
A THREE-LAYER VIRTUAL DIRECTOR MODEL FOR SUPPORTING
AUTOMATED MULTI-SITE DISTRIBUTED EDUCATION

 Bin Yu† , Cha Zhang‡ , Yong Rui‡ , Klara Nahrstedt†
† University of Illinois at Urbana Champaign, IL 61801, USA

 ‡ Microsoft Research, Redmond, WA 98052, USA

ABSTRACT1

In multi-site distributed education (MSDE), video streams from
multiple sites are available. To best utilize the limited screen space
at each site, we develop a customizable, automated display man-
agement system in this paper, i.e., only user-preferred streams will
be shown as triggered by events and timers. The configuration of
such user preference, however, is challenging because it has to be
both human-friendly and machine-friendly. To address this chal-
lenge, we propose a three-layer virtual director model. In the user
layer, we identify three categories of parameters that can represent
a wide range of user preferences yet are easy to use. These prefer-
ences are then automatically translated into a machine-friendly
timed automaton in the execution layer. The automaton is simu-
lated dynamically, which selects a subset of streams to show on the
screen through a display layer. Evaluation results demonstrate the
correctness and efficiency of the proposed framework.

1. INTRODUCTION

To accommodate students’ time and/or place conflicts, in the past
decade, universities started to offer distributed education where
the lecturer and the students are not required to be in the same
classroom. A common form of distributed education is what we
call multi-site distributed education (MSDE). For example, in the
case of [7], a lecturer and some students are collocated in the same
classroom (e.g., University of Toronto), while other students attend
the lecture remotely as a group (e.g., IBM Research Center).

In MSDE systems, each site can have one or more cameras.
Many existing systems tile all the videos on the display regardless
of their relative importance 0[2]. Such systems are not scalable
when the number of video streams increases. In addition, they do
not make efficient use of the screen real estate because most video
streams contain interesting events only at limited times. Recent
systems such as AutoAuditorium [6] and iCam [8] are able to
automatically generate a single video output from multiple input
streams based on events and timers. Take the iCam system as an
example. There are multiple software modules called virtual cam-
eramen (VC). Each VC controls a camera, automatically tracking a
lecturer or a talking audience member. The VCs communicate with
another software module called virtual director (VD), which is
responsible for selecting the best camera shot given the available
camera shots from all VCs by using a timed automaton (finite state
machine with timers) [5]. For example, when a student asks a ques-
tion, the VD will automatically switch to the camera that shows the
student; when a camera has been on air for a certain period, the

1 Work performed during the first author’s internship at MSR.

VD will switch to another camera to improve the aestheticity of
the output. Note that the first example is an event-driven switch
and the second example is a timer-driven switch.

In this paper, we extend automated camera management sys-
tems such as iCam to MSDE. Unlike AutoAuditorium or iCam,
which outputs the same video for all remote audiences, in MSDE it
is often desirable that each site has its own VD. For example, the
site that has the lecturer onsite may not need the lecturer video
because they see the lecturer directly and can save some screen
real estate for other video streams. The challenge we face is that in
iCam the VD’s state automaton is written in a machine-friendly
scripting language, which needs to be edited by a well-trained
system administrator. This configuration process is tolerable for a
single site. But it can be cumbersome, inefficient and error-prone if
it has to be reconfigured to support different numbers and types of
VCs and produce customized output for different sites.

We observe that human users are more comfortable with the
semantics of camera streams and preference among them. Hence
we propose to divide the VD into three layers. At the user layer, a
human-friendly graphical interface is designed to allow users to
specify their preference among the cameras in the form of scores,
which is an intuitive way of configuring the event-driven and
timer-driven switches. This user interest model is then automati-
cally translated into a machine-friendly timed automaton that will
be executed by the VD at the execution layer. Due to the large
number of possible states when the number of cameras increases,
we perform such translation dynamically so that the execution
layer can be run efficiently. Finally, the selected camera streams
are laid out on the display device through the third layer ─ the
display layer. The benefit of such a three-layer design is that any
number of cameras capturing different views can be “compared” in
a generic way by the VD without understanding their semantic
differences, and users can easily reconfigure the desired camera
switching behavior by changing the user interest model parameters,
at system setup time or, if desired, during a live class session.

