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Abstract

Predictions of adverse events during hospi-
talizations can be used in programs aimed
at improving patient outcomes. A patient’s
risk for adverse events may be biased by tem-
poral processes influenced by diagnostic and
therapeutic activities, as well as by the over-
all evolution of the patient’s pathophysiology
over time. Representing and reasoning about
temporal process promises to enhance the ac-
curacy of inferences about risk. However, un-
derstanding temporal influences is challeng-
ing for a number of reasons, including the
large number of variables, the large class im-
balance, and the difficulty of defining ground
truth for risk over time. We explore such
challenges in the context of predicting an
inpatient’s daily risk of becoming colonized
with Clostridium Difficile. We present and
evaluate different methods for extracting risk
processes from medical records. These results
highlight the benefit of including a temporal
dimension when modeling patient risk.

1. Introduction

We consider the problem of predicting the risk of an in-
patient becoming colonized with Clostridium Difficile
(C. Diff) during a stay in the hospital. Although many
of the risk factors are well known (e.g., exposure, age,
underlying disease, use of antimicrobial agents etc.),
C. Diff continues to be a significant problem in many
US hospitals. From 1996 to 2009, C. Diff rates for hos-
pitalized patients aged ≥ 65 years increased by 200%
(CDC, 2011).
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There are well-established clinical guidelines for pre-
dicting whether a test for C. Diff is likely to be pos-
itive (Katz et al., 1996). Such guidelines are largely
based on the presence of symptoms associated with
a C. Diff infection, and thus are not useful for pre-
dicting whether a patient will become infected. In
contrast, risk stratification models aim to identify pa-
tients at high risk of becoming infected. The use of
these models could lead to a better understanding of
the risk factors involved and ultimately provide infor-
mation about how to reduce the incidence of C. Diff
in hospitals.

Tanner et al. developed a risk score to risk stratify
patients for contracting C. Diff (Tanner et al., 2009).
The score measures risk only at the time of admission.
Dubberke et al. points out that the risk of a C. Diff
infection may change from the time of admission, and
sets out to develop and validate a C. Diff risk predic-
tion model that could be used for predicting risk dur-
ing hospitalization (Dubberke et al., 2011). It presents
a model based on 11 variables developed using logistic
regression. Although the authors consider a number of
important variables when calculating risk on a given
day, they do not include risk on previous days, i.e.,
the temporal evolution of a patient’s risk is ignored.

We hypothesize that incorporating a patient’s evolv-
ing risk profile can lead to a more accurate model for
predicting future infections. More generally, we pro-
pose and motivate the study of patient risk processes
to model the evolution of risk over the course of a hos-
pital admission.

To the best of our knowledge, representing and study-
ing the risk of acquiring C. Diff (or any other infection)
as a time series has not previously been done. There
are a number of challenges associated with time series
capture and analysis in this setting.

One major problem is the lack of ground truth about
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risk in advance of a confirmed colonization. There are
two issues here,

• Though it is likely that, on average, patients who
contract C. Diff were at higher risk at some point
during their hospital stay than patients who did
not become colonized, we cannot assume that
they were at a higher risk during each day of their
stay.

• In practice, most risk stratification models are
built using retrospective data. Because of this, it
is challenging to acquire accurate daily labels for
the data. In our case, not all patients get tested
ever, let alone daily, for C. Diff.

Another difficulty is that there are often hundreds if
not thousands of correlated variables, all changing at
possibly different rates, that could affect a patient’s
risk. Finally, as with many risk stratification tasks
the number of positive examples is low relative to the
number of negative examples. In this paper, we de-
scribe and evaluate different approaches to grappling
with these challenges.

1.1. Related Work

Researchers working in machine learning have pro-
posed many different ways for taking into account the
temporal dynamics of a problem.

Many argue that Hidden Markov Models (HMMs) are
the most natural tool for dealing with sequential data.
However, because the method is unsupervised one has
limited control over what the hidden states correspond
to (Rao & Hong, 2010). When working with high di-
mensional imbalanced data it can be especially difficult
to learn relevant states in an unsupervised manner.
Thus, despite the fact that HMMs seem to naturally fit
the sequential data problem, many prefer discrimina-
tive methods such as support vector machines (SVMs)
when working with complex high dimensional data.

