “moving,” i.e. 
{ }MSqt ,∈ . For simplicity, we will use the first order 

Markov assumption to govern the transition between 
states, which says that the probability of the current 
state is independent of all but the most recent state, so 
that ( ) ijtt aiqjqP ===+1 , where ija  is a transition 
probability and { }MSji ,, ∈ . 

We can estimate the transition probabilities from 
assumptions about human behavior. We make a new 
inference after every signal strength sample, which 
occur with a frequency of 16.3=r Hz, so there will be 
rs   inferences in a period of s  seconds. If we guess 
that a person will make m  moves over a period of  s  
seconds, then the probability of a move occurring be-
tween two inferences is )/(rsm . If we assume that each 
still-to-move transition is eventually accompanied by a 
move-to-still transition, then we have 
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The ( )min  function keeps the transition probability 

within range. The equations for SSa  and MMa  come 
from the constraint that 1=+=+ MSMMSMSS aaaa .  

For a typical office worker, we guess that there are 
10=m  moves in one eight-hour day, giving 800,28=s  

seconds. At our rssi sampling rate of 16.3=r  Hz, we 
have 
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We note that m  could be tuned to whatever value is 
typical for a given user in a given context. 

Another element of the Markov model is the initial 
probabilities of being in the still or moving states, Sπ  
and Mπ , respectively. For lack of any other informa-
tion, we set them both to 0.5.  

Because we cannot directly observe the states, we 
have a hidden Markov model. What we observe at each 
sample time t  is 2

max,tσ , which is probabilistically con-

nected to the actual state through ( )stillqp tt =2
max,σ  and 

( )moveqp tt =2
max,σ . 
We now have all the elements necessary for an 

HMM: states, transition probabilities, initial state prob-
abilities, and observation probabilities. Following 
Rabiner’s tutorial[16], we use the Viterbi algorithm to 
compute the a posteriori state probabili-
ties ( )OstillqP T =  and ( )OmovingqP T =  at the cur-
rent time T  conditioned on the sequence of signal 
strength variances 2

max,
2

2max,
2

1max, ,,, TO σσσ K= . 
The overall effect of using the HMM is that the 

transition probabilities tend to make the system more 
reluctant to change states due to slight or brief changes 
in the state-conditional probability densities. Using the 
transition probabilities computed above, we computed 

( )OmovingqP T =  for each sample in our 3200-point 
test data set. The result is plotted at the bottom of 
Figure 2. This shows how using transition probabilities 
and a sense of past state make the state probabilities 
much less jumpy. The classification error rate drops 
from 15.5% to 12.6% by using the HMM smoothing. 
While the gain in classification accuracy is small, the 
real gain comes in the reduction of falsely reported state 
transitions. There were 14 actual transitions in the test 
set. Unsmoothed classification reports 172 transitions 
(158 too many), and smoothed classification reports 24 
transitions (only 10 too many). 

This moving vs. still indicator is a suitable compo-
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Figure 2: Results from our attempt to infer the 
probability that a device is moving based on 
the variance of signal strengths. The middle 
plot shows the unsmoothed probabilities, 
which jump around too much compared to 
the ground truth at the top. The bottom plot 
shows the probabilities smoothed with an 
HMM, which come much closer to ground 
truth. 



nent of context for a mobile user, and it can be easily 
computed without having to first compute the user’s 
locations over time, which takes considerably more 
work indoors. Our motion inference is also an important 
part of our location inference algorithm, which we dis-
cuss next. 

4. Overview of Location Inference 

The remainder of this paper discusses how we infer 
an ( )yx,  location from Wi-Fi signal strengths. Our 
method starts with a relatively sparse set of discrete 
( )yx,  calibration nodes at which we have taken signal 
strengths readings. Representing these readings as prob-
ability distributions, we interpolate them into a denser 
set of location nodes on which we base our location 
inferences. These location nodes and their associated 
Wi-Fi pdfs are processed through an HMM (different 
from the one used for motion). The transition probabili-
ties between the location nodes are a function of our 
still vs. moving inference, expected pedestrian speeds, 
and the building’s floor plan. These elements are de-
tailed in Sections 5-8. 

