
Speculation-aware Cluster Scheduling

Xiaoqi Ren1, Ganesh Ananthanarayanan2, Adam Wierman1, Minlan Yu3

1California Institute of Technology, 2Microsoft Research, 3University of Southern California

{xren,adamw} @caltech.edu, ga@microsoft.com, minlanyu@usc.edu

ABSTRACT
Stragglers are a crucial roadblock to achieving predictable
performance in today’s clusters. Speculation has been widely-
adopted in order to mitigate the impact of stragglers; how-
ever speculation mechanisms are designed and operated in-
dependently of job scheduling when, in fact, scheduling a
speculative copy of a task has a direct impact on the re-
sources available for other jobs. In this work, based on
a simple model and its analysis, we design Hopper, a job
scheduler that is speculation-aware, i.e., that integrates the
tradeoffs associated with speculation into job scheduling de-
cisions.

1. INTRODUCTION
As the scale and complexity of clusters increase, hard-to-

model systemic interactions that degrade the performance of
tasks become common [2, 7]. Consequently, many tasks be-
come “stragglers”, i.e., running slower than expected, lead-
ing to significant unpredictability (and delay) in job com-
pletion times – tasks in Facebook’s Hadoop cluster can run
up to 8× slower than expected [2]. The most successful and
widely deployed straggler mitigation solution is speculation,
i.e., speculatively running extra copies of tasks that have
already, or are likely to become, stragglers, and then pick-
ing the earliest of the copies to finish, e.g., [2, 4, 5, 8, 14].
Speculation is commonplace in production clusters, e.g., in
our analysis of Facebook’s Hadoop cluster speculative tasks
account for 25% of all tasks and 21% of resource usage.

Speculation is unavoidably intertwined with job schedul-
ing because spawning a speculative copy of a task has a
direct impact on the resources available for other jobs. Ag-
gressive speculation can improve the performance of the job
at hand while hurting the performance of other jobs. Despite
this, speculation policies deployed today are all designed and
operated independently of job scheduling; schedulers simply
allocate slots to speculative copies in a “best-effort” fashion,
e.g., [2, 4, 5, 8, 10,14].

Coordinating speculation and scheduling decisions is an
opportunity for significant performance improvement. In
this paper, we formulate an analytical model to capture the
interaction between speculation within jobs and resource al-
location across jobs to optimize job completion times. Based
on analysis of the model and statistic characterizations of
production traces [2–4, 9], we propose the first speculation-
aware job scheduler, Hopper, which dynamically allocates
slots to jobs keeping in mind the speculation requirements
necessary for predictable performance. Hopper incorporates

Copyright is held by author/owner(s).

a variety of factors such as fairness, dependencies (DAGs)
between tasks, etc. Further, Hopper is compatible with all
current speculation algorithms.

The key insight behind Hopper is that a scheduler must
anticipate the speculation requirements of jobs and dynam-
ically allocate capacity depending on the marginal value (in
terms of performance) of extra slots, which are likely used
for speculation. A novel observation that leads to the design
of Hopper is that there is a sharp threshold in the marginal
value of extra slots – an extra slot is always more beneficial
for a job below its threshold than it is for any job above
its threshold. The identification of this threshold then al-
lows Hopper to use different resource allocation strategies
depending on whether the system capacity is such that all
jobs can be allocated more slots than their threshold or not.
This leads to a dynamic, adaptive, online scheduler that
reacts to the current system load in a manner that appro-
priately weighs the value of speculation.

We have built two demonstration prototypes by augment-
ing the scheduling frameworks Hadoop [1] (for batch jobs)
and Spark [12] (for interactive jobs) and show that 50%
improvements over state-of-the-art schedulers and specula-
tion strategies can be achieved through the coordination of
scheduling and speculation. These are reported on in [13],
without any discussion of the theory behind the design. Here
we describe the model formulation and analysis that led to
the design of Hopper.

2. MODEL OVERVIEW
We focus on a system with S slots, each of which can have

one task scheduled to it. Jobs arrive over time and the ith
arrival is denoted by Ji and has Ti tasks, each of which has
an i.i.d. random task completion time τ . We denote the
remaining number of tasks for the ith job at time t by Ti(t).

