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Abstract

We propose a novel framework for tracking non-rigid ob-
jects via pixel classification and integration (PCI). Given a
new input frame, the tracker first performs object classification
on each pixel and then finds the region that has the highest in-
tegral of scores. There are several key advantages of the pro-
posed approach: it is computationally very efficient; it finds
a global, instead of local (e.g., mean-shift), optimal solution
within a search range; and it is inherently robust to different
object scales with minimum extra computation.

Within this framework, a mixture of long-term and short-
term appearance model is further introduced to perform PCI.
As a result, the tracker is able to adapt to both slow and rapid
appearance changes without drifting. Challenging video se-
quences are presented to illustrate how the proposed tracker
handles large motion, dramatic shape changes, scale varia-
tions, illumination variations and partial occlusions.

1. Introduction
Real-time object tracking has been a critical component in

many computer vision applications such as surveillance, dis-
tributed meetings, video compression, etc. There have been
many existing algorithms for object tracking in literature. In
particular, the mean-shift (MS) algorithm [1], including its
variations such as [2], is one of the best for non-rigid object
tracking tasks. As a gradient-based approach, MS is very ef-
ficient and easy to implement. It does a good job in tracking
objects with partial occlusions, background clutters, large mo-
tions, etc. Despite many of its good properties, it has several
limitations. First, like all gradient-based approaches, MS can
only find a local optimal object position instead of a global
one. This is a well known issue and was alleviated using multi-
bandwidth mean shift procedure by Shen et al. in [12] . Sec-
ond, MS does not perform well for scale variations. Not only
it needs to perform at different scales, as pointed out in [5],
the MS algorithm tends to shrink the tracking region when the
object increases its size. Lastly, MS does not have an efficient
appearance modeling mechanism, and is sensitive to illumina-
tion variations and severe partial occlusions.

In this paper, we first present a tracking framework via pixel
classification and integration (PCI), which solves the first and

second problems mentioned above (Section 2 and 3). The ba-
sic idea is to soft-classify each pixel of the current frame into
foreground and background, then search for a region that con-
tains the most foreground pixels. We demonstrate the frame-
work in Section 3 with a simple per-pixel color classification
based tracker. By using the concept of integral image [3], the
proposed algorithm is more efficient than MS, and it guaran-
tees to find the global optimal object location within the re-
gion of interest. Moreover, scale adaption can be performed
accurately with minimum additional cost under the proposed
framework.

We address the third problem by using appearance model-
ing for color histogram based trackers. A generative histogram
model is introduced as a mixture of a long-term component
and a short term component in Section 4. The mixing weights
reflect how good each component can describe the tracked ob-
ject in the current frame. By combining the appearance model-
ing and the color PCI tracker mentioned above, we are able to
track some very challenging sequences, as shown in Section 5.

2 PCI Based Visual Tracking
We first present a tracking framework that performs clas-

sification on each pixel of the current frame and finds the
tracked object by integrating all the classification results to-
gether. Consider a pixel in the current frame, denoted as c(x),
where c is a vector describing the pixel’s features such as color
and/or texture patterns; x is the pixel location. Assume that a
foreground/background classifier C is available. We perform
classification on all the pixels, which yields:

s(x) = C
(
c(x)

)
. (1)

where s(x) is the output score of the classifier, normally a real
value indicating how likely the pixel belongs to the foreground
object. We then determine the foreground region in the current
frame as:

Rf = arg max
R

J(R)

= arg max
R

q(R)
∑

x∈R

s(x). (2)

where Rf is the new foreground region; J(R) is the target
function we want to optimize.

∑
x∈R s(x) is the integral of
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Figure 1. The regions defined for the color histogram clas-
sifier. (a) For frame t − 1, Rt−1

f is the object region; Rt−1
b is

the surrounding background region. (b) Frame t after tracking.
Rt

s is the extended search region. Rt
f is the new tracked object

region and Rt
b is the new background region; R̃t

b is the updat-
ing background region used for updating the mixing weights
in Section 4.

the score image within region R. We assume the object has a
rectangular region of support, and its size is fixed (scale adap-
tion is discussed in Section 3.2). q(R) is a probability that
indicates how likely region R is the foreground region, which
can take object temporal consistency or motion prediction into
the tracking framework.

