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ection and Action Under Scarce Resources:Theoretical Principles and Empirical Study�Eric J. Horvitz, Gregory F. Cooper, David E. HeckermanMedical Computer Science GroupKnowledge Systems LaboratoryStanford UniversityStanford, California 94305AbstractWe de�ne and exercise the expected value ofcomputation as a fundamental component ofre
ection about alternative inference strategies.We present a portion of Protos research focusedon the interlacing of re
ection and action un-der scarce resources, and discuss how the tech-niques have been applied in a high-stakes med-ical domain. The work centers on endowinga computational agent with the ability to har-ness incomplete characterizations of problem-solving performance to control the amount ofe�ort applied to a problem or subproblem, be-fore taking action in the world or turning toanother problem. We explore the use of thetechniques in controlling decision-theoretic in-ference itself, and pose the approach as a modelof rationality under scarce resources.1 Re
ection and FlexibilityRe
ection about the course of problem solving and aboutthe interleaving of problem solving and physical activityis a hallmark of intelligent behavior. Applying a portionof available reasoning resources to consider the utility ofalternative inference strategies or the value of continuingto re�ne a result before acting enables a computationalagent to generate custom-tailored approaches to a widevariety of problems, under di�erent time pressures. Such
exibility can be especially useful in light of uncertaindeadlines and challenges. Uncertainty about problemsand problem solving plagues simple agents immersed in�This work was supported by a NASA Fellowship underGrant NCC-220-51, by the National Science Foundation un-der Grant IRI-8703710, by the National Library of Medicineunder Grant RO1LM0429, and by the U.S. Army ResearchO�ce under Grant P-25514-EL. Computing facilities wereprovided by the SUMEX-AIM Resource under NIH GrantRR-00785. Published in Proceedings of the Eleventh Inter-national Joint Conference on Arti�cial Intelligence, Detroit,MI, pages 1121-1127. Morgan Kaufmann, San Mateo, CA,August 1989.

complex environments. Constraints on an agent's rea-soning and representation resources lead to inescapableuncertainties about the problems that may be faced andabout the value of future reasoning in solving those prob-lems.The Protos project has pursued the use of deci-sion theory for real-time control and o�ine problem-solving design. The work has highlighted opportuni-ties for the principled control of reasoning under scarceresources with problems in sorting and searching andwith decision-theoretic inference itself [Horvitz, 1987a].We have particularly dwelled on the decision-theoreticcontrol of decision-theoretic inference as a model of ratio-nal computational inference under resource constraints.In this paper, we present a component of this work cen-tering on the use of incomplete characterizations of theprogression of probabilistic inference to reason about thevalue of continuing to re
ect about a problem versus tak-ing action in the world. This methodology uses knowl-edge that partially characterizes relevant dimensions ofproblem-solving performance. Such knowledge can belearned and re�ned with experience. We shall introducecomponents of utility for computational or real-worldactions, and de�ne the expected value of computationin terms of the likelihood of future probability distribu-tions over the truth of relevant propositions about thestate of the world. After discussing the theoretical prin-ciples and empirical results, we describe a componentof research centering on the o�ine analysis of problem-solving trajectories. Such o�ine musing, weighted byexpected challenges, can be important in real-time re-
ection about problem solving.2 Decision-Theoretic ValuationDecision theory provides the foundations for a princi-pled approach to metalevel decision making under un-certainty. Decision-theoretic metareasoning can be es-pecially useful in reasoning about the selection, and op-timal halting time, of reasoning strategies that incre-mentally re�ne results as scarce resources are expended[Horvitz, 1987b, Dean and Boddy, 1988].We use comprehensive value, uc, to refer to the utility



