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Abstract 

Problem-solving procedures have been typically aimed at 
achieving well-defined goals or satisfying straightforward 
preferences. However, learners and solvers may often 
generate rich multiattribute results with procedures guided 
by sets of controls that define different dimensions of 
quality. We explore methods that enable people to explore 
and express preferences about the operation of classification 
models in supervised multiclass learning. We leverage a 
leave-one-out confusion matrix that provides users with 
views and real-time controls of a model space. The 
approach allows people to consider in an interactive manner 
the global implications of local changes in decision 
boundaries. We focus on kernel classifiers and show the 
effectiveness of the methodology on a variety of tasks.  
 

Introduction  

To date, preferences about the operation of learning and 

reasoning procedures have been expressed in relatively 

simple forms, such as “achieve the highest classification 

accuracy” for a learning task. However, computational 

procedures for learning and reasoning may generate rich, 

multiattribute partial and final results (Horvitz 1988), 

providing opportunities for control and design of learning 

and reasoning in accordance with human preferences. 

Rather than seeking to predefine preferences, human 

assessments of the multiattribute utility of results and 

behaviors of an automated reasoning system may best be 

defined in terms of an interactive exploration of tradeoffs 

in the operation of a solver or classifier. 

We explore the use of interactive procedures to give 

system designers or end users the ability to control 

multiple dimensions of details of the performance of 

multiclass learning. As an example, in a multiclass setting 

misclassification costs are often asymmetric and depend on 

user and task. For example, people may have different 

preferences about the operation of a junk email filter where 

a classifier with a low false-positive rate may be preferred 
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over other models given equivalent overall performance. 

Details about this preference may vary by person. 

In general, the performance of classifiers can be 

described with multiple attributes. The preferences about 

the performance of classifiers can be encoded as a 

multiattribute utility function, and can dictate the selection 

of best models and parameters. When a predefined utility 

function over different attributes is available, it can guide 

automated optimization of models and parameters. 

However, system designers or users may not have access to 

such assessed preferences. In many cases, detailed 

preferences might be first defined in the context of specific 

classification tasks and data: details of the performance of 

classifiers may interact with goals in unforeseen ways. In 

such cases, traditional numerical optimization methods 

cannot help to identify optimal parameters a priori. 

Preferred behavior might be selected most efficiently via 

an interactive “dialog” where people have a conversation 

with a learning procedure about alternate solutions. 

We explore methods for allowing people to directly 

manipulate the operation of machine-learning procedures 

via a human-in-the-loop methodology. We seek to provide 

people with tools for exploring tradeoffs that arise with 

algorithmic procedures, and to give them the ability to 

refine the operation of learning using an end-to-end 

analytical pipeline that learns, infers, and provides 

visualizations about changes in settings at interactive rates. 

Such assessment of utility or refinements of a prior, 

coarsely specified utility model in the context of an active 

learning cycle provides a means of focusing scarce 

cognitive resources on assessment and control, as relevant 

choices and tradeoffs are dynamically framed by the 

operation of the learning algorithm at each cycle. 

We focus, as an example, on learning the kernel and 

hyperparameters for multiclass classification that leverages 

human guidance. The method enables people to prune the 

model space via interactive exploration, reducing 

computational needs. Starting with an initial model, users 

can interact with a visual representation of a leave-one-out 

confusion matrix, allowing them to search among a space 

of models to identify a model whose cross-validation 



 

Figure 1: Interactive confusion matrix. Users click up/down 
arrows. Solid arrows indicate desire to increase/decrease a result. 
Arrows with bar (bias cue) indicate constraints on changes. 

performance is favorably aligned with the desired output. 

Core technical challenges with developing such interactive 

methods include composing efficient numerical algorithms 

that infer settings of hyperparameters at interactive rates.  
 

Background 

The performance of a classifier depends on several design 

choices including the feature set, parametric family, and 

parameter settings. In the context of kernel-based 

classification, such choices translate into selecting the 

appropriate kernel, hyperparameter setting, and choice of 

regularization parameters. Richer models have been 

proposed for kernel-based learning with additional 

hyperparameters, e.g., classification with asymmetric loss 

(Bach, Heckerman and Horvitz 2006) and automatic 

relevance detection (Mackay 1992, Neal 1996).  

When the utility function is known and easily 

computable, we can employ techniques such as cross 

validation to determine the appropriate settings. Cross 

validation can be used to perform model selection for any 

kind of classifier and is commonly used given its appealing 

statistical properties (Evgeniou, Pontil and Elisseeff 2004). 

