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ABSTRACT
Commodity depth cameras have created many interesting new
applications in the research community recently. These appli-
cations often require the calibration information between the
color and the depth cameras. Traditional checkerboard based
calibration schemes fail to work well for the depth camera,
since its corner features cannot be reliably detected in the
depth image. In this paper, we present a maximum likelihood
solution for the joint depth and color calibration based on two
principles. First, in the depth image, points on the checker-
board shall be co-planar, and the plane is known from color
camera calibration. Second, additional point correspondences
between the depth and color images may be manually speci-
fied or automatically established to help improve calibration
accuracy. Uncertainty in depth values has been taken into ac-
count systematically. The proposed algorithm is reliable and
accurate, as demonstrated by extensive experimental results
on simulated and real-world examples.

Index Terms— depth camera, calibration

1. INTRODUCTION

Recently, there has been an increasing number of depth cam-
eras available at commodity prices, such as those from 3DV
systems1 and Microsoft Kinect2. These cameras can usually
capture both color and depth images in real time. They have
created a lot of interesting new research applications, such
as 3D shape scanning [1], foreground/background segmenta-
tion [2], facial expression tracking [3], etc.

For many applications that use the color and the depth
images jointly, it is critical to know the calibration parame-
ters of the sensor pair. Such parameters include the intrinsic
parameters of the color camera, its radial distortion param-
eters, the rotation and translation between the depth camera
and the color camera, and parameters that help determine the
depth values (e.g., in meters) of pixels in the depth image. Al-
though color camera calibration has been thoroughly studied
in the literature [4, 5], the joint calibration of depth and color
images presents a few new challenges:

13DV Systems, http://www.3dvsystems.com/.
2Microsoft, http://www.xbox.com/en-US/kinect/.

Fig. 1. The calibration pattern used in this paper. The color
image is shown on the left; and the depth image is shown on
the right. The depth pixels inside the red rectangle shall lie
on the model plane surface, though point correspondence is
difficult to obtain. A few manually specified corresponding
point pairs are also shown in the figure.

• Feature points such as the corners of checkerboard
patterns are often indistinguishable from other surface
points in the depth image, as shown in Fig. 1.

• Although depth discontinuity can be easily observed in
the depth image, the boundary points are usually unreli-
able due to unknown depth reconstruction mechanisms
used inside the depth camera.

• One may use the infrared image co-centered with the
depth image to perform calibration. However, this
may require external infrared illumination (e.g., the
Kinect camera). In addition, the depth mapping func-
tion (Eq. (22)) of the depth image may not be calibrated
with such a method.

• Most commodity depth cameras produce noisy depth
images. Such noises need to be accurately modeled in
order to obtain satisfactory results.

In this paper, we propose a maximum likelihood solution
for joint depth and color calibration using commodity depth
cameras. We use the popular checkerboard pattern adopted
in color camera calibration (Fig. 1), thus no extra hardware is
needed. We utilize the fact that points on the checkerboard
shall lie on a common plane, thus their distance to the plane
shall be minimized. Point correspondences between the depth
and color images may be further added to help improve cal-
ibration accuracy. A maximum likelihood framework is pre-
sented with careful modeling of the sensor noise, particularly
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Fig. 2. Illustration of the notations used in the paper.

in the depth image. Extensive experimental results are pre-
sented to validate the proposed calibration method.

2. NOTATIONS

Fig. 2 illustrates the notations used during our calibration pro-
cedure. We assume the color camera’s 3D coordinate system
coincides with the world coordinate system. In the homoge-
neous representation, a 3D point in the world coordinate sys-
tem is denoted by M = [X,Y, Z, 1]T , and its corresponding
2D projection in the color image is m = [u, v, 1]T . We model
the color camera by the usual pinhole model, i.e.,

sm = A[I 0]M, (1)

where I is the identity matrix and 0 is the zero vector. s is a
scale factor. In this particular case, s = Z. A is the camera’s
intrinsic matrix, given by [5]:

A =

α γ u0

0 β v0
0 0 1

 , (2)

where α and β are the scale factors in the image coordinate
system, (u0, v0) are the coordinates of the principal point, and
γ is the skewness of the two image axes.

