
HOP:

Hardware makes Obfuscation Practical

Kartik Nayak

With Chris Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam, Elaine Shi
and Vipul Goyal

1

Compression

Used by everyone, perhaps license it

No one should “learn” the algorithm

Another scenario: Release patches without disclosing
vulnerabilities

- VBB Obfuscation

1 MB 1 KB

2

Known Results

Impossible to achieve program obfuscation in general [BGIRSVY’01]

Heuristic approaches to obfuscation [KKNVT’15, SK’11, ZZP’04]

- Efficient
- No guarantees - “Confuse” the user

3

Weaker Notion of Obfuscation

Indistinguishability Obfuscation (iO) is Achievable [BGIRSVY’01]

Construction via multilinear maps [GGHRSW’13]
- Not strong enough for practical applications
- Non-standard assumptions
- Inefficient

[AHKM’14]

4

point_func(x) {
if x == secret

return 1;
else return 0;

}

Using Trusted Hardware Token

Program obfuscation, Functional encryption using stateless tokens
[GISVW’10, DMMN’11, CKZ’13]

- Boolean Circuits
- Token functionality program dependent
- Inefficient - using FHE, NIZKs
- Sending many tokens

5

6

Work on Secure Processors

Intel SGX, AEGIS [SCGDD’03], XOM [LTMLBMH’00]: encrypts memory,
verifies integrity

- reveals memory access patterns
- notion of obfuscation against software only adversaries

Ascend [FDD’12], GhostRider [LHMHTS’15]
- assume public programs; do not obfuscate programs

Key Contributions

Efficient obfuscation of RAM programs
using stateless trusted hardware token1

2
Design and implement hardware system
called HOP 5x-238x better than

a baseline scheme

8x-76x slower than
an insecure system

3 Scheme Optimizations

Challenges in using
stateless token

Security under UC
framework

7

FHE, NIZKs Boolean circuits

OutputOutput2
InputInput2

Output3
Input3

Using Trusted Hardware Token

Store Key

Sender Receiver

Obfuscate

Execute

(honest) (malicious)

8

Ideal Functionality for Obfuscation

9

Trusted
third party

prog id

Sender Receiver

(prog id, inp)

output

Stateful Token

Oblivious
RAM

Authenticate memory auth

Run for a fixed time T
oramSt

10

load a5, 0(s0)
add a5, a4, a5
add a5, a5, a5

Maintain state between invocations

11

A scheme with stateless tokens is
more challenging

Enables context switching

Given a scheme with stateless tokens,
using stateful tokens can be viewed as

an optimization

Stateless Token

auth
PID

oramSt

12

load a5, 0(s0)
add a5, a4, a5
add a5, a5, a5

auth
PID

oramSt

Authenticated
Encryption

Oblivious
RAM

Does not maintain state between invocations

Stateless Token - Rewinding

auth’
PID

oramSt’

13

load a5, 0(s0)
add a5, a4, a5
add a5, a5, a5

Time 0: load a5, 0(s0)
Time 1: add a5, a4 a5

Rewind!

Time 0: load a5, 0(s0)
Time 1: add a5, a4 a5

Oblivious
RAM

14

Oblivious RAMs are generally not
secure against rewinding adversaries

[SCSL’11, PathORAM’13]

l

x

15

l

x

Position map
Token State

Path identified by leaf node l

Memory

Binary-tree Paradigm for Oblivious RAMs

l

x

16

l

x

Position map

Memory

Block x Must Now Relocate!

Token State

17

r

x

Position map

r

New designated
leaf node

Update position
map

Memory

Data-access Write Back

Token State

4

3

18

T = 0: leaf 4, reassigned 2

T = 1: leaf 2, reassigned …

Access Pattern: 3, 3

T = 0: leaf 4, reassigned 7

T = 1: leaf 7, reassigned …

Access Pattern: 3, 4

Rewind!

Time 0: leaf 4, reassigned …

Time 1: leaf 1, reassigned …

Time 0: leaf 4, reassigned …

Time 1: leaf 1, reassigned …

Rewind!

A Rewinding Attack!