associated with the value attributed to the state of anagent in the world. This value is a function of the prob-lem at hand, of the agent's best default action, and ofthe stakes of a decision problem. We call the net changeexpected in the comprehensive value, in return for someallocation of computational resource, the expected valueof computation (EVC). It is often useful to view the com-prehensive utility, at any point in the reasoning process,as a function of two components of utility: the object-level utility, uo, and the inference-related cost, ui.1 Theobject-level utility of a strategy is the expected utilityassociated with a computer result or state of the world.We say that the object-level utility is a function of avector of attributes, ~v. For example we may assignan object-level utility to an incompletely sorted �le ofrecords, based on several di�erent dimensions of incom-pleteness. The inference-related component is the sumof the expected disutility intrinsically associated with,or required by, the process of problem solving. This costcan include the disutility of delaying an action whilewaiting for a reasoner to infer a recommendation. Ingeneral, the inference-related cost is a function of a vec-tor of resource attributes, ~r, representing the quantitythat has been expended of such commodities as timeand memory.There is generally uncertainty in the object-levelstate resulting from the expenditure of computationalresources. Thus, in the general case, we must sum overa probability distribution of object-level attributes togenerate an expected comprehensive utility. If ~v and~r are the vectors representing object-level and inference-related attributes without additional computation, re-spectively, and the ~v 0 and ~r 0 are the revised vec-tors, expected with additional computation, the net, orchange in, comprehensive utility, given some allocationof resources isEVC(~r 0) =X~v 0 uc(~v 0 ; ~r 0) p(~v 0 j~r 0) � uc(~v; ~r)In cases where the inference-related and object-level util-ities can be decomposed, and are related through addi-tion, the EVC is just the di�erence between the increasein object-level utility and the cost of the additional com-putation,EVC(~r 0) = [X~v 0 uo(~v 0 ) p(~v 0 j~r 0)�uo(~v)]�[ui(~r 0 )�ui(~r)]In another study, we considered the re�nement of multi-dimensional attributes of partial results with computa-tion [Horvitz, 1988]. Here, we will simplify our object-level focus to a probability of a state in the world, H,and the quality of an associated decision to act, A, given1More comprehensive notions of the value of a reasoningsystem in an environment are discussed in [Horvitz, 1987b].

uncertainty about the truth of the state. We will sim-plify the inference-related component to a considerationof computation time.The decision-theoretic approach to metareasoning indi�cult machine intelligence problems was introduced byI.J. Good over 2 decades ago, in the context of the controlof game-playing search [Good, 1968]. Good had earlierdiscussed the explicit integration of the costs of inferencewithin the framework of normative rationality, de�ningType I rationality as inference that is consistent withthe axioms of decision theory, regardless of the cost ofinference, and Type II rationality as behavior that takesinto consideration the costs of reasoning [Good, 1952].Related work in decision science has focused on thelikely bene�t of expending e�ort for decision analy-ses [Matheson, 1968, Watson and Brown, 1978]. Ourgroup researched the general applicability of decision-theoretic control of computation, with an emphasis onmetareasoning problems with probabilistic inference andknowledge representation [Horvitz, 1987b]. Early in-vestigation demonstrated that multiattribute decision-theoretic control of reasoning had promise for guidingthe solution of a variety of tasks, including such funda-mental problems as sorting a �le of records or search-ing a large tree of possibilities [Horvitz, 1987a]. In-deed, there have been recent studies of the value ofcomputation in the control of sorting [Horvitz, 1988]and of game-playing search [Russell and Wefald, 1988,Hansson and Mayer, 1989]. In related research on thecontrol of logical inference, Smith, and Treitel and Gene-sereth, have explored the use of decision theory for select-ing alternative logical reasoning strategies [Smith, 1986,Treitel and Genesereth, 1986].3 Complexity of InferenceIn reasoning about real-world actions under uncertainty,an agent generally must consider alternative decisionsand outcomes, preferences about the possible outcomes,and the uncertain relationships among actions and out-comes. We have been investigating the use of in
u-ence diagrams [Howard and Matheson, 1981] for repre-senting and solving automated reasoning problems. Thein
uence diagram is an acyclic directed graph containingnodes representing propositions and arcs representing in-teractions between the nodes. Nodes represent a set ofmutually exclusive and exhaustive states; arcs captureprobabilistic relationships between the nodes. In
uencediagrams without preference or decision information aretermed belief networks. A belief network de�nes a modelfor doing probabilistic inference in response to changesin information.The problem of probabilistic inference with belief net-works is NP-hard [Cooper, 1990]. Thus, we can expectalgorithms for doing inference to have a worst-case timecomplexity that is exponential in the size of the problem(e.g., the number of hypotheses and pieces of evidence).