The key piece of our model is the characterization of the
service rate of the ith job, µi(t), as a function how many
slots, Si, it is allocated and the average number of specula-
tive copies per task at time t, k(t). Note that µi(t) should be
interpreted as the completion rate of the ith job. We adopt
the following approximation for µi(t), which has been used
previously in the design of task level speculation policies
by [4].

µi(t) = min (Si, Ti(t)k(t))×
(

E[τ ]

k(t)E
[
min(τ1, . . . , τk(t))

]) (1)

To understand this approximate model, note that the first
term approximates the number of slots the job occupied
and the second term approximates the “blow up factor,”
i.e., the ratio of the expected work completed without spec-
ulative copies to the amount of work done with specula-
tive copies. To understand the first term, note that there



are Ti(t)k(t) tasks available to schedule at time t, includ-
ing speculative copies. Given that the maximum capac-
ity that can be allocated is Si, we obtain the first term in
(1). The second term is the the expected amount of work
done per task without speculation (E[τ ]) divided by the
expected amount of work done per task with speculation
(k(t)E[min(τ1, τ2, . . . , τk(t))]), since k(t) copies are created
and then they are stopped when the first copy completes.

To specialize (1) further, we note that task completion
times often show evidence of Pareto tails [2–4, 9]. So, we
focus on the case of Pareto(xm,β) completion times. Given
this form for the task completion time distributions, the
optimal speculation level has been shown in [4] to be as in
(2).

k(t) =

{
2
β
, Si ≤ 2

β
Ti(t)

Si/Ti(t), Si >
2
β
Ti(t);

(2)

Plugging the optimal speculation level given in (2) into
the model for µi(t) in (1) yields the following model for the
service rate.

µi(t) =

{
β2

4(β−1)
Si(t), Si ≤ 2

β
Ti(t)

β
β−1

Ti(t)− 1
β−1

T2
i (t)

Si
, Si >

2
β
Ti(t);

(3)

Equation 3 surprisingly shows that the marginal return
of an extra slot has a sharp threshold (when Si = 2

β
Ti(t)),

where below the threshold, the marginal return is large and
above the threshold, the marginal return is small. So it is
desirable to ensure that every job is allocated enough slots to
reach the threshold (if possible) before giving any job slots
beyond this threshold. Thus, we refer to this threshold as
the “desired (minimum) allocation” for a job or simply the
“virtual job size” as following:

Vi(t) =
2

β
Ti(t) (4)

3. HOPPER
There are two distinct cases one must consider for re-

sources allocating across jobs: (i) How should slots be al-
located if there are not enough slots to give every job to
perform optimal speculation? (ii) How should slots be allo-
cated if there are more than enough slots to give every job
to perform optimal speculation.

When the system is capacity constrained, our analytic re-
sults highlight that the job scheduler should give as many
jobs as possible their desired allocation, i.e., their full virtual
job sizes. Thus, the scheduler should start with the job with
the smallest virtual job size Vi(t) and work its way to larger
jobs giving all the jobs the optimal level until capacity is
exhausted.

However, when the system is not capacity constrained,
then the key design challenge becomes how to divide the
extra capacity among the jobs present. Our analytic results
highlight that the job scheduler should do a form of propor-
tional sharing to determine the allocation of slots to jobs.
Specifically, jobs should be allocated slots proportionally to
their virtual job sizes, i.e., job i receives(

Vi(t)∑
j Vj(t)

)
S =

(
Ti(t)∑
j Tj(t)

)
S slots, (5)

where S is the number of slots available in the system. In
the above we have assumed Vi(t) = (2/β)Ti(t), as discussed
above.

Concretely, we prove that the following algorithm is com-
pletion rate optimal.

Algorithm 1 (Hopper, single-phased).
Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system
at time t sorted in increasing order of remaining tasks, so
T1(t) ≤ . . . ≤ Tn(t).

1. If S ≤ 2
β

∑
Ti(t), then assign Si = 2

β
Ti(t) to jobs in

order from i = 1 to n until no slots remain and assign
Si = 0 for all remaining jobs.

2. If S > 2
β

∑
Ti(t), then assign Si =

(
Ti(t)∑
Tj(t)

)
S for all

jobs Ji ∈ J(t).