When dealing with temporal data for classification, re-
searchers commonly apply SVMs in one of two ways.
The first technique maintains order by concatenating
features from the last n observations (Shoeb et al.,
2011). This approach works well when the notion
of time does not vary tremendously across examples,
e.g., if the event of interest always occurs within a
predictable window. For the challenge of predicting
colonization with C.Diff, this is not the case, a pa-
tient may test positive any number of days into the
admission and incubation periods can vary. The sec-
ond technique involves time-dependent features. For
example in financial time series forecasting, where the

goal is to predict a stock price for the next day, fea-
tures are commonly based on metrics calculated using
data from the last t days (Rao & Hong, 2010). We
consider a variation on this approach, including both
static and dynamic variables in our feature vectors.

Our approach, described in Section 3, employs SVMs.
Here we use SVMs first to reduce the high dimensional
feature space. The outputs of the SVM when concate-
nated together for a given admission produce a time se-
ries, which we refer to as an approximate risk process.
We refine this risk process using different weighted av-
erages, smoothing the observations and refining the
risk processes. In Section 4 we compare this approch
to the currently prevalent approach of classifying pa-
tients based solely on their current observed state.

2. The Data

Our dataset comes from a large urban hospital in the
US. We consider a study population of all in-patient
admissions from one year. We restrict ourselves to
stays >= 7days, since we are interested in a patient’s
risk over time.

To ensure that we are in fact predicting the acquisi-
tion of C. Diff during the current admission, we re-
move patients who tested positive for C. Diff in the
60 days preceding or, if negative, following the current
admission. In addition, we remove patients who tested
positive for C. Diff before day 7 of the admission. Pos-
itive cases are those patients who test positive on or
after 7 days in the hospital. Negative patients are all
remaining patients (patients who either test negative
or are not tested at all).

Typically, patients are first tested for the C. Diff anti-
gen, and if a patient tests positive for the antigen this is
followed up with a C. Diff toxin assay (Chapin, 2012),
which is treated as definitive. We define the start of
the risk period of a patient as the time of admission
and the end of the risk period, according to the follow-
ing rule: if the patient tests positive the first positive
test marks the end of risk period, otherwise the pa-
tient is considered at risk until discharge. The final
population consisted of 9,751 hospital admissions and
8,166 unique patients. Within this population 181 ad-
missions had a positive test result for C. Diff antigen
and 76 admissions had a positive test result for the C.
Diff toxin.

3. Methods

Dubberke et al. developed a system for predicting risk
in a real-time manner using logistic regression but they
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did not perform a longitudinal evaluation of their sys-
tem. In contrast, we consider risk at each day of a pa-
tient’s admission. By analyzing the entire risk process
of a patient we hope to get a more accurate prediction
than if we had just considered the patient at a single
point in time.

This section describes our methods in detail and is
subdivided into three parts: 3.1 Feature Extraction,
3.2 Extracting Approximate Patient Risk Processes,
and 3.3 Refining Patient Risk Processes.

First, in Section 3.1, we describe how we transform a
patient’s medical record into a sequence of feature vec-
tors, one feature vector for each day. Medical records
contain many categorical variables, e.g., procedures
performed and medications prescribed. We represent
each possible categorical value as a binary feature.
This results in a high dimensional feature space with
approximately 10,000 features. Furthermore, many of
the features are highly correlated with others. For ex-
ample, a patient who had a cardioversion procedure
is likely to be on a blood thinner. Given the high di-
mensionality and the potential correlations among the
variables, we investigated a two-step approach to risk
stratification.

In Section 3.2, we describe how we employ SVMs to
reduce the dimensionality of the data. As a super-
vised learning method, SVMs require labels for each
day of a patient’s hospital admission. Since ground
truth is unknowable in our context, we will discuss the
assumptions made when generating these labels and
our reasoning behind these assumptions. The daily
outputs of the SVM when concatenated together for a
hospital admission produce an approximate risk pro-
cess. In Section 3.3 we refine these approximate pa-
tient risk processes, exploring different weighted av-
erages to smooth out the predictions. In doing so, a
patient’s current risk is redefined as an average over
previous risk approximations.

3.1. Feature Extraction

We extracted more than 10,000 variables for each day
of every hospital admission. Approximately half of the
features, 5,055 features, are based on data collected at
the time of admission. These features remain constant
throughout the stay. The remaining 5,542 features are
collected over the course of the admission and may
change on a daily basis. The types of features are
listed in Table 1.