Once the output score surface s(x) has been calculated, op-
timizing Equation 2 can be done through exhaustive search,
thanks to the special form of Equation 2. We first compute the
integral image [3] of the score surface in the searching area.
For any rectangle region R,

∑
x∈R s(x) can be calculated with

3 additions, which is super-efficient. An important benefit of
exhaustive search is that it guarantees a global optimal solution
rather than a local one such as mean-shift.

3 A Color PCI Tracker

We next present a color classification based tracker using
the framework described above. We use the pixel color as the
feature c(x) of our classifier, i.e., c is a three dimensional vec-
tor representing the YUV color of the pixel at x.

3.1 The Classifier and the Tracker

When classifying the foreground object from the back-
ground, it certainly helps if we can model the foreground and
the background jointly, as the discrimination between them is
one of the most important factors that can affect the tracking
performance. This hypothesis was successfully used in [8] for
the on-line selection of tracking features. In the proposed color
PCI tracker, we build two color histograms – one models the
foreground object and the other models the background ob-
jects. Let u = 1, 2, · · · , m be the bins of the histograms. To
simplify notation, we use u(x) to represent the color bin that
pixel color c(x) falls in. Hence our classification feature is a
one dimensional variable for each pixel location x.

Once a foreground object is given in the first frame, we
compute its histogram in that frame. Denote it as pf (u), where
subscript f stands for the foreground object. In contrast, the
background histogram is always constructed from the previous

frame during the tracking process. Let the region of tracked
object in frame t − 1 be Rt−1

f . We first expand the object re-
gion by α in each direction, where α is a scalar whose typical
value is 3. We then compute the color histogram of the sur-
rounding background region Rt−1

b (Figure 1(a)), denoted as
pt−1

b (u). The whole region Rt
s = Rt−1

f ∪ Rt−1
b , defines the

the search region of the tracker (Figure 1(b)). For frame t, The
classification score of a pixel at x is computed as:

st(x) = log
pf (u(x))

pt−1
b (u(x))

,x ∈ Rt
s, (3)

which is the log likelihood ratio of the pixel belonging to the
foreground and the background. According to Equation 2, the
tracked object region in the next frame is computed as:

Rt
f = arg max

R
J t(R)

= arg max
R⊂Rt

s

qt−1(R)
∑

x∈R

st(x), (4)

where qt−1(R) models the temporal relationship between pre-
vious object locations and the current one. Currently we model
such a probability with a simple multivariate Epanechnikov
kernel [4]:

qt−1(R) = max
(
0, 1− d2(R, Rt−1

f )
)
, (5)

where d(R, Rt−1
f ) is the normalized Euclidean distance be-

tween the centers of R and Rt−1
f . The intuition here is that we

prefer locations that are near the foreground object’s previous
position. Let the tracked object have width w and height h,
and the centers of R and Rt−1

f differ by (∆x,∆y), we have:

d(R, Rt−1
f ) =

√[ 2∆x

(α− 1)w

]2

+
[ 2∆y

(α− 1)h

]2

. (6)

For a typical value of α = 3, the normalization factors simply
become w and h. Note that more complex motion models can
be applied for qt−1(R) when necessary.

The color PCI tracker described above resembles partly
with the work in [11], where a similar color log likelihood
image is adopted to update the sample weights in a particle fil-
tering framework. In this work the likelihood image is used di-
rectly to locate the object. We find the temporal term qt−1(R)
in Equation 4 is of great importance to enhance the perfor-
mance of likelihood images in clutter. This is demonstrated
by the successful tracking of the football sequence shown in
Section 5.

3.2 Scale Adaptation

The scale of the target object often changes with time in
real world, which makes it necessary to adapt the size of the
tracked object region accordingly. Unfortunately, the integral
of classification scores measured in Equation 4 is not scale in-
variant. The scale adaption problem is solved by introducing a



Difference of Gaussian (or normalized Laplacian of Gaussian)
kernel [5], we approximate such a kernel with the following
optimization problem:

Rt
f = arg max

R
J t

scale(R)

= arg max
R⊂Rt

s

qt−1(R)
1

w · h
[ ∑

x∈R

st(x)− γ
∑

x∈Rβ

st(x)
]
,

(7)

where w · h is the size of region R; Rβ is a slightly expanded
region of R. γ is a parameter one can tune to adjust the im-
portance of foreground and background objects. We choose
β = 0.2 and γ = 0.6 in our experiments, although γ’s within
(0.4, 0.7) all provide satisfactory tracking results.