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Figure 1: A representation of a time-pressured decisionproblem. From top to bottom, the three sections of the�gure portray (a) the decision-theoretic metareasoningproblem, (b) a belief network representing propositionsand dependencies in intensive-care physiology, and (c) acloseup on the respiratory status node, and its relation-ship to the current decision problem.Some methods for inference in belief networks attemptto dodge intractability by exploiting independence re-lations to avoid the explicit calculation of the joint-probability distribution. A variety of exact methods hasbeen developed, each designed to operate on particu-lar topologies of belief networks [Horvitz et al., 1988a].Other methods forego exact calculation of probabilities;these approximation techniques produce partial resultsas distributions or bounds over probabilities of interest.The complexity of precise inference and the availabilityof alternative reasoning approaches highlight the needfor robust approximation strategies and intelligent con-trol techniques. We have sought to develop and con-trol decision-theoretic inference for reasoning under un-certainty in high-stakes and time-pressured applications,such as medical decision making.4 Decisions Under Scarce ResourcesLet us explore concerns that arise in automated decisionmaking under scarce resources. The graph in the lowerportion of Figure 1 depicts an object-level in
uence-diagram representation of a time-pressured problem thatmight face an automated physician's assistant: A 75-year-old woman in the intensive-care unit suddenly

shows signs of breathing di�culty. The patient may bemerely showing signs of mild respiratory distress or maybe in the more serious situation of respiratory failure. Inthis context, the primary decision is whether or not torecommend that the patient be placed on a mechanicalventilator. The decision (square node) depends on theprobability of respiratory failure, which, in turn, dependson the probabilities of propositions in a large belief net-work serving as a medical knowledge base (representedby the graph above the object-level problem in Figure 1).The large oval nodes in the base decision problem rep-resent uncertain states associated with placing an olderperson on a ventilator. The diamond represents the util-ity associated with di�erent outcomes. Factors to con-sider in a decision to act include the possibility that itmay take a long time to wean a patient with severe lungdisease from a ventilator that is applied needlessly; thus,the patient may face a long hospital stay and be placedat high risk of mortality from a disease such as pneumo-nia. However, if the patient turns out to be in respira-tory failure, and is not treated immediately, she faces ahigh risk of cardiac arrest based on the disrupted phys-iology associated with abnormal blood levels of oxygenand carbon dioxide.4.1 Actions and Outcomes in the WorldIn our simple example, there are only four di�erent fun-damental outcomes. The patient either is in respiratoryfailure (H) or is not in respiratory failure (:H), and weeither will place the patient on a ventilator (A) or willnot do so (:A). Thus, we may erroneously decide notto treat a patient who is su�ering from respiratory fail-ure (:A;H), we may correctly treat a patient who issu�ering from respiratory failure (A;H), we may erro-neously treat a patient who is not su�ering from respira-tory failure (A;:H), or we may correctly forego treatinga patient who is not su�ering from respiratory failure(:A;:H). The expected object-level utilities of