However, cross validation can also be prohibitively 

expensive as it requires classification studies on hold-out 

sets for all possible models. Further, maximizing simple 

cross-validation accuracy may not correctly reflect the 

desired classification output. Consider the case where cross 

validation shows that multiple models achieve the same 

best possible performance. In such situations, a model 

might be selected based on heuristics, such as by the order 

in which the models are evaluated, where the first model 

that achieved the best result is selected. Such heuristics 

may often fail to select an optimal model. 

The second set of methods attempts to overcome the 

computational intensiveness of cross validation by 

maximizing surrogate functions that reflect appropriateness 

of the kernel to the observed data. Examples include kernel 

target alignment for learning SVMs (Cristianini et al. 

2001), multiple kernel learning (Lanckriet et al. 2004, 

Varma and Ray 2007), and evidence maximization using a 

Bayesian perspective on kernel machines (Girolami and 

Rogers 2005, Gold, Holub and Sollich 2005, Kapoor et al. 

2009). Most of these methods attempt to learn a linear 

combination of existing kernels and provide no guidance 

about other parameters. Finally, none of these methods 

would work when the utility function is unknown, 

incomputable, or has multiple competing objectives. 

We seek to circumvent these challenges via interaction 

and visualization. The key idea is to harness user 

interactions to explore the space of solutions without cross 

validating the entire space in an exhaustive manner. By 

visualizing the possible solutions and guiding the search, 

users can both gain a sense of the capabilities of the 

classifier and choose a model aligned with his goal. 

This work comes in the spirit of efforts in mixed-

initiative interaction, where a computational procedure and 

user each take initiatives to jointly solve a task (Horvitz 

1999, 2007). We extend prior research on interactive 

machine learning (Fails and Olsen 2003), including studies 

exploring the value of taking hints from people to optimize 

the operation of decision trees (Ankerst et al. 1999), naïve-

Bayes classifiers (Becker, Kohavi and Sommerfield 2001), 

SVMs (Caragea, Cook and Honavar 2001), and HMMs 

(Dai and Cheng 2008). Beyond supervised learning, 

interactive clustering (Bilenko, Basu and Mooney 2004, 

Bekkerman et al. 2007) and feature discovery using human 

input (Raghavan, Madani and Jones 2005) have been 

proposed. Closest to our work are studies of the use of 

tools to visualize the performance of specific learning 

algorithms along with controls for modifying parameters 

(Ware et al. 2001, Talbot et al. 2008, Kapoor et al. 2010).  

Approach 

The interactive system consists of two critical components: 

(1) a user interface (or UI) that provides informative 

visualizations and enables efficient, intuitive interactions, 

and (2) a numerical procedure that translates interactions 

into valid choices of the hyperparameters. 
 

Interactive Confusion Matrix 

We employ an interface used in a prior study (Kapoor at al. 

2010) that was effective for guiding a simpler interactive 

machine-learning task. The interactive visualization is a 

graphical display of a confusion matrix (see Figure 1), that 

enables users to explore the model space using leave-one-

out cross-validation results. The confusion matrix 

represents leave-one-out classification results, where the 

row represents an instance’s true class and the column 

predicted one. Depending on the goal, users can increase or 

decrease the number of instances classified in each cell. 

The interface allows users to directly interact with this 

confusion matrix to specify their desire. A click on the up 

or down arrow that appears on a mouse over a cell 

corresponds to the desire to increment or decrement the 

cell value by one. A change in one cell often influences 

one or more other cells. As it is necessary to control the 

values in these cells, the system allows users to specify 

biases (with a ctrl+click) that encourage a specific 

direction in cell value change. In contrast to the strong 

constraint of incrementing or decrementing a cell, these 



biases only define the set of feasible directions until the 

user clears them. 

Given a user’s input via the tool, the numerical 

procedure attempts to find a solution accommodating the 

request. If a feasible solution is found, the state of the 

classification is modified and the visualization is updated; 

otherwise, a notification of difficulty is provided. The 

changes in the confusion matrix are reflected using colors 

(green for increase and red for decrease) and opacity (for 

the magnitude of change). The interface also supports undo 

(ctrl+z) and redo (ctrl+y). A previous user study on such a 

confusion matrix showed that users could recover the 

required parameters faster and more effectively to estimate 

misclassification risks (Kapoor et al. 2010). We decided to 

apply the same UI for kernel and hyperparameter learning. 
 