The rest of the paper is organized as follows. Section 2 pre-
sents the architecture of an MSDE system with distributed VCs
and VDs on each site. Section 3 describes the three-layer VD
model that is designed to be both user- and machine-friendly. In
Section 4, we evaluate the proposed approach first by demonstrat-
ing the functional correctness of the automaton, and then by giving
an example that shows how a VD selects different camera shots
given the automaton and event triggers. We conclude the paper in
Section 5.

2. SYSTEM ARCHITECTURE

Our system is built on top of the ConferenceXP platform [2],
which supports real-time high quality video conferencing (based

on Internet2 IP Multicast) at 30 frames per second as well as text
chat, shared presentation, and shared whiteboard. Our goal is to
add automated camera management to ConferenceXP while lever-
aging its existing functionalities.

Figure 1 shows an example setup for a two-site distributed
class between Microsoft Research (MSR) and University of Wash-
ington (UW). The MSR site has two VCs: “MSR Lecturer VC”
and “MSR Audience VC”; the UW site has a single “UW Audi-
ence VC”. All VCs send their videos via the RTP channel over
Internet2. Each VC is capable of producing multiple types of
views. For instance, the lecture VC automatically tracks the lec-
turer and produces three view types: “global view” of the front
stage of the room, “close-up view” of the lecturer’s head and
shoulder, and “zooming view” indicating the mechanical zooming
operation of the camera. Similarly, the audience VCs can produce
“global view” of the audience area, “close-up view” of a talking
audience member, and the “zooming view”.

At each site, there is a VD which decodes all the videos, and
selectively places them on the screen based on the user’s prefer-
ence. The VDs talk to all the VCs through a simple protocol:
whenever a VC changes its view, e.g., the MSR Audience VC
identifies a student asking a question and changes to a “close-up
view”, it will send a message to the local VD to update its state.
The local VD will then broadcast this message to all other VDs.
On the other hand, all VDs can broadcast their requests for any VC
to perform a task such as creating a panning view. The local VD
has the responsibility to operate the local VCs to implement the
task. The commands from the VDs are processed at each VC in a
first-come-first-serve manner, with a timer which prohibits two
commands being executed in less than 3 seconds.

Some of the above architecture resembles that of our previous
iCam system [8], but the VDs are now distributed. The focus of
this paper is how to allow users to easily setup VDs at each site.
Our solution is to have a three-layer VD model to help the configu-
ration and customization process, which will be described below.

3. THE THREE-LAYER VD MODEL

We have chosen a three-layer design for the VD, as shown in Fig-
ure 2. The user layer maintains a user interest model that learns
user preference among all the view types of all the cameras; the
execution layer is responsible of selecting the camera streams to be
displayed on the screen; the display layer shows the selected
streams on the screen in a customizable way. We will describe
these three layers in details next.

3.1. User Layer
We have chosen three categories of parameters that represent a
wide range of user preference patterns yet are easily configurable
by the user, namely preference scores, timing constraints and tran-
sition idioms. Figure 3 (next page) shows an example graphic in-
terface for the user to setup his/her preference. Note that these
preference parameters can be setup as a configuration file before a
class begins, or dynamically changed during a live class session.

Preference Scores: As illustrated in Figure 3(a), the user can as-
sign a preference score to each view type of a camera as “must
show”, “show in rotation” or “do not show”, which represent the
relative “interestingness” of a camera view compared to other cam-
eras. Since each camera will be in one of the view types at any
given time, we define a camera’s score as the score of its current
view type. If a camera is in a view type that is scored “must show”,
it must be selected by the VD to show on the display; if the view
type is scored “show in rotation”, it will be shown one by one in
rotation if there is no “must show” camera; if the view type is
scored “do not show”, it shall not be selected unless no other cam-
eras can be selected. We find that such a three-level preference
model is intuitive and allows users to easily compare cameras cap-
turing very different contents.