action[u(A)] and of no action [u(:A)] in terms of the proba-bility of respiratory failure, p(H), are described by thefollowing equations:u(A) = p(H)u(A;H) + p(:H)u(A;:H)u(:A) = p(H)u(:A;H) + p(:H)u(:A;:H)The lines described by these equations intersect at aprobability of H denoted p�. The desired action (thedecision with the highest expected utility) changes asthe utility lines cross at p�. A utility analysis dictatesthat a patient should not be treated unless a decisionmaker's belief in the truth of H is greater than p�.4.2 Decisions About ComputationLet us now integrate explicit knowledge about the pro-cess of reasoning into the decision problem. In answerto a query for assistance, our automated reasoner must



propagate observed evidence about the patient's symp-tomology through a complex belief network. The resultsof an approximate probabilistic-inference scheme may bea probability distribution over a �nal probability. Thisprobability is the value that a computer will calculatefrom a belief network, given su�cient time to �nish itscomputation. Assume that our reasoner may apply oneof several incremental-re�nement algorithms that can it-eratively tighten the distribution on the probability ofinterest over time. We wish the system to make a ratio-nal decision about whether to make a treatment recom-mendation immediately, or to defer its recommendationand continue to reason, given its knowledge about thecosts of time needed for computation.4.2.1 Costs of Inference-Based DelayThe example of a patient gasping for breath, facing therisk of a long hospitalization or a cardiac arrest depend-ing on our decision, poignantly demonstrates the salienceof reasoning-resource constraints in a high-stakes situa-tion. So far, we have considered the utilities of alter-native outcomes to be independent of time. Assumethat the utility of treating a patient in respiratory fail-ure depends on how long the patient has been in failure.Assume, also, that the initial presentation of respira-tory symptoms occurs in the presence of the reasonerand that analysis of the problem begins at this time,to. We represent the cost of delaying treatment, whenthat treatment is needed, by considering a continuum ofmutually exclusive decisions to treat at di�erent times,A(t), where t = to + �t. A cost function can capturethe decay of utility of action with time. At some time t,the utility of acting in the presence of respiratory failurereverts to the utility of not acting at all. We substitutethe static utility equation for u(A), de�ned previously,with a time-dependant equation:u[A(t)] = p(H)u[A(t);H] + p(:H)u(A;:H)where u[A(t);H] reverts to u(:A;H) as some function oftime2. In this example, we assume that delay of actionwill not a�ect the utility of a patient that does not re-quire the intervention. With the time-dependent utilityfunction, our p� threshold will change with time.As indicated by the network in the upper portion Fig-ure 1, a more complete representation of the respiratorydecision problem includes knowledge about the costs andbene�ts of applying di�erent inference strategies. Thisin
uence diagram represents the metareasoning prob-lem. The node labeled Uo in the metareasoning networkis just the value node from the object-level decision prob-lem represented at the bottom of Figure 1. Rather thanseek to optimize the object-level value, our agent's goal2In this domain, we could capture the cost of delay with astochastic model describing the probability of a cardiac arrestas a function of the time we delay therapy; cost models can beuseful summaries of the utility of a large number of outcomes.