Comparing with Equation 4, for each candidate region R,
Equation 7 introduces 4 additional additions and 1 additional
multiplications when the same integral image based method is
used, which is quite small. We optimize Equation 7 for 5 times
with different scales (0,±5%,±10% size variation) and pick
the scale that gives the highest J t

scale(R). It’s worth pointing
out that the same integral image can be reused while trying
different scales, which is much more efficient than running
the whole tracker 5 times, as is necessary in the mean-shift
algorithm [1].

4 Appearance Modeling

Another important aspect of a robust tracker is its ability to
adapt to appearance changes due to illumination variations and
partial occlusions. Work has been done to model color varia-
tions under different lighting conditions [6, 7], but they either
target for a certain type of object (such as skin) or have high
computational cost. In [13], Nummiaro et al. update the target
model by taking the weighted average of the current and new
histograms. Han and Davis [14] proposed a sequential density
approximation based method using Gaussian mixture as the
target model. In this section, we present a robust appearance
modeling for the model histograms used in the above color
PCI tracker. It can also be considered as an advanced clas-
sifier for the color PCI algorithm presented above. Note that
the algorithm described here can also be applied to other color
histogram based trackers, such as the mean-shift algorithm.

We formulate a generative histogram model as a mixture of
two components, namely, a long-term component that changes
slowly in time, and a short-term component that adapts rapidly
to the most recent appearance of the object. Under normal sit-
uation, we expect the long-term component to take the lead
in determining where the object goes. When there are light-
ing variations or partial occlusions, the short-term component
should play an important role to quickly follow the appearance
changes of the tracked object. Similar ideas were introduced
in [9], where they have three components instead: stable, wan-
dering and lost. Their stable component is similar to our long-
term component, and their wandering component corresponds

to our short-term component. We do not have a lost compo-
nent. In [9], the lost component is used to model rapid feature
variations that cannot be modeled by either the stable or the
wandering component. In our approach, such rapid variation
is rare because the object histogram is a region-based feature.

The foreground and background histogram can now be
written as:

pf (u) = mflpfl(u) + mfspfs(u) (8)
pb(u) = mblpbl(u) + mbspbs(u) (9)

where pf (u) and pb(u) are the foreground and background his-
tograms, respectively. pfl(u) and pfs(u) are also histograms,
where pfl(u) stands for the long-term component of the fore-
ground histogram and pfs(u) stands for the short-term com-
ponent. mfl and mfs are the mixing weights, which sat-
isfies mfl + mfs = 1. These weights indicates how im-
portant different components are to the current appearance.
Similarly, pbl(u) and pbs(u) are the long-term and short-term
components of the background histogram. Mixing weights
mbl + mbs = 1.

At the first frame (t = 0) of the video sequence, we initial-
ize p0

fl(u) and p0
fs(u) to be identical to the histogram obtained

from the to-be-tracked object region R0
f . The background his-

tograms pbl(u) and pbs(u) are also identical to the histogram
computed from R0

b (Figure 1). The mixing weights are initial-
ized as mfl = 0.8, mfs = 0.2, mbl = 0.2 and mbs = 0.8,
although they can be chosen arbitrarily as they will adapt to
the sequence very quickly.

Now assume we have all the information at time t− 1, and
we want to track the object at time t. The first step is to com-
pose pt−1

f (u) and pt−1
b (u) as in Equation 8 and 9. Then, we

may use the color PCI tracker introduced in Section 3.1 to get
the new foreground region Rt

f , as shown in Figure 1(b). Since
we mentioned that the mixing weights indicate how good each
component is in modeling the current appearance, we can use
the Kullback Leibler distances [10] to measure how good a
component explains the object appearance. For the foreground
object, we compute a color histogram from Rt

f in Frame t, de-
noted as p̃t

f (u)1. Let:

dl =
∑

u

p̃t
f (u) log

p̃t
f (u)

pt−1
fl (u)

(10)

ds =
∑

u

p̃t
f (u) log

p̃t
f (u)

pt−1
fs (u)

(11)

where dl and ds are the Kullback Leibler distances between
p̃t

f (u) and the two component histograms. The new weights
are:

m̃t
fl =

e−dl/σ

e−dl/σ + e−ds
(12)