The depth camera typically outputs an image with depth
values, denoted by x = [u, v, z]T , where (u, v) are the pixel
coordinates, and z is the depth value. The mapping from x to
the point in the depth camera’s 3D coordinate system Md =
[Xd, Y d, Zd, 1]T is usually known, denoted as Md = f(x).
The rotation and translation between the color and the depth
cameras are denoted by R and t, i.e.,

M =

[
R t
0T 1

]
Md. (3)

3. JOINT DEPTH/COLOR CAMERA CALIBRATION

3.1. Problem Statement

During calibration, we assume the user moves a planar cal-
ibration board in front of the depth camera, similar to that

in [5]. In total there are n image pairs (color and depth) cap-
tured by the depth camera. The positions of the calibration
board in the n images are different, as shown in Fig. 2. We
set up local 3D coordinate system (Xi, Yi, Zi) for each po-
sition of the calibration model plane, such that the Zi = 0
plane coincides with the model plane. In addition, we assume
the model plane has a set of m feature points. Usually they
are the corners of a checkerboard pattern. We denote these
feature points as Pj , j = 1, · · · ,m. Note the 3D coordinates
of these feature points in each model plane’s local coordinate
system are identical. Each feature point’s local 3D coordinate
is associated with the world coordinate as:

Mij =

[
Ri ti
0T 1

]
Pj . (4)

where Mij is the jth feature point of the ith image in the
world coordinate system, Ri and ti are the rotation and trans-
lation from the ith model plane’s local coordinate system to
the world coordinate system. The feature points are observed
in the color image as mij , which are associated with Mij

through Eq. (1).
Given the set of feature points Pj and their projections

mij , our goal is to recover the intrinsic matrix A, the model
plane rotations and translations Ri, ti, and the transform be-
tween the color and the depth cameras R and t. It is well-
known that given the set of color images, the intrinsic matrix
A and the model plane positions Ri, ti can be computed [5].
It is unclear, however, whether the depth images can be used
to reliably determine R and t automatically.

3.2. A Maximum Likelihood Solution

The calibration solution to the color image only problem is
well known [5]. Due to the pinhole camera model, we have:

sijmij = A[Ri ti]Pj (5)

In practice, the feature points on the color images are usu-
ally extracted with automatic algorithms, and may have er-
rors. Assume that mij follows a Gaussian distribution with
the ground truth position as its mean, i.e.,

mij ∼ N (m̄ij ,Φij). (6)

The log likelihood function can be written as:

L1 = − 1

2nm

n∑
i=1

m∑
j=1

ϵTijΦ
−1
ij ϵij , (7)

where
ϵij = mij −

1

sij
A[Ri ti]Pj . (8)

We next study terms related to the depth images. There
are a set of points in the depth image that correspond to the
model plane, as those inside the red quadrilateral in Fig. 1. We



randomly sample Ki points within the quadrilateral, denoted
by Md

iki
, i = 1, · · · , n; ki = 1, · · · ,Ki. If the depth image is

noise free, we shall have:

[0 0 1 0]

[
Ri ti
0T 1

]−1 [
R t
0T 1

]
Md

iki
= 0, (9)

which states that if we transform these points to the local co-
ordinate system of each model plane, the Zi coordinate shall
be zero.

Since the depth images are usually noisy, we assume Md
iki

follows a Gaussian distribution as:

Md
iki

∼ N (M̄d
iki

,Φd
iki

). (10)

The log likelihood function can thus be written as:

L2 = − 1

2
∑n

i=1 Ki

n∑
i=1

Ki∑
ki=1

ε2iki

σ2
iki

, (11)

where
εiki = aTi M

d
iki

(12)

where

ai =

[
RT 0
tT 1

] [
Ri 0

−tTi Ri 1

]
0
0
1
0

 , (13)

and
σ2
iki

= aTi Φ
d
iki

ai. (14)

It is sometimes helpful to have a few corresponding point
pairs in the color images and the depth images, as shown
in Fig. 1. We denote such point pairs as (mipi ,M

d
ipi

), i =
1, · · · , n; pi = 1, · · · , Pi. These point pairs shall satisfy:

sipimipi = A[R t]Md
ipi

. (15)

Whether the point correspondences are manually labeled or
automatically established, they may not be accurate. Assume:

mipi ∼ N (m̄ipi ,Φipi);M
d
ipi

∼ N (M̄d
ipi

,Φd
ipi

), (16)

where Φipi models the inaccuracy of the point in the color
image, and Φd

ipi
models the uncertainty of the 3D point from

the depth sensor. The log likelihood function can be written
as:

L3 = − 1

2
∑n

i=1 Pi

n∑
i=1

Pi∑
pi=1

ξTipi
Φ̃−1

ipi
ξipi , (17)

where
ξipi = mipi −BipiM

d
ipi

, (18)

where
Bipi =

1

sipi

A[R t], (19)

and
Φ̃ipi = Φipi +BipiΦ

d
ipi

BT
ipi

. (20)

Combining all the information together, we maximize the
overall log likelihood as:

max
A,Ri,ti,R,t

ρ1L1 + ρ2L2 + ρ3L3, (21)

where ρi, i = 1, 2, 3 are weighting parameters. The above
objective function is a nonlinear least squares problem, which
can be solved using the Levenberg-Marquardt method [6].