Numerical Procedure to Explore Model Space 
Assume that our training set consists of data points    
{       } , with class labels    {       } , and   

represents the set of hyperparameters that describe our 

model choice (e.g., kernel width for an RBF kernel, 

regularization parameters, weights in a linear combination 

of kernels, etc.). The goal is to determine an updated model 

     based on user interaction. Given the current model 

choice, we can run the training algorithm and produce 

leave-one-out classification results for our training set. We 

assume a one-versus-all multiclass classification setting; 

for an input point    , the leave-one-out multiclass 

classification results in an M-dimensional vector     
[   ]   

 . Here,     denotes the classification score for the 

class   and the leave-one-out classification procedure will 

assign the label that has the highest score among all of the 

M classes. Note that computing these leave-one-out scores 

for all the training points is an expensive procedure. We 

address this computational cost in Section 2.3. 

As determining a label is performed by max operation, 

we introduce the notion of an M-dimensional current state 

vector denoted as   ( )  [   ]   
 , corresponding to the 

input point    and given the model  . Formally, 

   ( )  
      

∑         
    

 

The state vector is simply a softmax transformation of 

the scores      and for a sufficient high value of the scaling 

parameter   will approximate an indicator vector that is 

zero everywhere except at the position corresponding to 

the maximum component of   . 

The leave-one-out confusion matrix can be computed 

and displayed given the scores    for all the training points. 

A click on the up or down arrow in the confusion matrix 

expresses the desire for the number of instances in that 

particular cell to change. In other words, each interaction 

represents a local intention, leading to the shift of labels for 

some data points. Clicking on the up arrow on a cell at row 

  and column   means that at least one more data point 

with true class  , not already classified as  , needs to be 

classified as so. Similarly, a down arrow input means that 

at least one of the points with true class  , and classified 

as  , needs to be labeled something other than  . 

Every interaction defines a set, denoted as    of data 

points for which the classification need to change. Further, 

for every data point      , the interaction also defines the 

desired target state   , which is a  -dimensional vector and 

encodes the desired moves. The desire to classify a point as 

class b is encoded using a vector, denoted as 

 ( )   comprising of all zeros except the b
th

 component, 

which is set to one. Similarly, the desire to not classify a 

point as b is encoded using  ( )  which is an M-

dimensional vector with all entries set to   (   ) except 

the b
th

 component which is set to zero. Thus, given the user 

interaction, we derive the sets   and the target    as: 

 Click/Bias Up:    
  {                                };        
       ( )            

 Click/Bias Down:  
  {                                };        
       ( )            

 For rest of the data points unaffected by interaction 
       ,          ( ) 

 

The goal is to minimize the difference between the 

current and the target states. Consequently, our strategy is 

to derive an updated model      that is aligned with user 

desires. Note that assigning       ( ) for all unaffected 

acts as a regularizer by implying that we seek a 

configuration that satisfies the user’s preferences but is 

closest to the original state. Formally, we consider 

minimization of an objective function that measures 

discrepancy between the targets and the current state using 

the KL divergence: 

 ( )  ∑  (  ‖  ( ))

 

   

 ∑∑      
   

   ( )

 

   

 

   

 

Other choices, such as squared or absolute difference 
between targets and current state, could be used to measure 
the disparity. KL divergence is a natural choice as both 
   and    are valid probability distributions. The gradient 
of this function can be succinctly written as: 

       ∑[  ( )]
  [    ( )   

 ]   

 

   

 

Here,   ( ) denotes the Jacobian matrix comprising of 
the partial derivation of the score vector     with respect 

to   (row   and column   is 
    

   
), and   is a vector of all 

ones. Since, one click is interpreted as a user’s desire to 
increment the count in the specific cell by one; it is not 
desirable that we fully minimize the above objective. 
Consequently, we employ binary search to determine the 
minimum step-size   that would change the count of the 
cell where the user incremented the key by one. In case a 
valid step size is found, we update: 

             



 
Figure 2: Illustrative example demonstrating learning RBF kernel width and regularization parameter using interactive confusion matrix. 

Top: Evolution of decision boundary. Bottom: Corresponding state of the confusion matrix. 
 

 

This procedure can be viewed as a human-in-the-loop 

search, where the human input determines the descent 

direction, and the system carries out optimization and 

computes the correct step size to take. This numerical 

procedure coupled with interactive visualization and 

feedback provides a system that users can use to explore 

the model space. The key to a compelling experience is 

real-time feedback. Thus, it is imperative to employ 

numerical operations that allow for updates that are 

perceived as occurring immediately. The most 

computationally expensive parts of the numerical 

procedure are computing the leave-one-out scores     and 

the Jacobian   ( ) that encodes the gradient of scores. 
 