1To clarify the notations, all intermediate histograms or parameters used
for weight updating will have the form ã; and all intermediate histograms or
parameters used for component histogram updating will have the form â.



m̃t
fs =

e−ds

e−dl/σ + e−ds
(13)

mt
fl = ηm̃t

fl + (1− η)mt−1
fl (14)

mt
fs = ηm̃t

fs + (1− η)mt−1
fs (15)

where m̃t
fl and m̃t

fs are the relative goodness of each compo-
nent (normalized). The actual mixing weights mt

fl and mt
fs

are updated in a linear regression manner, with the default
value of η = 0.1. Experiments show that the algorithm op-
erates with a range of η. σ reflects the prior belief on the long-
term component over the short-term component. The default
value of σ is 5. When the long-term component and the short-
term component have the same distance to p̃t

f (u), we prefer
the long-term model to explain the coherent observation in or-
der to prevent the model from drifting. A similar arrangement
was made in [9] for the same purpose.

The background mixing weights are computed in a similar
way, except that we replace p̃t

f (u) with p̃t
b(u), where p̃t

b(u) is
a histogram collected from the region R̃t

b, as shown in Fig-
ure 1(b). Note that the mixing weights we calculate here serve
the purpose of predicting the background histogram in the next
frame, which could be counter-intuitive.

The final step is to update the component histograms. We
compute a histogram p̂t

f (u) from region Rt
f (in this case p̂t

f (u)
is identical to p̃t

f (u)), and update the foreground components
as:

pt
fl(u) = ρ1p̂

t
f (u) + (1− ρ1)pt−1

fl (u) (16)

pt
fs(u) = ρ2p̂

t
f (u) + (1− ρ2)pt−1

fs (u), (17)

where ρ1 and ρ2 are two parameters controlling the update
speed. Due to the characteristics of long-term and short-term
component, we use ρ1 = 10−4 and ρ2 = 0.9. Similarly, we
compute a background histogram p̂t

b(u) from region Rt
b (Fig-

ure 1(b)). The background components are updated as:

pt
bl(u) = ρ1p̂

t
b(u) + (1− ρ1)pt−1

bl (u) (18)
pt

bs(u) = ρ2p̂
t
b(u) + (1− ρ2)pt−1

bs (u). (19)

5 Experiments

The proposed tracker runs comfortably in real time on a
Pentium 4 2.8 GHz computer (3-10% of CPU usage) with-
out further optimization. In this section, we compare the PCI
tracker with the mean-shift (MS) tracker and an extended MS
version which does background modeling (MSBM) [1] on four
different sequences:

1. Football sequence. It was used in the original mean-shift
paper [1], hence we use it here for a sanity check. This se-
quence demonstrates that the color PCI tracker can han-
dle large object and camera motions, motion blur, dra-
matic shape changes (caused by player’s non-rigid mo-
tion), distractors (same team players) and partial occlu-
sions.

#1 #16 #30 #34

Figure 2. Football sequence, tracking player 75. The frames
1, 16, 30, 34 are shown. Note the sequence is at 5 fps and
heavily compressed before tracking.

2. Walking sequence. It features large scale variations. The
foreground size is between 15× 50 and 66× 246.

3. Pedestrian sequence. It is captured from a surveillance
camera and the pedestrian is very small (7 × 16) in the
view. The most difficulty part of the sequence is a heavy
partial occlusion period when the pedestrian walked be-
hind a bush.

4. Office sequence. This is the most challenging one. There
exists background distractors (door), fast motions, partial
or complete occlusions (mounting a book in front of the
face, hiding behind a chair), slow and dramatic light vari-
ations (turn on/off lights), etc.

In all the sequences that follow, we adopt the same default
values of the parameters in the tracker. The YUV color space
is quantized into 16× 16× 16 bins, and the search expansion
factor α = 3.

Figure 2 shows the tracking results on the football se-
quence. The sequence resolution is 351 × 240. In the first
frame, player 75 is selected as the foreground object. Despite
large motions, motion blur, dramatic shape changes, distrac-
tors (frame #30), and partial occlusions, the tracker success-
fully tracks through the sequence. Note the football sequence
we use here is at 5 fps and heavily compressed, which makes
the tracking task even harder.