5. Paths and Constraints 

In order to facilitate path constraints imposed by 
the building’s structure (e.g. walls and doors), LOCADIO 
uses a graph of discrete location nodes, as shown in 
Figure 3(a).  The graph’s edge weights (connections 
between the nodes) are the distances between the nodes. 
The result of the Viterbi algorithm used to infer location 
is a number attached to each node giving the probability 
that the device is at that location. 

To place the nodes, we first manually draw a set of 
tracks through the building, as shown in Figure 3(b). 
These tracks represent the feasible walking paths 
through the building. We developed a drawing program 
that displays a bitmap of the building’s floor plan as the 
background. The bitmap for our home building came 
from our institution’s electronic database of floor plans, 
but this map could just as easily have come from a 
scanned blueprint. We compute the geometric transfor-
mation matrix between pixels and floor coordinates with 
simple least squares. Once all the lines have been 
drawn, the program converts the lines to nodes by tak-
ing each end point as a node and distributing nodes 
along the lines at a specified spacing. For our experi-
ments, this spacing was one meter, making a total of 
317 location nodes. 

The graph is a fully connected, bi-directional graph 
so that every node is connected to every other node. 
The edges shown in Figure 3(a) are only the edges be-
tween adjacent nodes, and their edge weights are just 
the Euclidian distance between the nodes. For non-
adjacent nodes, the edge weight is the shortest path 
distance through a sequence of adjacent nodes. We 
compute the shortest paths using Dijkstra’s shortest path 
algorithm and store all the distances for use by the 
HMM. The shortest path distances embody the path 
constraints imposed by the building’s structure. For-
mally, the distance between nodes i  and j  is called ijd . 
We use these distances later to compute realistic transi-
tion probabilities between all nodes in the graph.  

6. Transition Probabilities for Location 

One of the essential ingredients of an HMM is the 
transition probabilities between states. In our case, the 
states are ( )yx,  location nodes on the floor, and the 
transition probabilities govern the probability of transi-
tioning between any two location nodes. Qualitatively, 
we want the transition probabilities to nearby nodes to 
be larger than that to far away nodes. To quantify this 
notion, we use the shortest path distances described in 
Section 5 along with a probability distribution of human 
pedestrian speeds. For a more accurate speed distribu-
tion, we use the HMM-smoothed estimate of 

( )2
maxσmovingp  from Section 3. 

6.1. Speed Between Nodes 

In this section we derive a probability distribution 
of human pedestrian speeds. In an office building, peo-
ple mostly walk to get from place to place. We can 
approximate the distribution of walking speeds using a 
study of human walking speeds by John J. Fruin[18] (p. 
40). We will call this distribution of walking speeds 

( )movingspeedwalkingP . Further, people sometimes 
shuffle slowly from place to place, and they sometimes 
sprint. We model this behavior with a uniform distribu-
tion of speeds going from zero to a maximum of 10.22 
meters/second1, calling it ( )movingspeedotherP . We 
assume that when a person is moving, he/she spends a 

                                                           
1 As of 14 September 2002, the 100 meter sprint world record 

was 9.78 seconds set by American Tim Montgomery in 
Paris, for an average speed of 10.22 meters/second. We be-
lieve he was not carrying an 802.11 device at the time. 



fraction ω  walking and the rest of the time at some 
other speed. Given a person is moving, his/her speed 
distribution is then 

( ) ( )
( )movingspeedotherP

movingspeedwalkingPmovingsP

)1( ω

ω

−

+=
 (5) 

 
Here s  represents speed in meters/second, and we as-
sumed that ω  is 0.9 in lieu of any hard data on how 
often people in buildings move at speeds other than 
walking speed. 