Computational Issues 

Many kernel based classification algorithms can be 

formulated as an optimization problem of finding a 

solution,   ( )  ∑    (    )
 
   . Here,  (     )  is the 

kernel that depends upon our model choice  . In general, 

the optimization problem takes the follow form: 

            
 

 
∑ (    (  ))

 

   

 

 (   ( ))  represents a loss-function,    is the kernel 

matrix where the entry,       (     ) , and    is the 

regularization parameter. Different choices of the loss 

functions lead to different flavors of methods: e.g., hinge 

loss (     (  )      ) for SVMs and squares loss 

( (  )   )
 for regularized least-square classification 

(RLSC). Although solving such optimization problems is 

feasible for large datasets at interactive rates, our 

requirement goes beyond that. As mentioned earlier, we 

seek leave-one-out scores, which, if done naïvely require 

training a classifier   different times. In addition to the 

leave-one-out scores we need the gradients of these leave-

one-out scores with respect to the model  . For the case of 

regularized least square classification such leave-one-out 

scores can be computed efficiently without the need to 

optimize for   different classifiers. Formally, the leave-

one-out outputs and their gradients with respect to     are: 

    (  )     
[    ] 
[   ]  

                 

   
    (  )  

[     
   

    ]
 

[   ]  
 

[    ] [ 
    

   
   ]

  

[   ]  
 

 

Here,   [        ]
  is the vector of all training labels. 

These computations depend on computing the inverse of  , 

which is  (  ). Consequently, the overhead of computing 

the leave-one-out scores and their gradients is fairly small.  

We can also use certain numerical tricks for Gaussian 

Process (GP) based classifiers (Rasmussen and Williams 

2006) in order to compute leave-one-out estimates. Instead 

of performing an optimization, we perform Bayesian 

integration and obtain a probability distribution over the set 

of all possible classifiers. Expectation Propagation (EP) 

(Minka 2001) is one such approximate inference technique 

that approximates the distribution of classifiers as a 

Gaussian whose mean again can be represented as  ( )  
∑    (    )

 
   . One of the advantages of using EP is 

that estimates of leave-one-out classification are 

estimated during the inference process and are available 

for free. For our interactive procedure we also need the 

gradients of the leave-one-out estimates. While there is 

no obvious approximation to these using EP, estimation 

is numerically feasible due to low dimensionality of the 

model space.  

We ran the system on a 3.00 GHz dual Intel Xeon 

processor Windows machine with 8 GB RAM. We are 

able to achieve interactive rates on problems with 3000 

data points using RLSC and 400 points for EP. The 

procedure can be applied to larger problems if the user 

is willing to tolerate latency in system responses. 
 



Table 1: Interactively learning 𝜎 and  𝜆 on UCI datasets. 
 

 
 RBF width 

𝜎 

Regu. Const. 

𝝀 

Test  

Accuracy 

Ionosphere 
Interactive 3.48 (0.17) 0.64 (0.06) 92.55 (0.8) 

Grid Search 3.95 (0.24) 0.22 (0.04) 91.63 (0.5) 

Sonar 
Interactive 3.54 (0.24) 0.46 (0.31) 86.90 (1.8) 

Grid Search 3.02 (0.31) 0.31 (0.09) 86.31 (1.1) 

Heart 
Interactive 3.12 (0.69) 0.86 (0.25) 82.48 (0.9) 

Grid Search 3.20 (0.43) 1.71 (0.15) 82.22 (0.9) 

 

 
Figure 3: Learning linear combination of kernels. Left: Synthetic classification task, where the evolution of the decision boundary is shown. 

Middle: Evolution of relative weights of combination in the simplex starting from the bottom-center (equal weights for linear and RBF). P0 

to P4 in both left and middle figure correspond to the same four models encountered along the red path. Right: Performance on Caltech-101. 

Experiments 

We now demonstrate the performance of the interactive 

model exploration system in context of different model 

selection tasks relevant for multiclass classification. The 

first two tasks have a well-defined utility function (overall 

accuracy), thus the experiments show that interactive 

method is at par with the numerical methods. The third 

task (asymmetric loss) consists of preferences and 

performance, highlighting the operation of the method. 
 