3.3. Estimate Other Parameters

There may be a few other parameters that need to be esti-
mated during calibration. For instance, the color camera may
exhibit significant lens distortions, thus it is necessary to esti-
mate them based on the observed model planes. Another set
of unknown parameters may be in the depth mapping func-
tion f(·). For instance, the structured light-based Kinect depth
camera may have a depth mapping function as:

f(x) =

[
(µz + ν)(Ad)−1[u, v, 1]T

1

]
, (22)

where µ and ν are the scale and bias of the z value, and Ad

is the intrinsic matrix of the depth sensor. Usually Ad is
pre-determined. The other two parameters µ and ν can be
used to model the depth sensor’s decalibration due to temper-
ature variation or mechanical vibration, and can be estimated
within the same maximum likelihood framework.

3.4. Solutions for Initialization

Since the overall likelihood function in Eq. (21) is nonlin-
ear, it is very important to have good initialization for the un-
known parameters. For the parameters related to the color
camera, i.e., A, Ri and ti, we may adopt the same initializa-
tion scheme as in [5]. In the following, we discuss methods to
provide the initial estimation of the rotation R and translation
t between the depth and color sensors. During the process,
we assume A, Ri and ti of the color camera are known.

3.4.1. Initialization with Model Plane Matching

For most commodity depth cameras, the color camera and
the depth camera are positioned very closely. It is there-
fore simple to automatically identify a set of points in each
depth image that lies on the model plane. Let these points be
Md

iki
, i = 1, · · · , n; ki = 1, · · · ,Ki. For a given depth im-

age i, if Ki ≥ 3, it is possible to fit a plane to the points in
that image. That is, given:

Hi

[
nd
i

bdi

]
=


(Md

i1)
T

(Md
i2)

T

...
(Md

iKi
)T


[
nd
i

bdi

]
= 0, (23)



where nd
i is the normal of the model plane in the depth sen-

sor’s 3D coordinate system, ∥nd
i ∥2 = 1; and bdi is the bias

from the origin. ∥nd
i ∥ and bdi can be easily found through

least squares fitting.
In the color sensor’s coordinate system, the model plane

can also be described by plane equation

[0 0 1 0]

[
Ri ti
0T 1

]−1

M = 0. (24)

Since Ri and ti are known, we represent the plane’s normal
as ni, ∥ni∥2 = 1, and bias from the origin bi.

We first solve the rotation matrix R. Denote:

R =

rT1rT2
rT3

 . (25)

We minimize the following objective function with constraint:

J(R) =

n∑
i=1

∥ni −Rnd
i ∥+

3∑
j=1

λj(r
T
j rj − 1) +

2λ4r
T
1 r2 + 2λ5r

T
1 r3 + 2λ6r

T
2 r3. (26)

This objective function can be solved in close form [7]. Let:

C =

n∑
i=1

nd
in

T
i . (27)

The singular value decomposition of C can be written as:

C = UDVT , (28)

where U and V are orthonormal matrices and D is a diagonal
matrix. The rotation matrix is simply:

R = VUT . (29)

The minimum number of images to determine the rotation
matrix R is n = 2, provided that the two model planes are
not parallel to each other.

For translation, we have the following relationship:

(nd
i )

T t+ bdi = bi. (30)

Thus three non-parallel model planes will determine a unique
t. If n > 3, we may solve t through least squares fitting.

3.4.2. Initialization with Point Pair Matching

Another scheme to estimate the initial rotation R and trans-
lation t is through the knowledge of a set of point correspon-
dences between the color images and the depth images. De-
note such point pairs as (mipi ,M

d
ipi

), i = 1, · · · , n; pi =
1, · · · , Pi. We have the relationship:

sipimipi = A[R t]Md
ipi

. (31)
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Fig. 3. Calibration accuracy vs. depth camera noise level.