The unconditional ( )sP  takes into account the 
probability that the person is either moving or still, 
which comes from the dynamic inference from Section 
3. Abbreviating these as ( )movingP  and ( )stillP , we 
have 

 
( ) ( ) ( ) ( ) ( )stillPstillsPmovingPmovingsPsP +=  (6) 

 
where ( ) ( )0δ=stillsP , because a person’s walking 
speed is zero when still. Here ( )xδ  is the Dirac delta 
function. This gives us a probability distribution of 
human pedestrian speeds based on whether or not we 
think the person is moving, and if so, also based on the 
distribution of walking speeds and maximum possible 
running speed. 

6.2. Transition Probabilities 

The transition probability between two location 
nodes is proportional to the probability of a human 
traveling at a speed necessary to traverse the distance 
between the nodes. If a device has moved from node i  
to node j , its speed had to be ijrd , where r  is the 
signal strength sampling rate (3.16 Hz in our case) and 

ijd  is the shortest path distance between the two nodes 
as explained above. The probability of observing this 
speed is ( )ijij rdsPp == . These probabilities must be 
normalized so that all transition probabilities emanating 
from a node sum to one. Thus the transition probability 
is 

∑
=

=
lN

j
ijijij ppa

1

 (7) 

where 317=lN  is the number of location nodes. These 
probabilities encapsulate what we know about the build-
ing’s layout and about the speed of the device. 

7. Signal Strength Observation Likelihoods 

In inferring a location, the device’s signal strengths 
are compared against signal strength probability distri-
butions seen previously during calibration at different 
locations in the building. These previously seen signal 
strength distributions are estimated based on data from 
physically carrying the device to a set of known calibra-
tion nodes. A straightforward implementation would 
have us visit all 317=N  location nodes for calibration. 
Since we spend about 60 seconds at each calibration 
point, calibrating at each location node would be pro-
hibitive. Instead, we take calibration readings at a much 
smaller number of locations (63 in our case), and use 
these to interpolate at the location nodes. This means 
we only had to calibrate at about 20% of the number of 
points used in the graph of location nodes. This section 
describes how we gather signal strengths in the building 
and how we interpolate the signal strength probability 
distributions to all location nodes. 

7.1. Gathering Signal Strength Distributions 

We gathered 802.11 signal strength distributions by 
carrying our wirelessly connected laptop computer to 
different locations in our building. These 63 locations 
are shown in Figure 3(c). Running on the laptop was 
our program for recording both locations and signal 
strengths. This program allows the user to indicate his 
or her location by clicking on the building map while 
simultaneously recording signal strengths from all visi-
ble 802.11 access points. The map makes it easy to 
indicate the device’s approximate location for calibra-
tion. The calibration locations were only as accurate as 
we could click our positions on the map, but we felt this 
was a necessary compromise to reduce the calibration 
effort to a realistic level for larger deployments. 

At each calibration position we took signal strength 
readings for 60 seconds while slowly spinning around in 
place. The spinning was to factor out the effect of orien-
tation. This is in contrast to the system of Ladd et 
al.[11] who modeled and recorded orientation explic-
itly. With this data we constructed discrete probability 
distributions describing, for each calibration point, the 
probability of seeing a given access point and the prob-
ability distribution of signal strengths from that access 
point. In mathematical terms, the calibration points are 

( ) ( )( ) )(, c
j

c
j

c
j xyx = , cNj K1= , and the building’s access 

points are designated APi NiAP K1, = . Here the ( )c  
superscript indicates a calibration point. The probability 



of detecting access point iAP  from calibration location 
)(c

jx  is ( ))(c
ji xAPp . We estimated this probability sim-

ply by the ratio of the number of times the access point 
was detected to the number of times we scanned for all 
access points during calibration at the given location.  

If we did see an access point from a given location, 
then we also constructed a normalized histogram of 
signal strengths to represent ( ))(

1 , c
jikk xAPsssp +<≤ . 

Here s is the signal strength and the ks  are the edges of 
the histogram bins. For our implementation, we had 

ks range from -120 dBm to 0 dBm in 30 steps. (dBm 
stands for decibel milliwatts, and is the usual unit for 
802.11 signal strength.) The overall result of the cali-
bration captured both how often a given access point 
could be seen from a given location, and, if it could be 
seen, the distribution of signal strengths. These prob-
abilities embody the signal strength signatures that we 
use to infer a device’s location from the signal strengths 
it observes. 