Theorem 1. Algorithm 1 is completion rate maximal for
single-phased jobs, i.e., it maximizes

∑
µi(t).

In a real system implementation, once a slot becomes
available, Hopper chooses a job and assigns the vacant slot to
it immediately to avoid unnecessary resource waste. In that
case, Hopper tries best to approximate the ideal allocation
i.e., it will assign the slot to job i if i = argmaxi∈J(t)Hi − Si,
where Hi is the number of slots that the job should have
based on Algorithm 1, and Si is the number of slots the
job currently has. See [13] for details and for comments on
implementation in a distributed setting.

3.1 Incorporating Fairness
Fairness is an important constraint on cluster scheduling.

To allow some flexibility, while still tightly controlling the
unfairness introduced, instead of allocating equal number of
slots to every job, we define a notion of approximate fairness
as follows. We say that a scheduler is ε-fair if it guarantees
that every job receives at least S/N(t)(1 − ε) slots at any
time t, where N(t) is the number of jobs in the system at
time t. ε→ 0 indicates perfect fairness while ε→ 1 indicate
focusing on performance.

Hopper can be extended to guarantee ε-fairness while main-
taining optimality as follows.

Algorithm 2 (Hopper, Fairness).
Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system
at time t sorted in increasing order of remaining tasks, so
T1(t) ≤ . . . ≤ Tn(t). Define m1 such that i ≤ m1 implies
2
β
Ti(t) ≤ S

N
− ε.

1. If S ≤ 2
β

∑n
i=m1+1 Ti(t)+m1

S
N

(1−ε), begin by assign-

ing all jobs S
N

(1− ε) slots. Then assign an additional
2
β
Ti(t)− S

N
(1− ε) slots to jobs Ji from i = m1 + 1 to

n until no slots remain.
2. If S > 2

β

∑n
i=m1+1 Ti(t) +m1

S
N

(1− ε), then define m2

as the minimum value such that

Tm2+1(t)
N∑

i=m2+1
Ti(t)

(S−m2
S

N
(1−ε)) ≥ max{

S

N
(1−ε),

2

β
Tm2+1(t)}.

Then, assign S
N

(1 − ε) slots to jobs Ji with 1 ≤ i ≤
m2, and assign Ti(t)∑N

i=m2+1 Ti(t)

(
S −m2

S
N

(1− ε)
)

slots

to jobs Ji with m2 + 1 ≤ i ≤ N .

Theorem 2. Algorithm 2 is completion rate maximal among
ε-fair allocations.



3.2 Heterogeneous Job DAGs
We can also extend our analysis of single-phased jobs to

jobs with multi-phased DAGs of tasks that have varied com-
munication patterns (e.g., many-to-one or all-to-all). We
consider multiple phases that are not separated by strict
barriers but are rather pipelined. Downstream tasks do not
wait for all the upstream tasks to finish but read the up-
stream outputs as the tasks finish.

The scheduler’s goal is to balance the gains due to overlap-
ping network utilization while still favoring upstream phases
with smaller number of tasks. We capture this using a simple
weighting factor, α per job, set to be the ratio of remaining
work in network transfer in the downstream phase to the
work in the upstream phase. The definition of α makes our
scheduler favors jobs with higher remaining communication
and lower remaining tasks in the running phase.

Given the weighting factor α, our analytic results high-
light that the structural form of Algorithm 1 do not change.
However, the following adjustments are required.

First, the prioritization of jobs based on Ti(t) should be re-
placed by a prioritization of jobs based on max{Ti(t), T ′i (t)},
where Ti(t) is the remaining number of tasks in the current
phase and T ′i (t) is the remaining work in communication in
the downstream phase. This adjustment is motivated by
the work of [11], which proves that, so-called, MaxSRPT is
2-speed optimal for completion times.1 However, the model
in [11] does not include stragglers, and so we need to sup-
plement MaxSRPT.

Also, we redefine the virtual size of a job to include α as

Vi(t) =
2

β
Ti(t)

√
αi.