Note the intrinsic matrix A is known. Such a problem has
been studied extensively in the literature [8, 9]. It has been
shown that given 3 point pairs, there are in general four solu-
tions to the rotation and translation. When one has 4 or more
non-coplanar point pairs, the so-called POSIT algorithm [10]
can be used to find the initial value of R and t.

4. EXPERIMENTAL RESULTS

The maximum likelihood solution in Eq. (21) can be used to
calibrate all unknown parameters for the depth and color sen-
sors. Due to space limitations, in this paper we focus our at-
tention on the parameters related to the depth sensor only, i.e.,
R, t and f(·), and assume A,Ri, ti are known (or obtained
separately from, say, maximizing Eq. (7) only [5]).

4.1. Simulated Results

The simulated depth/color camera has the following parame-
ters. For the color camera, α = 750, β = 745, γ = 0, u0 =
315, v0 = 245. The image resolution is 640 × 480. The
rotation and translation from the depth camera to the color
camera is represented by vector [θx, θy, θz, tx, ty, tz]

T =
[0.05,−0.01, 0.02, 25, 2,−2]T , where [θx, θy, θz]T in radians
represents rotation, which can be converted to R through the
well-known Rodrigues’ rotation formula, and the last three el-
ements represent translation t = [tx, ty, tz]

T in millimeters.

4.1.1. Performance w.r.t. the Noise Level

In this experiment we examine the impact of the depth cam-
era’s noise level to the calibration accuracy. Three model
planes are used in the experiment. The checkerboard pattern
has 10 × 7 corners on a regular grid. The distance between
neighboring corners is 37. The three model planes are located
at [π8 , 0, 0,−300, 25, 750]T , [0, π

8 ,−
π
18 ,−110,−100, 1150]T

and [− π
36 , 0,

π
6 , 120,−200, 800]T , respectively. Only the

plane fitting likelihood term (Eq. (11)) is maximized to de-
termine R and t, where Ki = 1000. The covariance of the
depth noise is assumed to be independent of the depth values
(which is an acceptable assumption for time-of-flight based
depth cameras). At each noise level, 500 trials were run and
the standard deviations (STDs) of the errors are reported, as
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Fig. 4. Calibration accuracy vs. number of model planes.
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Fig. 5. Calibration accuracy vs. plane orientations.

shown in Fig. 3. It can be seen that the STDs of the angular
errors and translation errors increase linearly with the noise
level. The mean of the errors are generally very close to zero
(not shown in Fig. 3), and the STDs are very small, indicating
satisfactory calibration accuracy and algorithm stability.

4.1.2. Performance w.r.t. the Number of Planes

In the second experiment we examine whether increasing the
number of model planes could improve calibration accuracy.
We tested between 3 and 15 planes, as shown in Fig. 4. The
first 3 planes are the same as those in Section 4.1.1. From
the fourth image on, we randomly generate a vector on the
unit sphere, and apply a rotation with respect to the vector for
an angle of π

6 . Again only the plane fitting likelihood term
(Eq. (11)) is maximized to determine R and t. The covari-
ance of the depth noise is set to 1 throughout the experiment.
For a given number of planes, we run 500 trials and report the
STDs of the errors. From Fig. 4, it is obvious that increas-
ing the number of planes leads to smaller STDs of the errors,
thus better calibration accuracy. We recommend at least 8-10
planes to achieve sufficient accuracy during calibration.

4.1.3. Performance w.r.t. the Plane Orientations

Next we study the impact of the model plane orientations. We
again use 3 planes for calibration. The planes are generated
as follows. We first randomly choose three vectors on the unit
circle in the color camera’s imaging plane, and we make sure
the smallest angle between the three vectors is greater than
π
9 . We then apply a rotation with respect to the three vectors
for a varying angle between 10◦ and 80◦ to generate 3 model

planes for calibration. A total of 500 trials were run for each
configuration in Fig. 5. It contains three groups of curves.

In the first group, only the plane fitting likelihood term
(Eq. (11)) is maximized to determine R and t. It can be seen
that when the plane orientations are small, the calibration er-
rors are big. This is intuitive, since according to Section 3.4.1,
parallel planes would not be effective in determining the rota-
tion/translation between the depth and color sensors.