With the above preference scheme, the camera selection deci-
sion can be made as follows. If there are one or multiple cameras
in view types of “must show”, all of these cameras will be selected
to show in a split-screen or picture-in-picture layout (Section 3.3);
otherwise, if there are one or multiple “show in rotation” cameras,
show them one by one in rotation; otherwise, randomly select one
camera to show on screen. Note that such randomness may not be
wanted and can be avoided if the user sets some camera views as
“must show” or “show in rotation”.
Timing Constraints: There are two types of timing constraints:
minimum show time and maximum show time, which represents the
minimum and maximum amount of time a certain view should be
shown. A camera should not change view type if the minimum
show time was not reached. The maximum show time applies to
view types that are “show in rotation”, and determines the length
of selection before rotating to the next camera.
Transition Idioms: The preference scores and timing constraints
are generally expressive enough to produce satisfactory results, but
there are cases when some advanced transitions are desired. For
instance, the user may want to always start the class video by
showing the lecturer for 10 seconds, or, he/she may want to always
show the audience view at site 2 after showing the audience view

Preference
Scores

Timing
Constraints

Transition
Idioms

Timed
Automaton

Screen
Management

Preference Setup Translate Execute

User Layer Execution Layer Display Layer

User Display Device

Camera
Stream

A

Camera
Stream

B

User control
interface

Figure 2. Overview of the VD Model.

MSR Lecturer
Cameraman

MSR Audience
Cameraman UW Audience

Cameraman

MSR Univ. of Washington

VD VD

Screen Screen

RTP Channel over Internet2RTP Channel over Internet2

Figure 1. Example Setup for a Two-site Distributed Class between Micro-

soft Research and University of Washington.

at site 1. Transition idioms are designed to fulfill such tasks. They
will override the score-based camera switching behavior.

As shown in Figure 3(b), each transition idiom takes one of the
following two formats:

• If the time since the beginning of the class equals T1 seconds
 select camera Ci for T2 seconds.

• If the camera view Vj has been selected for display for T1 sec-
onds select camera Cj for T2 seconds
In the above example, the user may specify the following two

idioms: “if the time since the beginning of the class equals 0 sec-
onds select lecturer camera for display for 10 seconds”; “if the
audience global view at site 1 has been selected for 5 seconds
select the audience camera at site 2 for 5 seconds”.
3.2. Execution Layer
The goal of the execution layer is to select camera streams accord-
ing to the user’s preference. Similar to existing solutions [6][8], we
rely on a timed automaton to make camera selection decisions at
runtime. The timed automaton is a finite state machine with timer
translated from the input parameters at the user layer: the states
represent the current view types of all cameras, the selected cam-
eras and the status of the screen output (e.g., how long the selected
cameras have been displayed on screen); the transitions represent
state changes triggered by camera view type change, timer events
or user specified transition idioms. If there are N cameras, and
each camera could be in one of M view types, the total number of
possible states of the automaton is O(MN). Note that in MSDE,
each site can have multiple streams selected and displayed. This is
in contrast to our previous work iCam [8], where at any instance
there is only one camera on air.

Due to the large number of possible states, generating a full
automaton will incur exponentially increasing computation cost
with respect to the number of cameras, which is unnecessary. We
propose to simulate the timed automaton dynamically during a
lecture. That is, the VD will only keep a partial automaton, which
covers the current state of the automaton and the potential transi-
tions that may occur at this state.

Figure 4 shows the flow chart of the algorithm for camera se-
lection based on user preference parameters. It uses four modes to

represent the concrete states of the timed automaton: “must show
mode” represents those states with at least one “must show” cam-
eras; “rotation mode” represents those states with no “must show”
cameras but one or more “show in rotation” cameras; “on hold
mode” represents those states resulting from view type changes
occurring within the minimum time for camera switching; “idiom
mode” represents those states resulting from a matching idiom. On
each transitional event (“view type change”, “min timer expira-
tion”, “max timer expiration” and “idiom match/return”), the VD
first decides the new mode to switch to, and then calculates the
new state of the timed automaton and updates camera selection
output. We will present a detailed walk through example in Sec-
tion 4 to demonstrate this camera selection process.