The majority of the features are represented by binary
variables. We exploded categorical features such as fi-
nancial class, and marital status into binary features.

Table 1. Static features are collected at the time of admis-
sion and do not change during the hospital admission while
dynamic features can change on a daily basis. This table
lists the features by type, and in parentheses the number
of features associated with each variable.

Static Features Dynamic Features

• prev. ICD9 codes (2513) • lab results (2012)
• home medications (761) • procedures (1293)
• prev. admission medications (655) • location room (1209)
• patient’s city (535) • medications (872)
• attending MD (443) • vitals (95)
• hospital service(39) • location unit (61)
• admission source (22) • day of admission (1)
• financial class code (19) • unit CP (1)
• admission complaint (18) • hospital wide CP (1)
• admission procedure (16)
• patient’s race (10)
• patient’s age (9)
• patient’s marital status (5)
• patient’s sex (1)
• expected surgery (1)
• ER admission (1)
• dialysis (1)
• diabetic (1)
• history of C. Diff (1)
• num hospital visits (90 days) (1)
• avg., max., total los (90 days) (1)

We binned and then exploded discrete features such as
age. In the database, lab tests and vitals were flagged
as: normal, low, high or critical based on reference
values. We used these flags to represent the result of
each test/vital as a binary variable. Admission com-
plaint and admission procedure were both recorded as
free text entries in the database. These entries were
automatically mapped to categories corresponding to
ICD9 codes (NCHS, 2008) using look-up tables, and
then exploded into binary features. The remaining fea-
tures: colonization pressure (CP), and statistics from
the hospital admissions in the last 90 days are left as
continuous variables. Given the number of binary fea-
tures, it is not surprising that the feature vectors are
quite sparse. On average less than 1% of the feature
vector has a non-zero entry.

CP aims to the measure the proportion of patients, in a
unit or hospital, colonized or infected with a particular
disease. In our analysis, the contribution a patient,
p, makes to the CP on day, t, depends on when the
patient tested positive for the first and last time, tf
and tl, and finally when the patient is discharged from
the hospital, td. While the patient continues to test
positive he or she contributes a constant amount to the
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CP. After the last positive test result (which can be the
first positive test result) a patient contributes to the
CP for no more than 14 days. During this time period,
the patient is assumed to be treated or in isolation,
and we assume a linearly decreasing relationship. This
function is summarized by Equation 1.

Cp(t) =


1 t ∈ [tf , tl]

− 1
14 t + (tl+14)

14 t ∈ [tl,min(td, tl + 14)]
0 otherwise

(1)

Since we have time-stamped locations for each patient,
we can calculate a colonization pressure for each unit,
Equation 2. The colonization pressure of a unit de-
pends on each patient’s contribution to the coloniza-
tion pressure on that day, Cp(t) and each patient’s
length of stay in that unit on that day, los(unit, p, t).

CPunit(t) =
∑
p

Cp(t) ∗ los(unit, p, t)
24

(2)

When computing the unit CP feature for a pa-
tient on day t, we consider the CP in all of the
units that patient spent time in on that day, i.e.,∑

unit∈los(unit,p,t)>0 CPunit(t). We calculate the hos-
pital wide CP by summing across all units. As a result,
the unit CP varies across patients for a given day, while
the hospital wide CP does not.

3.2. Extracting Approximate Patient Risk
Processes

3.2.1. Labeling the Data

SVMs require labeled training data. Here, each day of
a patient’s admission is associated with its own feature
vector. However, we do not have ground truth labels
for each day of a patient’s admission. We only know
whether or not a patient eventually tests positive for
C. Diff. Though it is safe to assume that, on average,
patients who contract C. Diff. had been at higher risk
at some point during their hospital stay than patients
who are not colonized, we cannot assume that the pa-
tients were at a higher risk over each day of their stay.
A patient’s risk profile changes from day to day as he
or she receives various treatments, contracts other dis-
eases, or has increased or decreased exposure to the C.
Diff bacillus.

We briefly explored a labeling in which we assumed
that a patient was only at high risk x number of days
before a positive index event, but choosing x proved
difficult since this approach assumes that x is constant

across patients. What if a critical event influencing the
patient’s risk actually happened at the time of admis-
sion? Looking only x days back may not capture this
event. It is possible that any part of a patient’s ad-
mission may contribute to their risk of later acquiring
C. Diff.