is to optimize the utility associated with the value nodein the metareasoning problem, labeled Uc. As demon-strated by the relationships among propositions in themetareasoning problem, Uc is a function of the object-level value and the inference-related cost, Ui, which inturn depends on computational delay, time availability,and the context. The integration of inference-related andobject-level utility allows agents to treat decisions andoutcomes regarding the control of reasoning just as itdoes decisions about action in the world.4.2.2 Re
ection About Future BeliefOur agent's attention is centered on the calculation ofp(H), the probability of respiratory failure. We de�ne �to be the probability that the agent would compute if ithad su�cient time to �nish its computation. That is, �is value of p(H) that the reasoner will report after com-plete computation. At the present moment|before theinference is completed|our automated reasoner may beuncertain about what the value of � will be. The currentuncertainty is described by some probability distributionover �. We denote the uncertainty about � at the presentmoment by p(�). Although this distribution can changewith reasoning, investigators [Howard, 1970] have shownthat the belief a decision maker should use for decisionmaking, if she has to act immediately, is the mean ofp(�), denoted by < � >. After spending additional timet on inference about �, our reasoner may have a newdistribution over �, denoted by pt(�).An automated reasoner may have useful knowledgeabout how a distribution over a belief|and thus howthe new mean of the distribution|will change with ad-ditional computing. An important class of knowledgeabout � is of the form, p(pt(�)). This measure refers tobelief at the present time about the likelihood of alterna-tive belief distributions over � that might be generatedafter computation for additional time t. This notion iscentral in re
ection about the value of initiating or con-tinuing decision-theoretic inference, as opposed to thatof acting with the current best decision.Expected Value of Perfect Computation Supposethat, after thinking for only a few milliseconds, an auto-mated reasoner has generated a probability distributionover �. We �rst introduce the expected value of perfectcomputation on �, denoted by EV PC�. The EVPC�may be viewed as the value of instantaneous completecomputation of the target probability in a decision set-ting. Instantaneous complete thinking would collapsethe current probability distribution over � into an im-pulse. Given the current probability distribution p(�)over �, we de�ne EV PC� as follows:EVPC� = Z� p(�)maxD uo[D(�)] d� � maxD uo[D < �o >]where maxD uc[D < �o >] is the utility, associated withthe best decisionD, based on taking an immediate action



using the current mean belief, < �o >. This measuretells us that the value of computing the �nal answer isjust the di�erence in utility between the current best ac-tion and the summation of future best actions weightedby the probability of di�erent �nal beliefs.Belief About Changes in Belief Real-world com-puters rarely deliver the full expected value of perfectcomputation on di�cult problems because they must ex-pend v�aluable resources in the reasoning process. fail-ure, has incomplete knowledge about what p(�) will beat some future time t, which we refer to as p(pt(�)). Forexample, the system may have a probability distributionover the future bounds on � with additional computa-tion. Such knowledge may have been acquired throughan empirical analysis of a network in addition to an up-per bound that has been proved theoretically. Our rea-soner could apply this type of knowledge by consideringthe EVC(t) based on the information about probabilitydistributions over p(�), obtained with computation foran additional time t, asEVC(t) = Zpt(�) p(pt(�)) Z� p(�)maxD uc[D(�); t] d� dpt(�)�maxD uo[D(< �o >)]That is, we sum over the new probability distributionson � expected at time t, weighted by the current belief,p(pt(�)), that thinking until t will lead to each of therevised distributions. In terms of the mean, < �t > ofthe future distributions, pt(�),EVC = Zpt(�) p(pt(�))maxD uc[D(< �t >; t)] dpt(�)�maxD uo[D(< �o >)]When, for all t, the cost of computation, embod-ied within our comprehensive utility function, becomesgreater than the bene�t of computing (EVC � O), anagent should cease re
ection and act. The EVC formulacan be used to study the value of alternative inferenceschemes. Of course, there can be signi�cant overheadin the real-time application of an EVC-based controlstrategy. Thus, a central goal of research on decision-theoretic control is to identify tractable solutions to theEVC evaluation problem. Alternatively, o�ine analysisand compilation of control strategies may be useful insituations where the complexity of meta-analysis limitsthe gains of real-time decision-theoretic control.Analogous value-of-computation approaches can beused to valuate and control other problem classes. Forexample, we can use an EVC(t) calculation for control-ling the nature and extent of a search or sort problem;we associate a cost with the time required to expandanother node in a tree, or to perform a set of tests andswaps in a partially sorted �le, and consider a probability