Learning Hyperparameters for an Individual Kernel: 
We first highlight the proposed framework on a non-linear 

classification task using an RBF kernel. The RBF 

kernel   (     )      (     ‖     ‖
 

  ⁄ )  with the 

kernel width parameter   is a popular choice for non-linear 

kernel-based classification. However, the kernel width is 

an important parameter and the success of the method 

depends on choosing it correctly. Thus, the model selection 

task in the context of RLSC is to choose appropriate 

settings of the hyperparameters   {   }, where   is the 

regularization parameter. Although a popular choice is 

cross validation with grid search, we show how we can 

avoid that using the interactive method. 

Figure 2 illustrates application of interactive model 

search on a synthetic dataset. Starting with a suboptimal 

choice of hyperparameters (         ), the user 

continues to interact with the system until achieving a 

satisfactory leave-one-out performance. In Figure 2, the 

top row shows the evolution of the decision boundary as 

the user interacts, while the bottom row displays the state 

of the leave-one-out confusion matrix at that instant. Note 

that the user only sees the confusion matrix and does not 

have access to views of the decision boundary. The 

interactive procedure smoothly morphs the initial incorrect 

model to a correct one which provides a good classification 

boundary. All this is achieved with just a few clicks from 

the user and without the overhead of exhaustive search.  
We also explore how well interactive model search 

compares to exhaustive grid search over the model space 

on real-world data. Table 1 highlights such a comparison 

with exhaustive grid search on three UCI datasets. We 

performed exhaustive search on a 2D grid (for kernel width 

and the regularization parameter) in the range from 0.05 to 

5 with a step size for 0.05, where the exhaustive search 

choose hyperparameters for which leave-one-out accuracy 

was found to be maximum. Each dataset was split 

randomly 10 times into a training (60%) and test set (40%). 

In each trial, the features are normalized to have zero mean 

and a unit variance using the training set. We report results 

averaged over 10 different splits (standard error in 

parenthesis). From the table, we can see that the interactive 

approach is able to select models that have better or 

comparable test accuracy to the models found using the 

grid search: 92.55% vs. 91.63% (Ionosphere), 86.90% vs. 

86.31% (Sonar) and 82.48% vs. 82.22% (Heart). Note that 

grid search only explores model choices at a discrete set of 

hyperparameter settings (defined by the grid) and there is 

no such constraint in the interactive procedure. 

Consequently, we can explain the gain in performance by 

noting that the interactive procedure can discover models 

that performed best but were not part of the grid search. 

Although it is possible to choose a very small step-size for 

the grid parameter, such finer choices lead to a 

considerable increase in computational overhead. Table 1 

also shows the average of discovered hyperparameters 

using the two methods. We observe that the solutions 

discovered by both procedures are fairly close to each 

other showing that the interactive method can discover 

better or comparable models without performing 

exhaustive search. Finally, the interactive method provides 

significant benefits in terms of time requirements. While 



 
Figure 4: Handling asymmetric misclassification cost. Interactive confusion matrix helps users find parameter settings that result in decision 

boundaries aligned with misclassification risks. We depict training points, associated confusion matrices converged upon, and resulting 

decision boundaries. Red circles highlight how users maximized most preferred class. 
 

the exhaustive search took mean times of 111.38, 39.46, 

and 54.26 seconds (over the 10 splits) for the Ionosphere, 

Sonar and Heart data, the interactive method only required 

mean times of 38.12, 20.45, and 32.15 secs, respectively.  
 

Learning Linear Combinations of Kernels: Learning a 

linear combination of kernels is an extensively studied task 

(Lanckriet et al. 2004, Varma and Ray 2007, Girolami and 

Rogers 2005). Formally, given multiple kernels        , 

we seek a linear combination of the base kernels such that 

the resulting kernel    ∑      
 
    has a good 

discriminatory power. Besides the regularization 

constant  , we also wish to learn the weights {       }. 
Figure 3 illustrates the utility of the interactive approach 

on such tasks. In particular, we generated a synthetic 

binary classification problem (Figure 3 left) and considered 

three different basis kernels: a linear kernel, a polynomial 

kernel, and an RBF kernel with width 0.1. Note, that this 

synthetic data is perfectly classifiable using a polynomial 

of degree 2 (a circle). Hence, the ideal kernel combination 

should assign a high weight on the polynomial kernel. 

First, we start with weights that had equal weight on the 

linear and the RBF kernel (1/2 for each) and zero weight 

on the polynomial kernel. Clearly, such weights are not 

going to provide good boundary (as data is not linearly 

separable and the width of 0.1 for RBF kernel is not big 

enough to provide perfect classification).  