In the second group, we use the point pair likelihood term
(Eq. (17)) to determine R and t. For this purpose, we assume
the 4 corners of each model plane is known in both the color
and the depth images, thus we have a total of 12 point pairs.
Noise of covariance 0.252 is added to the position of the point
pairs to mimic the real-world scenario. It can be seen from
Fig. 5 that with so few point pairs, the calibration error STDs
are generally bigger than those generated by planing fitting.
An exception is the the cases of very small plane orientations,
where the plane fitting only solution performs very poorly.

In the third group, we determine R and t based on the
combination of plane fitting and point pair likelihood terms.
We use ρ2 = 1 and ρ3 = 0.2. It can be seen that for small
plane orientations, combining the two likelihood terms results
in better performance than using only either. When the plane
orientations are large, however, the plane fitting likelihood
term alone seem to perform better. In practice, we also need to
consider the calibration accuracy of the color camera param-
eters. It has been shown in [5] that color camera calibration
will perform poorly if the model planes are near perpendicu-
lar to the color image’s imaging plane. Therefore, we recom-
mend to use model planes oriented about 30-50 degrees with
respect to the color camera’s imaging plane for better overall
calibration quality.

4.1.4. Performance w.r.t. the Correct Noise Model

So far we have assumed depth-independent noises in the
depth image. This is acceptable for time-of-flight depth cam-
eras such as the ZCam from 3DV systems. However, for trian-
gularization based depth cameras such as the Kinect camera,
the noise level is a quadratic function of the depth [3]. Both
types of noises can be accommodated with our maximum
likelihood solution in Section 3. On the other hand, applying
the correct noise model would generally improve calibration
performance. Here we use the same setup as Section 4.1.1,
except that the depth noise follows the formula in [3]:

σ ∝ Z2, (32)

and we assume the noise level at Z = 1000 is known (adapt-
ing as the horizontal axis of Fig. 6). We ran two sets of ex-
periments. In the first set, we assume the user is unaware of
the sensor noise type, and blindly assume that the noise is
depth-independent. In the second set, the correct noise model
is applied. It can be seen from Fig. 6 that using the correct
noise model results in better calibration performance.
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Fig. 6. Calibration accuracy vs. correct noise model.

(a)

(b)

Fig. 7. Calibration results for a real scene. (a) Use plane
fitting only. (b) Use both plane fitting and point pairs.

4.2. Real-World Results

Finally, we test the proposed method on a real Kinect sen-
sor. A set of 12 model planes at different positions and
orientations are captured. One of the image pairs has been
shown in Fig. 1. The color sensor’s intrinsic parameters are
first estimated with [5] as α = 528.32, β = 527.03, γ =
0, u0 = 320.10, v0 = 257.57. We then apply the pro-
posed technique to calibrate R, t and f(·), where f(·) con-
tains unknown parameters such as the depth scale and bias
µ, ν. The depth camera’s intrinsic matrix Ad is pre-set to
αd = 575, βd = 575, γ = 0, ud

0 = 320, vd0 = 240.
The calibration results with plane fitting alone are

[0.0058,−0.0049, 0.0057,−16.4411, 21.077, 5.4074]T for
rotation and translation, µ = 0.9771, ν = 16.1883 for depth
scale and bias. To demonstrate the calibration accuracy, we
warp the color images based on the calibrated parameters,
and overlay them onto the depth images to examine how well
they align with each other, as shown in Fig. 7 (a). It can be
seen that the alignment is very accurate.

As shown in Section 4.1.3, adding additional point cor-
respondences between the color and the depth images may
help improve calibration performance when the model planes
do not have sufficient variations in orientation. Another ben-
efit of adopting point correspondences is to expand the cal-

ibration effective zone. It is well known that for calibra-
tion to work well, the checkerboard shall be placed across
the whole workspace. In Fig. 7 (a), we notice the chair re-
gion is not aligned well, since no checkerboard was placed
there in the 12 images. We manually add 3-5 point corre-
spondences for each image pair, some of them lying on the
background of the scene (see Fig 1). After using both plane
fitting and point correspondences to calibrate, the results are
[−0.0089,−0.0071, 0.004,−15.7919, 8.2644, 12.5897]T for
rotation and translation, µ = 0.9948, ν = −6.5470 for depth
scale and bias. A warped result is shown in Fig. 7 (b). The
improvement in the chair area is very obvious.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel algorithm to calibrate color
and depth sensors jointly. The method is reliable and accurate,
and it does not require additional hardware other than the eas-
ily available checkerboard pattern. Future work includes bet-
ter modeling of the depth mapping function f(·), and better
understanding of the depth cameras’ noise models.
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