Figure 3 shows the performance of the proposed tracker on
the walking sequence. A person walks around a building and
his appearance has huge scale variations. The sequence has
640× 480 resolution and 15 fps. The result is compared with
that of a MS tracker with scale adaption [1]. Both trackers try
5 different scales for each input frame. Note the MS tracker
is much more expensive compared with PCI. The MS tracker
does a reasonable job while the person walks away from the
camera, but it failed when the person walks back toward the
camera. Similar effects was observed in [5]. The proposed PCI
algorithm tracks the person very well throughout the whole
sequence.

Figure 4 shows the tracking performance on the pedestrian
sequence using the proposed color PCI tracker with appear-
ance modeling. The resolution of the video is 640× 480, and
the region of the tracked pedestrian is small. We compare our
tracker with MS and MSBM. At frame #130, the pedestrian
walks behind a bush, which introduces heavy partial occlusion.
Both MS and MSBM lost the pedestrian at this moment. The
regular MS algorithm loses the pedestrian hereafter, while the
MSBM algorithm is able to re-lock the tracked subject after a



MS tracker PCI tracker

Figure 3. Walking sequence. The frames 2, 55, 175, 340 and
440 (top to bottom) are shown.

while. Our appearance modeling assisted tracker successfully
tracks the pedestrian throughout the whole sequence.

To provide some insights on why the proposed tracker
works, Figure 5 shows the mixing weights of the appearance
model. The black bold solid curve is the weight for the fore-
ground long-term component, and the red bold dashed curve is
that for the foreground short-term component. Note these two
curves sum up to 1 at any time instance. We draw them both
for reader’s convenience. Around frame #130, the short-term
component’s weight increases dramatically to compensate for
the partial occlusion effect. This explains why the proposed
tracker can still track the pedestrian despite the heavy occlu-
sions.

In Figure 6, we show the result on the office sequence. It
is captured at 24 fps and has resolution 320 × 240. Again we
compare the color PCI tracker with appearance modeling to
the regular MS algorithm and the MSBM algorithm. At frame
#220, all three trackers still track the face after a complete
occlusion by a book. At frame #320, the subject turns off the
light. At that instance, all the three trackers are still tracking

#2 #130 #175

#2 #130 #175

#2 #130 #175

Figure 4. Pedestrian sequence. The frames 2, 130 and 175
are shown. The top row is the result of MS; the second row is
the result of MSBM; the bottom row is the result of PCI with
appearance modeling. Note the original video is at 640× 480
resolution, and the images shown above are cropped to show
the region of interest.

Figure 5. The mixing weights of the appearance model for
the pedestrian sequence.

the head. PCI continues to track the head region under very
low light condition (frame #360), while MS and MSBM fail
because of the lack of appearance adaptation. The subject then
turns the light on. After a while, both MS and MSBM re-
lock the head region (frame #560) as the face moves close to
the tracking region. Unfortunately, at frame #620, both MS
and MSBM are distracted by the hand which has similar color
distributions as the head. PCI works surprisingly well and is
able to track the subject throughout the whole sequence.

The mixing weights of the appearance model are shown in
Figure 7. The first thing one may notice is, compared with Fig-
ure 5, the average mixing weights of the object long-term com-
ponent and object short-term component are about half-half.
This shows that the foreground’s color distribution is vary-
ing more than the Pedestrian sequence. The mixing weight



#2 #220 #320 #360 #560 #620 #650

Figure 6. Office sequence. The frames 2, 220, 320, 360, 560, 620 and 650 are shown. The top row is the result of a MS tracker; the
middle row is the result of a MSBM tracker; the bottom row is the PCI tracker with appearance modeling.

Figure 7. The mixing weights of the appearance model for
the office sequence.

of the object short-term component dominates during the pe-
riod from frame #320 to #450, which corresponds to the low
light period. That is, when the light is off, the proposed algo-
rithm keeps tracking the head region mainly using the short-
term component. Once the light is turned on again, the weights
of the long-term component regains its importance, as shown
in the figure.

6 Conclusions

In this paper we presented a classification-based visual
tracking framework. It has the benefits of being efficient, glob-
ally optimal in the region of interest, and robust to scale vari-
ations. An appearance modeling approach is also presented.
Experiments demonstrated that PCI is both efficient and ro-
bust.
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