Recognizing that the purpose of the SVM is to provide
an approximate risk, which will be refined in the next
stage of the analysis, we assign each day of an admis-
sion in which the patient eventually tests positive as
positive, and negative otherwise. In doing so, we hope
to identify high risk patients as early as possible. Since
we do not expect a patient’s risk to remain constant
during an entire admission, there will be some noise
in the training labels. For example, the may be some
days that look almost identical in the feature space
but have different labels. To handle this noise we use
a soft-margin SVM, one that allows for misclassifica-
tions. As long as our assumption does not propose
more incorrect labels than correct labels it should be
possible to learn a meaningful classifier, despite the
approximate labels.

3.2.2. Learning the Decision Boundary

From these approximately labeled feature vectors we
learn a linear SVM f(x). Applied to a test patient,
xi the SVM could classify each day as positive or neg-
ative, i.e., the patient will eventually test positive or
not. However, we do not use the SVM as a classifier
but instead consider the continuous predictions made
by the SVM: w ·xi−b, i.e. the distance to the decision
boundary. From the approximate binary training la-
bels, we can derive continuous approximate risk scores
for each day. The distribution of these risk scores on
the training data is shown in Figure 1. As one can see,
these scores do a reasonable job of separating positive
and negative cases.

In the clinical literature, a common approach to vali-
dation of risk stratification metrics involves computing
the patient’s risk at a constant distance from the index
event, and classifying the patient as high risk or low-
risk according to some threshold. We refer to this risk
stratification approach as the Current State approach
as, for the prediction task of classifying a patient as
high risk or low risk, one uses only the risk score of
the most recent or current day and does not consider
risk on previous days. Sweeping this threshold at two
days prior to the index event results in an area under
the receiver operating characteristic curve (AUROC)
of approximately 0.7912 with a 95% confidence interval
of 0.7495-0.8275 (on the training data). The leftmost
red point in the plot in Figure 2 shows this result.
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Figure 1. The continuous output of the SVM, the distance
each example falls from the decision boundary, can be con-
catenated to produce approximate risk processes for each
patient.

To get a sense of how our ability to predict positive
test results changes as we move further from the index
event, we compute the AUROC of a classifier based
on data collected at different points during the admis-
sion. We consider the same group of patients at each
point, but we use a different day to score the patient:
the most recent day relative to the classification prob-
lem. For example, given a patient who tests positive
on day 7, we consider their risk score on day 1 to com-
pute the AUROC of the classifier 6 days in advance
of the index event. We note that the classifier’s abil-
ity to predict high risk events is greater closer to the
index event. More on these results will be presented
in Section 4. But, at this point nothing regarding the
patient’s previous risk, aside from the patient’s state
upon admission, is incorporated into the calculation
of the patient’s risk, since the SVM scores each day
independently. The next step is to combine these pre-
dictions.
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Figure 2. One could measure a patient’s risk considering
only the current state of the patient, however taking into
account the patient’s risk on previous days (Average State)
leads to a significant increase in performance on the train-
ing data.

3.3. Refining Patient Risk Processes

When concatenated for a given admission, the con-
tinuous SVM predictions result in a risk process for
each patient. Examples of these risk processes for the
training data are plotted in Figure 3. As shown in the
examples, the SVM predictions can fluctuate greatly
from day to day. We quantify the extent of these fluc-
tuations over the course of an admission as the ex-
pected absolute second difference, or Φ. The plot in
Figure 4 is a distribution of Φ across all patients in the
training set, while Figure 3 gives examples of patients
with different Φ. As Figure 4 shows, the SVM predic-
tions can greatly fluctuate from day to day. Half of
the admissions are associated with a Φ > 0.42.

Though large fluctuations in actual risk over time are
not impossible, it seems unlikely that they occur as
often as our model suggests. Recall in this initial cal-
culation that the variables from time of admission are
included in the prediction, but the previous day’s risk
is not. Taking into account the past risk when calcu-
lating current risk could eliminate large fluctuations in
the data.
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Figure 3. Three examples of approximate risk processes
with different amounts of fluctuation, Φ.
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Figure 4. For some patients, the SVM predictions, f(x)
fluctuate greatly from day to day.