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Figure 2: In reasoning about the value of continuingto re
ect about belief, versus that of taking immediateaction, an EVC-evaluation module considers the deci-sion problem and the probability distribution over futureprobability distributions [p(pt(�))] that may be gener-ated with the allocation of computational resource.distribution over the expected object-level gains, giventhe allocated time. The development of tractable EVCapproximations for these and other problems, make pos-sible useful normative control through iterative testingof the value of continuing to reason.5 Value of Probabilistic BoundingWe have pursued tractable solutions to the EVC throughexamining parameterized families of distributions. Forexample, we have explored the use of the EVC approachto control probabilistic bounding methods. Assume thatour automated reasoner has, with some initial amount ofcomputation, computed upper and lower bounds on �,with an upper bound at b and lower bound at a. If ourreasoner does not have any information about where �is|except that the �nal computed result will be betweenthe current bounds|then it is reasonable to assume auniform distribution over � between the bounds. A uni-form distribution within bounds is consistent with anagent being ignorant of the �nal belief, except for thebounds information. Detailed knowledge about conver-gence could change this distribution. Let us focus onthe value structure of assuming uniformity at both cur-rent and future distributions about belief. We denotethe problem by EVC/BU, the expected value of compu-tation for a bounding algorithm given an assumption of



uniformity.An agent may have useful knowledge about pt(�) with-out having information about how the mean < �t > willchange, except for knowing that � will be constrainedto tighter bounds. As an example, a system could makeuse of certain or uncertain knowledge about the rate ofbounds convergence to valuate a decision to continue tocompute. We have analyzed how a system can applyknowledge that the bounds on the belief for a node in abelief network will converge at a rate dictated by a frac-tion, C, which, when multiplied by the current boundsinterval at to, dictates the interval at t. That is,intt = C � inttowhere int is just the interval, or the di�erence betweenthe upper and lower bounds. If we were uncertain aboutthe convergence, we would have a probability distribu-tion over this convergence fraction.We have applied the EVC equation to the boundingproblem, considering future distributions expected withadditional computation. Given a convergence fractionthat allows us to calculate the future bounds, we mustconsider all possible con�gurations of the new boundsgiven the current constraints. As we sweep the expectedfuture interval over the current interval, the mean of thefuture distribution sweeps between positions within thecurrent bounds. When the mean is above p�, we sumover the utility of acting for all states of belief greaterthan that threshold; when the mean is below p�, we simi-larly consider the utility of not acting. Given our currentbounds and a convergence fraction, we sum the utilitiesof the best decision at the future means and subtractthe utility of the best action without additional compu-tation. Solving the uniform distribution case for di�erentpossible p� boundary conditions yields functions that re-port the EVC as a function of (1) the utilities for eachof the four outcomes, (2) the current bounds on �, (3) afunction describing the expected convergence of bounds(e.g., a C) with time, and (4) the cost of delay. Under un-certain performance, a rational agent's re
ection basedon the EVC formalism involves the interlacing of probesfor positive EVC(t) and continued inference. Computa-tion should continue until action is indicated by a non-positive EVC. This volley of re
ection and inference isdemonstrated in Figure 2.5.1 Partial Characterization of InferenceWe have experimented with decisions about computationand action within alternative utility contexts. We haveparticularly explored the behavior of recently-developedgraceful approximation methods for probabilistic infer-ence. These strategies include a 
exible variant of Pearl'smethod of conditioning [Pearl, 1986], called bounded con-ditioning [Horvitz et al., 1988b].In the method of conditioning, a multiply connectednetwork is reformulated to a set of singly connected net-