This change means that capacity is shared as follows: job i
receives (

Vi(t)∑
Vj(t)

)
S =

(
Ti(t)

√
αi∑

Tj(t)
√
αj

)
S slots. (6)

We use the weighting factor αi to understand how to ad-
just the desired allocation of jobs depending on the relative
sizes of job i in the current phase and the following phase.
For example, by setting αi = T ′i/Ti, it captures number of
tasks created in the next phase per task completed in the
current phase, which is appropriate when adjacent phases in
the DAG can be pipelined. Mathematically, one can show
that if we seek to maximize the α-weighted throughput,
i.e.

∑
i αiµi(t), then the desired allocation changes from

(2/β)Ti(t) to (2/β)Ti(t)
√
αi/αmin, where αmin is the small-

est αj among the jobs that are currently running. This leads
to the following algorithm for the case of DAGs of tasks.

Algorithm 3 (Hopper, DAGs of tasks).
Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system
at time t sorted in ascending order of max{Ti(t), T ′i (t)}.
If Ji and Jj have the same max{Ti(t), T ′i (t)} then the job

with larger weight is listed first. Let α
(k)
min denote the min-

imum weight of weights for first k jobs in J(t), so α
(k)
min =

min{α1, α2, . . . , αk}. And let Jkmin denote the job which has
the minimum weight in first k jobs, so the weight of Jkmin is

α
(k)
min. Let Vi(t) denote the virtual size for job Ji ∈ J(t), so
Vi(t) = 2

β
Ti(t)

√
αi.

12-speed optimal means that MaxSRPT guarantees comple-
tion time better than the optimal in the original system, if it
is given twice the service capacity. Note that [11] also shows
that it is impossible to be constant-competitive without be-
ing granted extra service capacity.

1. If S ≤ V1(t)√
α
(2)
min

,assign S1 = S and Si = 0 for i > 1.

2. If ∃ k < n such that
k∑
i=1

Vi(t)√
α
(k+1)
min

< S ≤
k+1∑
i=1

Vi(t)√
α
(k+1)
min

,assign

Si = Vi(t)√
α
(k+1)
min

for i in order of {1, 2, . . . , kmin−1, kmin+

1, . . . , k, k + 1, kmin} until no slots remain, and Si =
0 for i > k + 1.

3. If ∃ k < n− 1 such that
k+1∑
i=1

Vi(t)√
α
(k+1)
min

< S ≤
k+1∑
i=1

Vi(t)√
α
(k+2)
min

,

then assign Si = Vi(t)
k+1∑
i=1

Vi(t)

S for i = 1, . . . , k + 1, and

Si = 0 for i > k + 1.

4. If
n∑
i=1

Vi(t)√
α
(n)
min

< S, then assign Si = Vi(t)
n∑

i=1
Vi(t)

S for i =

1, 2, . . . , n.

4. REFERENCES
[1] Hadoop. http://hadoop.apache.org.
[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.

Effective Straggler Mitigation: Attack of the Clones. In
USENIX NSDI, 2013.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica. PACMan: Coordinated
Memory Caching for Parallel Jobs. In USENIX NSDI, 2012.

[4] G. Ananthanarayanan, M. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu. GRASS: Trimming Stragglers in
Approximation Analytics. In USENIX NSDI, 2014.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
E. Harris, and B. Saha. Reining in the Outliers in Map-Reduce
Clusters Using Mantri. In USENIX OSDI, 2010.

[6] H. Chen, J. Marden, and A. Wierman. On the Impact of
Heterogeneity and Back-end Scheduling in Load Balancing
Designs. In INFOCOM. IEEE, 2009.

[7] J. Dean and L. Barroso. The Tail at Scale. Communications of
the ACM, (2), 2013.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM,
2008.

[9] F. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.
Decentralized Task-aware Scheduling for Data Center
Networks. In Proceedings of the 2014 ACM conference on
SIGCOMM, pages 431–442. ACM, 2014.

[10] O. K, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, Low Latency Scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 69–84. ACM, 2013.

[11] M. Lin, L. Zhang, A. Wierman, and J. Tan. Joint Optimization
of Overlapping Phases in MapReduce. Performance
Evaluation, 2013.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. Franklin, S. Shenker, and I. Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In USENIX NSDI, 2012.

[13] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu.
Hopper: Decentralized Speculation-aware Cluster Scheduling at
Scale. ACM SIGCOMM, 2015.

[14] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce Performance in Heterogeneous
Environments. In USENIX OSDI, 2008.