247

0 1 2 3 4 5 6 7

T=0T=1T=0T=14

3

1

4

19

For rewinding attacks, ORAM uses
PRFK(program digest, input digest)

Stateless Token – Rewinding on inputs

Oblivious
RAM

Inp 1 = 20
Inp 2 = 10
Inp 3 = 30

auth’
PID

oramSt’

20

Inp 1 = 20
Inp 2 = 10
Inp 3 = 40

21

For rewinding on inputs, adversary
commits input digest during

initialization

Our scheme UC realizes the ideal functionality in the Ftoken-hybrid
model assuming
- ORAM satisfies obliviousness
- sstore adopts a semantically secure encryption scheme and a

collision resistant Merkle hash tree scheme and
- Assuming the security of PRFs

Main Theorem: Informal

Proof in the paper.

22

Efficient obfuscation of RAM programs
using stateless trusted hardware token1

2

Design and implement hardware system
called HOP3

Scheme
Optimizations

1. Interleaving arithmetic
and memory instructions

2. Using a scratchpad

23

Next:

Optimizations to the Scheme – 1. ANM Scheduling
Types of instructions – Arithmetic and Memory

1 cycle ~3000 cycles

1170: load a5,0(a0)
1174: addi a4,sp,64
1178: addi a0,a0,4
117c: slli a5,a5,0x2
1180: add a5,a4,a5
1184: load a4,-64(a5)
1188: addi a4,a4,1
118c: bne a3,a0,1170

+ dummy memory access

+ dummy memory access

24
Histogram – main loop

M

A

A

+ dummy memory accessA

+ dummy memory accessA

A

A

M

Memory accesses visible to the adversary

Naïve schedule:
A M A M A M …

Optimizations to the Scheme - 1. ANM Scheduling

What if a memory access is performed after “few”
arithmetic instructions?

A A A A M A A M  A M A M A M A M A M A M

A A A A M A A M  A A A A M A A A A M (A4M schedule)

Naïve scheduling: 12000 extra cycles

A4M scheduling: 2 extra cycles

25

Optimizations to the Scheme - 1. ANM Scheduling

Ideally, N should be program independent

𝑁 =
𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠 𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐴𝑐𝑐𝑒𝑠𝑠 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

3000

1

A A A A M A A M

2996 2998 < 6000 cycles of dummy work

6006 cycles of actual work

26

27

Amount of dummy work < 50% of the
total work

In other words, our scheme is 2x-
competitive, i.e., in the worst case, it
incurs ≤ 2x- overhead relative to best

schedule with no dummy work

Optimizations to the Scheme – 2. Using a Scratchpad

void bwt-rle(char *a) {
bwt(a, LEN);
rle(a, LEN);

}

void main() {
char *inp = readInput();
for (i=0; i < len(inp); i+=LEN)

spld(inp + i, LEN, 0);
len = bwt-rle(inp + i);

}

Program Why does a scratchpad help?

Memory accesses served
by scratchpad

Why not use regular hardware
caches?

Cache hit/miss reveals
information as they are
program independent

28

HOP Architecture 512 KB
Variant of Path ORAM

16 KB

1. single stage 32b
integer base
2. spld

- Freecursive ORAM
- PMMAC
- 64 byte block,
- 4 GB memory

29

For efficiency, use stateful tokens

Evaluation – Speed-up over Baseline Scheme

3x – 238x better than
baseline scheme

Scratchpad with ANM

1.5x – 18x better than
baseline scheme

ANM scheme only

30

Slowdown Relative to Insecure Schemes

8x-76x

Slowdown to Insecure

2x-41x

Slowdown to GhostRider

31

Case Study: bzip2

bzip2: Compression algorithm

Performance does not vary much based on input, so perhaps
“easy” to determine running time T

Two highly compressible strings

String S1
106x speedup wrt baseline
17x slowdown wrt insecure

String S2
234x speedup wrt baseline
8x slowdown wrt insecure

32

Time for Context Switching

Program State: program params

Memory State: ORAM state, auth

Execution State: cpustate, time

Scratchpads: Instruction, Data

< 1 KB

~264 KB

< 1 KB

~528 KB

Data stored by token: ~800 KB

Assuming 10 GB/s, will require ~160μs to swap state

33

Conclusion

We are among the first to design and
implement a secure processor with a

matching cryptographically sound formal
abstraction (in the UC framework)

kartik@cs.umd.edu
34

Paper will be on eprint soon.
Code will be open sourced.