7.2. Interpolating Signal Strength 
Distributions 

The 63 calibration points were relatively widely 
spaced, with an average of 2.64 meters to each point’s 
nearest neighbor. We wanted to achieve higher spatial 
resolution with a set of location nodes spaced more 
densely than the calibration nodes. As shown in Figure 
3, the location nodes (Figure 3(a)) are much more dense 
than the calibration nodes (Figure 3(c)). In order to 

infer location over the dense 
set of location nodes, we need 
to have signal strength signa-
tures at each of the location 
nodes. This means we need to 
interpolate the probability 
distributions at the sparse set 
of calibration nodes into the 
denser set of location nodes. 
The values that we actually 
interpolated from were all the 
discrete probabilities that 
comprise the access point 
detection probabilities and the 
signal strength probabilities at 
the calibration nodes. 

We perform this interpo-
lation using normalized radial 
basis functions (rbfs), a com-

mon choice for such tasks. The rbf formulation makes a 
weighted sum of a set of 2D basis functions centered on 
the calibration points c

c
j Njx K1,)( = , to produce the 

interpolant ( )xd  for the chosen point x : 
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For the kernel function ( )rK  we 

chose ( ) ( )22exp σrrK −=  each centered on a calibra-

tion point )(cx . After some experimentation, we settled 
on 0.1=σ  as a parameter that produced good results. 
The weights jβ  were computed with standard least 
squares fitting to the calibration points. We computed a 
separate set of weights for each bin of each probability 
distribution. 

The interpolated values formed the access point de-
tection probabilities ( ))( l

ji xAPp  and signal strength 

probabilities ( ))(
1 , l

jikk xAPsssp +<≤  at the location 

nodes )()( 1, ll
j Njx K= , thus going from probabilities at 

a relatively sparse set of calibration points to estimated 
probabilities at denser set of location nodes. The nor-
malized rbf is not guaranteed to produce probabilities in 
the range [0,1] nor probability distributions that inte-
grate to one. In practice it came close, however, requir-
ing only slight clamping and normalizing to restore the 

   
(a) (b) (c) 

Figure 3: Location Nodes. (a) Dense set of location nodes. The red 
path shows the shortest path distance between the centers of two 
offices. (b) Walking paths that were drawn by hand. (c) Sparse set of 
calibration nodes at which we took signal strength readings. 



proper range. 
After completing this procedure, we had the neces-

sary state-conditional probabilities at each node in the 
dense set of location nodes interpolated from the sparse 
set of calibration nodes. 

8. Inferring Location using an HMM 

Section 3.2 summarized the basic ingredients of an 
HMM: states, initial state probabilities, transition prob-
abilities, and observation probabilities. The states of the 
HMM for location are the location nodes 

l
l

i Nix K1,)( = , which we produced with our drawing 
program. With no other data about where a device 
might be located, the initial state probabilities 

li Ni K1, =π  are uniformly distributed over the loca-
tion nodes, i.e. li N1=π . The transition probabilities 
are described in Section 4, and they are sensitive to the 
building’s layout, expected pedestrian speeds, and our 
inference on whether or not the device is moving. The 
observation probabilities come from the interpolated 
probabilities described in Section 7. 

For inferring location at time T  the device scans 
for signal strengths from all access points. One result of 
this scan is an indicator vector TI  with one boolean 
element for each of the APN  access points indicating 
whether or not the access point was detected. The other 
result is a vector of signal strengths Ts that gives the 
signal strength for each detected access point. Corre-
sponding elements in these two vectors correspond to 
the same access point. If the access point was not de-
tected, then the signal strength value for that access 
point can be any value, because it is not used. The prob-
ability of seeing this scan at location )(l

ix is 
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Here TjI  means the thj  element of TI , and Tjs  means 

the thj element of Ts . Each multiplicand in this product 
represents one AP, implying that the scan result for each 
access point is independent of the other access points. If 

the thj  access point was seen ( trueI =Tj ), then the 
multiplicand represents the probability of seeing this 
access point at the observed signal strength Tjs . If the 

thj  access point was not seen ( falseI =Tj ), then the 
multiplicand represents the probability of not seeing this 
access point. 