We consider a variety of weighted trailing averages for
which the risk of a patient on a given day incorpo-
rates the risks on all previous days. We consider con-
stant, linear, and quadratic weightings. The linear and
quadratic weighting schemes weight predictions closer
to the index event more heavily. Applied to the train-
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ing set, each weighted average outperforms a classifier
that uses only the current prediction for that day (See
Section 4). Figure 2 compares the average AUROC
of a classifier based on a constant weighted average,
Average State, to a classifier that does not incorporate
past risk, Current State.

4. Experiments & Results

This section describes a set of experiments used to
compare several methods for predicting patient risk
over time. We start by describing the experimental
setup, which is maintained across all experiments.

4.1. Experimental Setup

In order to reduce the possibility of confusing the risk
of becoming colonized with C. Diff with the existence
of a current infection, for patients from the positive
class, we consider only data collected up to two days
before a positive test result. This reduces the pos-
sibility of learning a classifier based on symptoms or
treatment.

For patients who never test positive, researchers typ-
ically use the discharge day as the index event (Dub-
berke et al., 2011). However, this can lead to de-
ceptively good results because patients nearing dis-
charge are typically healthier than patients not nearing
discharge. To avoid this problem, we define the in-
dex event for negative examples as either the halfway
point of their admission, or 5 days into the admission,
whichever is greater. We consider a minimum of 5
days for a negative patient since 5 days is the mini-
mum amount of data we have for any positive patient
(e.g., a patient who tests positive on day 7).

To handle class imbalance, we randomly subsampled
the negative class, selecting 10 negative examples for
each positive example, and we employ asymmetric cost
parameters (Morik et al., 1999). Additionally, we re-
moved outliers, those patients with admissions longer
than 60 days. Next, we split the data into stratified
training and test sets with a 70/30 split. The train-
ing set consisted of 1,251 admissions (127 positive),
while the test set was composed of 532 admissions (50
positive). This split was maintained across all experi-
ments. In all of the experiments, the training data was
used for training purposes and cross-validation param-
eter selection, and the test set was used for evaluation
purposes. For training and classification we employed
SVMlight (Joachims, 1999).

Table 2. Predicting a positive test result two days in ad-
vance by averaging over all previous SVM predictions: the
result of different weighting schemes

Weighting Training Testing
Scheme AUROC (95%CI) AUROC (95%CI)

Constant 0.8259 (0.78-0.86) 0.7518 (0.69-0.81)
Linear 0.8242 (0.78-0.86) 0.7444 (0.67-0.80)

Quadratic 0.8214 (0.78-0.86) 0.7360 (0.67-0.80)
Current State 0.7912 (0.74-0.82) 0.6870 (0.61-0.77)

4.2. Results

Table 2 compares the performance of four different
classifiers applied to the training and test datasets. We
consider the problem of predicting whether a patient
will have a positive C. Diff test result two days before
the index event. Each classifier averages the predic-
tions of the SVM using a different weighting scheme,
and based on this average classifies patients as: high
risk i.e., will test positive, or low risk i.e., will be dis-
charged without testing positive. Current State classi-
fies the patient based only on the most recent predic-
tion. Constant is a simple average of the predictions
up to the current day, while the other methods weight
predictions that occur closer to the index event more
heavily.

We showed in Section 3.3 that, when evaluated with
respect to training error, a classifier based on the pa-
tient’s evolving risk outperforms a classifier based only
on a patient’s current risk. We see the same effect on
the held-out data. In all cases, the other methods out-
perform the Current State classifier. There does not
appear to be a great difference in performance among
the three remaining classifiers. Thus, in the remainder
of the results section, we consider only the Constant
weighting, since it is the simplest weighting scheme
that takes into account a patient’s evolving risk.

In the plots in Figure 5, we give the results of the Aver-
age State approach compared to the Current State ap-
proach on the test set. Prior work on risk stratification
methods for predicting C. Diff performed evaluation
at only one point in time during an admission (Tanner
et al., 2009) (Dubberke et al., 2011). This type of eval-
uation makes it difficult to interpret how the classifier
will perform in practice. Here, we evaluate our risk
stratification methods daily from 2 to 6 days before
the index event. We cannot evaluate our method at
any earlier point across all patients as some patients
have only 7 days worth of data. Figure 5(a) gives the
AUROC for both of the methods applied to the test set
at different points during the hospital admission. The
AUROC is calculated by sweeping the decision thresh-
old from 0 to 1. We generated 100 bootsrap replicas



Learning Evolving Patient Risk Processes for C. Diff Colonization

1 2 3 4 5 6 7

0.65

0.7

0.75

0.8

0.85

Days in Advance of Index Event

A
re

a
 U

n
d

e
r 

th
e

 R
O

C
 C

u
rv

e

 

 

Current State

Average State

(a) AUROC curve x days before the index event.
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(b) ROC Curves for predicting the index event 2
days in advance.