3.3. Display Layer
The display layer manages the screen display given the camera
streams selected at the execution layer. The user initializes the
display layer by specifying a rendering region (RR) on the desktop
screen to be used for video rendering. If only one stream is se-
lected, it will occupy the whole RR. In case multiple cameras are
selected, they share the RR with a screen layout choice specified
by the user. Currently two screen layout modes have been imple-
mented. With split screen layout, the RR will be equally allocated
for all selected camera streams; with picture-in-picture layout, one
randomly chosen camera stream occupies the whole RR while
others are shown as overlay windows. We are working on support-
ing more layout modes, e.g., showing “must show” videos with
large windows and “show in rotation” videos with small windows.

4. DEPLOYMENT AND EXPERIMENTS

We built an MSDE system on top of the ConferenceXP platform,
and it is currently being used for CSE Professional Masters Pro-
gram classes between MSR and UW [3]. Figure 5 shows a screen
shot of the system during a test class. Since there was a conversa-
tion going on between the lecturer and the student, both the MSR
lecture VC and the MSR audience VC were in “close-up” view,
which was configured with “must show” score. Therefore, both
VCs were selected by the VD. The two windows are shown in the
split screen mode, although other modes are possible depending on
the user preference.

The VDs are very easy to configure. Setting up the VD usually
takes less than 5 minutes by a regular user, in contrast to about an
hour by a well-trained system administrator without the three-layer
model, e.g., in [8]. Next we evaluate the proposed approach first
by demonstrating the functional correctness of the automaton, and

(a) Specifying preference scores and timing constraints.

(b) Specifying transition idioms.

Figure 3. Screen Shot of User Layer Interface

M u s t S h o w M o d e

W ith in
M in im u m

T im e ?

Y e s

Y e s

O n H o ld M o d e

M in T im e r

O n ly
R o ta t io n
S c o re s

L e f t?

N o

N o
Id io m M o d e

Id io m R e tu re

R o ta t io n M o d e

M a x T im e r

 Id io m M a tc h

V ie w T y p e C h a n g e

Figure 4. Flow Chat of Camera Selection Algorithm

then by giving an example that shows how a VD selects different
camera shots given the automaton and event triggers.

4.1. VD’s Functional Correctness

We adopted the UPPAAL verification tool [4] to study the timed-
automaton-based camera selection algorithm and analyze its func-
tional correctness in terms of liveness and reachability. Specifi-
cally, for each case of K (2 <= K <= 6) cameras and M (2 <= M <=
4) view types per camera with randomly assigned preference
scores, we have generated a timed automaton. Each state in the
automaton represents a combination of view types of all the K
cameras, as well as the timing constraints and camera selection
output. Each transition represents a change in camera view type, a
timer event, or an idiom-based transition. The automata are gener-
ated as XML files in the UPPAAL automaton description format.
We then use the UPPAAL verifier to test the following properties:

Liveness: transitions in a timed automaton are constrained by
clock values, and there is possibility of deadlock (no outgoing
transition exists). In our system deadlock is not possible because
we allow multiple video streams to be shown on the screen, which
reduces the dependency between VCs. In the experiment we veri-
fied the liveness of all the randomly generated automata against
the query “A [] not deadlock” using the UPPAAL verifier, where
“A” represents the target automaton and “[]” means “invariantly”.
All automata we generated for different K and M values have
passed the test.

Reachability: The other expected property of VD is that all the
states in the timed automaton should be reachable from the initial
state within limited number of transitions, as the VD is supposed to
be able to support any camera view combinations and make the
right camera selection decision. We verified the reachability of 5
randomly chosen states in each automaton with the following
query “E <> selected_state”, where “E <>” means “possibly”. All
selected states are verified as reachable by the UPPAAL verifier.

We have also tested VD’s functional correctness empirically
by running VD for long periods of time with different numbers of
cameras, sites and random user preference parameters. Since the
system was deployed, we have not seen any unexpected camera
selections. In addition, because of the dynamic partial automaton,
the run time execution of camera selection is very lightweight, and
on average takes less than 1.0 millisecond on a regular PC. The
camera switching introduces negligible overhead since only re-
arranging of camera output windows on the desktop is required.