Figure 3 (left) also shows how the actual decision 

boundary evolves with such interactions. The shades of the 

boundaries represent their recentness, with the darkest 

boundary representing the final solution; we can observe 

the smooth transition from earlier solutions as the user 

interacts with the confusion matrix. Figure 3 (middle) 

highlights the evolution of weights as the user interacts 

with the matrix in order to drive the solution aligned with 

his preference. We illustrate a simplex in Figure 3 

(middle), where the vertices correspond to each of the three 

base level kernels and the interior of the triangle represent 

relative weights (i.e.   ∑    
 
    ⁄ ) of the kernels. The red 

line illustrates the evolution of the weights with each user 

interaction starting from the center of the triangle. Note 

that, naïve cross validation would have required us to 

explore the whole interior of the simplex. However, with 

the interactive approach, we can avoid the extra overhead 

and just follow the user preferences to track a path (red 

line) leading to the desirable model. We also plot the 

solutions found by Hierarchic Bayesian learning (Girolami 

and Rogers 2005), evidence maximization of GP 

regression (Kapoor et al. 2009), and multi-kernel learning 

of Varma and Ray 2007. The red line highlights the 

smooth morphing of the weights to the correct solution, 

where most of the weight is given to the polynomial 

kernel. Further, notice that the solution recovered by the 

interactive procedure is fairly close to the ones found by 

other techniques, which highlights such interactive 

methods can are at par with existing methods.  

We tested the interactive scheme on learning linear 

combinations of classifiers for the Caltech-101 task. We 

considered four different base kernels (see Kapoor et al. 

2009): Pyramid Match Kernel (PMK), spatial PMK, 

Geometric Blur (GB) and GB with the distortion. Since 

interacting with a 101 class confusion matrix is hard, we 

only considered classification among 10 classes, which 

were chosen randomly at each iteration. We consider 15 

randomly selected training images per class and use the 

rest for testing and repeat the process ten times. Table 1 

shows the average recognition performance obtained using 

different methods (standard error in parenthesis). We 

observe that the kernel combination provides better 

performance than any classifier based on an individual 

kernel. Further, the rates obtained by the interactive 

method (86.87%) are better than other combinations 

(84.53% for GPR Kapoor et al. 2009 and 82.47% for 

Varma and Ray 2007). We hypothesize that this results 

from the fact that, during interactive model selection, we 

are directly optimizing for leave-one-out error instead of a 

surrogate function. Also, the mean number of clicks to 

solve the task over the 10 runs was 10.3 (1.87).  This result 

is even more compelling as the user input only a few clicks 

to produce classifiers that perform well.  



 

Asymmetric Misclassification Cost and Unbalanced 

Data: Another flavor of model selection task occurs when 

misclassification costs vary greatly depending on the 

outcome (e.g., spam filtering). Such scenarios are 

addressed by considering separate regularization constants 

for different classes (Bach, Heckerman and Horvitz 2006). 

However, given the asymmetric there is no easy way to 

estimate the settings of regularization parameters. Grid 

search is again an option, but becomes infeasible as the 

number of classes increase. Similarly, the unbalanced data 

scenario can also be handled by considering separate 

regularization parameters, where estimating such 

parameterization is non-trivial. However, we can use the 

interactive procedure to tackle these difficult cases. Figure 

4 demonstrates application of interactive model selection 

on a three-class problem, where the confusion matrix has 

been guided in three different scenarios that consider each 

of the three classes as the class with highest 

misclassification cost. The training points corresponding to 

the three classes are shown as yellow triangles, blue 

circles, and magenta squares, and the shading corresponds 

to the resulting classification boundaries. We observe that 

by guiding the confusion matrix to the preferred operating 

point (red circle highlights the entries maximized during 

interaction), the user can discover models that are aligned 

with his personal perferences. Rather than searching 

through changes in the regularization parameters, the user 

can employ the interactive procedure to translate abstract 

parameters into real-world consequences.  
 

Summary  

We presented methods and results on the interactive 

optimization of models in the context of kernel-based 

classification. We showed via a set of experiments how 

approach can be used to incorporate the preferences of 

people to prune the search over the large space of possible 

models. We are excited about the possibilities for 

developing new forms of interactive optimization of 

learning and reasoning procedures. We hope the methods 

we presented will stimulate others to pursue opportunities 

to develop expressive visualizations coupled with 

interactive controls that enable people to explore models 

and parameters for guiding learning and reasoning in 

accordance with human preferences.  
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