These HMM elements are combined with the 
Viterbi algorithm as described in Rabiner’s tutorial 
paper[16] to produce a set of state probabilities over the 
location nodes, i.e. ( ))( l

iT xp . For the final location 
estimate, we take the expected value of the location: 
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9. Results of Experiments 

We tested our system in our home building. Our 
test data came from 10 short walks through the halls and 
into some offices in our test area. The 10 walks 
amounted to 4586 positions and associated 802.11 
scans.  The average length of each walk was 2 minutes 
25 seconds. Determining ground truth location while 
walking is a problem we solved by walking in straight 
segments and clicking on our location on the floor map 
at the end of every segment. Assuming a constant walk-
ing speed along segments, we linearly interpolated 
ground truth positions along each segment. The median 
location error for all the tests was 1.53 meters. Figure 4 
shows a histogram of the error amounts and a cumula-
tive error distribution. 

It is difficult to fairly compare different Wi-Fi loca-
tion techniques without testing them in the same physi-
cal environment with the same data. This is because 
different buildings vary in their placement and density 
of access points and in their physical construction, 
which affects radio propagation. Likewise we expect 
such systems to be sensitive to the amount and exact 
placement of calibration points. Nevertheless, we can 
get an inkling of how LOCADIO compares by looking at 
its performance relative to two other Wi-Fi location 
techniques based on their reported performance, both in 
terms of accuracy and calibration effort. 



Bahl and Padmanabhan’s RADAR system covered 
the hallway outside about 54 offices with 70 calibration 
points, about 1.3 points per office. In our LOCADIO 
experiments, we used 27 calibration points in the hall-
way outside 44 offices, about 0.6 points per office, a 
reduction of over 50% with a simultaneous reduction in 
median error of about 35% (from 2.37 meters to 1.53 
meters). (For this analysis we did not count the calibra-
tion points we took in offices, as RADAR’s testing was 
only done in hallways.) 

Ladd et al. spaced their hallway calibration points 
about 1.5 meters (5 feet) apart, while our hallway points 
were slightly more than twice as far apart, at 3.1 meters. 
Their median error was 1 meter compared to ours of 
1.53 meters. While the lack of identical test conditions 
means we cannot make any definitive claims for relative 
performance, we can say that LOCADIO’s performance 
appears to be competitive with the best existing sys-
tems. In addition, LOCADIO gives an indication of 
whether or not a device is in motion. 

10. Conclusion 

Computing context from 802.11 is attractive be-
cause many spaces are already wired with 802.11 access 
points, and more and more mobile devices will be 
equipped with wireless network hardware. LOCADIO 
computes whether or not a device is in motion by exam-
ining the variance of Wi-Fi signal strengths, smoothing 
the inferences with an HMM and simple prior assump-
tions on how often people move. The location part of 

LOCADIO is based on a principled model that accounts 
for the building’s layout, expected pedestrian speeds, 
our previous inference on the device’s state of motion, 
and probabilistic signal strength signatures. While we 
applied this framework to 802.11 signals, it could be 
easily applied to other types of location sensing as well 
as serving as platform for sensor fusion. Because we 
carefully model the constraints and dynamics of loca-
tion, our experiments show a median error of 1.53 me-
ters without onerous calibration effort. Calibration ef-
fort is further reduced because we interpolate from a 
sparse set of calibration nodes to a dense set for doing 
actual inference. 

Our future research in this area will concentrate on 
reducing calibration effort even further to make systems 
of this type more attractive. It is worth characterizing 
the tradeoff between calibration effort and accuracy. 
We are also interested in trying to better exploit the 
building’s floor plan to predict signal strengths and in 
trying to find ways to encourage users of the system to 
contribute to the calibration effort for the benefit of 
everyone. 
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