4.2. Example VD Walkthrough

We take the two-site class between MSR and UW as the example.
Table 1 shows a set of preferences set by the system administrator

at UW. Note that the audience VC at UW is set to be “do not
show” for all the view types, because the students can see what
happens locally. Initially, the MSR lecture (Lec) VC is shooting a
global view, and the audience (Aud) VCs at both sites are shooting
a preset view. Due to the idiom in Table 1, the initial view is MSR
Lec. Then at 10th sec, the idiom expires, and the MSR Lec VC
starts to zoom in. The selected view is hence MSR Aud which has
preference “show in rotation”. Once the Lec VC changes to a
close-up view, it is “must show” and the selected camera becomes
MSR Lec again. The remaining steps can be interpreted similarly.

5. CONCLUSION

In this paper, we presented a three-layer VD model that automati-
cally controls which camera streams are presented in each class-
room in MSDE. The system automatically chooses the right cam-
eras based on a timed automaton that is dynamically translated
from a user-friendly interest model. This design makes deploying
an MSDE system practical.

REFERENCE

[1] Access Grid, http://www.accessgrid.org/.
[2] Microsoft ConferenceXP, http://www.conferencexp.net
[3] Professional Masters Program at University of Washington,

http://pmp.cs.washington.edu/dl_tech/
[4] UPPAAL Formal Verification Tool, http://www.uppaal.com/
[5] R. Alur and D. Dill. “The theory of timed automata”. Theoretical

Computer Science, 126(2), 1994.
[6] M. H. Bianchi, “AutoAuditorium: a fully automatic, multi-camera

system to televise auditorium presentations”, in Joint DARPA/NIST
Smart Spaces Technology Workshop, 1998.

[7] P. Smith and K. Lyons, “User experience in the first ARISE distrib-
uted classroom”, eLearn Magazine, http://www.elearn-
mag.org/subpage.cfm?section=case_studies&article=18-1

[8] Y. Rui, A. Gupta, J. Grudin and L.W. He, “Automating lecture cap-
ture and broadcast: technology and videography”, in ACM Multime-
dia Systems Journal (Springer), 10:3-15 2004

Figure 5. A Screen Shot of the System in Split Screen Layout.

 53Do not showZooming

53Do not showClose-up

53Do not showPresetAudience
Cameraman

UW

53Do not showZooming

20030Must showClose-up

0 sec select
for 10 sec

1510Show in rotationGlobalLecturer
Cameraman

MSR

53Do not showZooming

10015Must showClose-up

105Show in rotationPresetAudience
Cameraman

MSR

IdiomMax Time (s)Min Time (s)Preference

53Do not showZooming

53Do not showClose-up

53Do not showPresetAudience
Cameraman

UW

53Do not showZooming

20030Must showClose-up

0 sec select
for 10 sec

1510Show in rotationGlobalLecturer
Cameraman

MSR

53Do not showZooming

10015Must showClose-up

105Show in rotationPresetAudience
Cameraman

MSR

IdiomMax Time (s)Min Time (s)Preference

Table 1. Example User Preference Setup

………

MSR AudMSR Lec.Zooming -> Lec.Global218

MSR AudMSR Lec Max Timer expires, Lec.Closeup
Lec.Zooming

215

MSR LecMSR Aud.Zooming Aud.Preset83

MSR LecMSR Aud.Closeup Aud.Zooming80

MSR Lec, MSR AudMSR Aud.Zooming Aud.Closeup63

MSR LecMSR Aud.Preset Aud.Zooming60

MSR LecMSR Lec.Zooming Lec.Closeup15

MSR AudMSR Lec.Global Lec.Zooming10

MSR LecInitial view types MSR Lec.Global, Aud.Preset
UW Aud.Preset

0

Selected outputEventTime (s)

………

MSR AudMSR Lec.Zooming -> Lec.Global218

MSR AudMSR Lec Max Timer expires, Lec.Closeup
Lec.Zooming

215

MSR LecMSR Aud.Zooming Aud.Preset83

MSR LecMSR Aud.Closeup Aud.Zooming80

MSR Lec, MSR AudMSR Aud.Zooming Aud.Closeup63

MSR LecMSR Aud.Preset Aud.Zooming60

MSR LecMSR Lec.Zooming Lec.Closeup15

MSR AudMSR Lec.Global Lec.Zooming10

MSR LecInitial view types MSR Lec.Global, Aud.Preset
UW Aud.Preset

0

Selected outputEventTime (s)

Table 2. Example Scenario Walkthrough