works by locating a set of nodes that break cycles. Thecomplete set of cycle-breaking nodes is called the loopcutset. The nodes of the loop cutset are instantiated witheach possible value (or combination of values), and theresulting joint probabilities of each instance are calcu-lated as prior probabilities of the instantiated variables.Algorithms for solving the singly connected network sub-problems can be applied to the solution of each networkinstance. In bounded conditioning, instances are ana-lyzed in order of their expected contribution to the tight-ening of bounds. The instances are sorted according totheir prior probability, and are solved in sequence. Abounding calculus generates logical bounds on the �nalprobability of interest by considering the maximum andminimum contributions of the unexplored subproblems.We applied bounded conditioning to several randomnetworks as well as to a belief network describing prob-abilistic relationships among �ndings and pathophyiso-logic states in an intensive-care unit.3 The structureof this belief network is captured by the graph in themiddle of Figure 1. The network consists of 37 mul-tiply connected nodes. We studied the performance ofseveral loop cutsets for this network. A sample loop cut-set consists of 5 nodes that leads to 144 di�erent singlyconnected{network problems.We sought to characterize the re�nement of boundswith additional computation. Our analyses focused onupdating belief in the intensive-care network with singlepieces of evidence. We found that the convergence of thebounds could by approximated by an exponential decayof the size of the interval with time. This convergencewas modeled approximately by the functionint = e�ktAdditional discussion of bounded conditioning, includ-ing analysis of the basis for such convergence, is foundin [Horvitz et al., 1988b]. As an example, the conver-gence of a typical update in the network is captured byan exponential decay with an approximate half-life of36 seconds. That is, after 36 seconds of analysis by aMotorola-68020{based computer, running at a 17 MHzclock rate, the bounds converge to one-half of their orig-inal bounds. At 72 seconds, the bounds are halved onceagain to an interval of approximately 0:25. This conver-gence is modeled by the exponential decay with k = 0:02:The convergence is displayed in Figure 3.This convergence information can be used to calcu-late an EVC associated with continuing to apply thebounding algorithm. Evaluating the EVC within ourtestbed intensive-care belief network has shown, for sam-ple updates and associated sets of utility estimates, thata p� decision threshold can be crossed well before thecomputation of �nal belief. Experimentation with ratio-nal metareasoning to select among alternative inference3This network, called ALARM, was constructed by IngoBeinlich [Beinlich et al., 1989].
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Figure 3: The application of the bounded-conditioningmethod to the intensive-care unit belief network prob-lem. The graph shows the convergence of the upper andlower bounds, and the mean of the approximation (cen-ter curve), to a probability of interest as additional in-ference subproblems are solved.strategies, and to control the length of time that theyare applied is continuing on a variety of belief networksand decision contexts.5.2 Acquisition of Control KnowledgeOur formalism for calculating the value of probabilis-tic bounding operates on knowledge about convergenceon bounds. We have performed theoretical analy-sis of worst-case performance of bounded condition-ing. We have also recorded empirically derived partial-characterization information. Clearly, an agent couldbene�t by continually bolstering its knowledge aboutpartial characterizations with extensive empirical studyof problem-solving trajectories during idle-time. A com-ponent of our research focuses on an o�ine analysis ofthe performance of reasoning strategies of di�erent net-works. The analyses are aimed at capturing useful par-tial characterization of the expected performance of dif-ferent strategies by performing Monte Carlo simulationto generate plausible patterns of evidence, and summa-rizing and storing a set of performance indices. For ex-ample, we are interested in the convergence of bounds inresponse to a state of evidence. This information can beextremely useful to a control reasoner that is attempt-ing to valuate the EVC for a set of competing solutionstrategies. We are researching the automated acquisi-tion of partial characterizations of stategy performancewithin the intensive-care unit application area.

6 SummaryWe have described research on the rational interlacingof decision-theoretic inference with action under scarceresources. We highlighted the use of partial characteriza-tions of probabilistic inference to reason about the valueof continuing to reason about a problem versus that oftaking action in the world. After de�ning the expectedvalue of perfect computation, we explored the expectedvalue of computation for reasoning about belief in a de-cision context. We focused on the valuation of futurecomputation, based on a consideration of future proba-bility distributions over the truth of a proposition of in-terest. We described the use of normative metareasoningtechniques for valuating and controlling probabilistic in-ference for time-pressured medical decisions. Prelimi-nary empirical work has demonstrated that a probabilitybounding algorithm can deliver a large fraction of theexpected value of perfect computation well in advanceof complete inference. We are continuing to experimentwith di�erent distributions over belief and are working tocharacterize useful dimensions of algorithm performance.We foresee that advances in the application of decision-theoretic re
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