Figure 5. Results of two different methods for predicting a patient’s risk of testing positive for C. Diff during their
hospital admission in the held-out test set. The Average State method consider that patient’s average risk up to the time
of prediction, while the Current State method does not.

by sampling the test set with replacement to compute
the pointwise 95% confidence intervals, represented by
the error bars. Figure 5(b) plots the ROC curves for
both methods.

It is difficult to interpret the performance of a classifier
based on these results alone, especially since the classes
are imbalanced. Table 3 gives the confusion matrix for
the Average State classifier.

To further convey the ability of the classifier to risk
stratify patients, we split the test patients into quin-
tiles (as is often done in clinical studies) based on the
Average State prediction two days in advance of the in-
dex event. Each quintile contains approximately 106
patients. For each quintile we calculated the proba-
bility of a positive test result, based on those patients
who eventually test positive for C. Diff. Figure 6 shows
that the probability increases with each quintile. The
difference between the 1st and 5th quintiles is striking;
relative to the 1st quintile, patients in the 5th quintile
are at more than a 20-fold greater risk.

5. Discussion & Conclusion

The test results in Table 2 confirm the initial results
we achieved on the training data in Section 3.3. At
two days before the index event, all methods we in-
vestigated, that incorporate a patient’s evolving risk,
outperform the previous standard Current State ap-
proach. When we consider the performance of the Av-
erage State classifier across multiple days, we observe
an increase in performance as we move closer to the

Table 3. Confusion Matrix

Actual
Outcome

Predicted Outcome

p n

p′

TP:26 FN:24

n′

FP:89 TN:393

index event. This is expected since as we move closer
to the index event we gain more information about the
patient. The performance of the Current State classi-
fier has no obvious trend.

That the computed risk changes from day to day high-
lights the importance of evaluating one’s risk stratifi-
cation method at different points in time, especially if
one is classifying patients based solely on the current
state of the patient.

In general, the Average State classifier outperforms the
Current State classifier. This difference is most pro-
nounced closer to the index event. However, because of
the small number of positive cases, there is large over-
lap in the confidence intervals, so we cannot say that
the difference is significant. The ROC curves cross,
indicating that one approach does not dominate the
others at all thresholds. Still, we are encouraged by
these results.

One source of error in these models is the initial label-
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Figure 6. Test patients with Average State predictions in
the 5th quintile are 20 times more likely to test positive for
C. Diff than those in the 1st quintile.

ing of patient days when training the SVM. Incorrect
labels at this stage could affect analysis at later stages.
Ideally, one would have expert provided labels for each
day of whether or not the patient was at high risk.
However, these labels would be difficult (if not impos-
sible) to obtain. In Section 3.2.1, we use a labeling
scheme to address this challenge. The high dimen-
sionality of the data was another challenge. This, in
addition to the large class imbalance, makes learning
a useful classifier directly from the data very difficult.
Instead, we employed a two-step approach, first re-
ducing the dimensionality of the data in a supervised
manner. This step summarizes the patient’s state and
how it relates to the outcome, but in doing so valuable
information may become lost about the precise state
of the patient. In future work we will consider other
supervised dimensionality reduction techniques.

Despite these challenges, we successfully extracted pa-
tient risk processes. Although only approximate, these
risk processes are a first step in analyzing how patient
risk for C. Diff may evolve during a hospitalization.
From our results we conclude that methods that take
into account temporal aspects of risk can provide more
accurate predictions of the likelihood of adverse out-
comes. In this initial work, we consider only weighted
combinations of prior risk, but we hypothesize that
more sophisticated methods for time series classifica-
tion could reveal temporal trends and further augment
performance.

We believe that gaining an understanding about the
dynamics of patient risk over time and its influence on
outcomes can have real clinical impact. Having access
in clinical settings to an up-to-date risk score and over-
all prediction about outcomes for each patient could
guide actions aimed at reducing patient risk. Also,
gaining a deeper understanding of risk processes could
shed light on sources of risk, helping clinicians to de-
velop more effective programs to reduce risk.
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