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Compression

Used by everyone, perhaps license it

No one should “learn” the algorithm

Another scenario: Release patches without disclosing 
vulnerabilities

- VBB Obfuscation

1 MB 1 KB
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Known Results

Impossible to achieve program obfuscation in general [BGIRSVY’01]

Heuristic approaches to obfuscation [KKNVT’15, SK’11, ZZP’04]

- Efficient
- No guarantees - “Confuse” the user
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Weaker Notion of Obfuscation

Indistinguishability Obfuscation (iO) is Achievable [BGIRSVY’01]

Construction via multilinear maps [GGHRSW’13]
- Not strong enough for practical applications
- Non-standard assumptions
- Inefficient

[AHKM’14]
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point_func(x) {
if x == secret

return 1;
else return 0;

}



Using Trusted Hardware Token

Program obfuscation, Functional encryption using stateless tokens 
[GISVW’10, DMMN’11, CKZ’13]

- Boolean Circuits
- Token functionality program dependent
- Inefficient - using FHE, NIZKs
- Sending many tokens
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Work on Secure Processors

Intel SGX, AEGIS [SCGDD’03], XOM [LTMLBMH’00]: encrypts memory, 
verifies integrity

- reveals memory access patterns
- notion of obfuscation against software only adversaries

Ascend [FDD’12], GhostRider [LHMHTS’15]
- assume public programs; do not obfuscate programs



Key Contributions

Efficient obfuscation of RAM programs 
using stateless trusted hardware token1

2
Design and implement hardware system 
called HOP 5x-238x better than 

a baseline scheme

8x-76x slower than 
an insecure system

3 Scheme Optimizations

Challenges in using 
stateless token

Security under UC 
framework
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FHE, NIZKs Boolean circuits



OutputOutput2
InputInput2

Output3
Input3

Using Trusted Hardware Token

Store Key

Sender Receiver

Obfuscate

Execute

(honest) (malicious)
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Ideal Functionality for Obfuscation
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Trusted 
third party

prog id

Sender Receiver

(prog id, inp)

output



Stateful Token

Oblivious 
RAM

Authenticate memory auth

Run for a fixed time T
oramSt
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load a5, 0(s0)
add a5, a4, a5
add a5, a5, a5

Maintain state between invocations



11

A scheme with stateless tokens is 
more challenging

Enables context switching

Given a scheme with stateless tokens, 
using stateful tokens can be viewed as 

an optimization



Stateless Token

auth
PID

oramSt
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load a5, 0(s0)
add a5, a4, a5
add a5, a5, a5

auth
PID

oramSt

Authenticated 
Encryption

Oblivious 
RAM

Does not maintain state between invocations



Stateless Token - Rewinding

auth’
PID

oramSt’
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load a5, 0(s0)
add a5, a4, a5
add a5, a5, a5

Time 0: load a5, 0(s0)
Time 1: add a5, a4 a5

Rewind!

Time 0: load a5, 0(s0)
Time 1: add a5, a4 a5

Oblivious 
RAM
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Oblivious RAMs are generally not 
secure against rewinding adversaries 

[SCSL’11, PathORAM’13]
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x

Position map
Token State

Path identified by leaf node l

Memory

Binary-tree Paradigm for Oblivious RAMs
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l

x

Position map

Memory

Block x Must Now Relocate!

Token State
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r

x

Position map

r

New designated 
leaf node

Update position 
map

Memory

Data-access Write Back

Token State
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T = 0: leaf 4, reassigned 2

T = 1: leaf 2, reassigned … 

Access Pattern: 3, 3

T = 0: leaf 4, reassigned 7

T = 1: leaf 7, reassigned … 

Access Pattern: 3, 4

Rewind!

Time 0: leaf 4, reassigned …

Time 1: leaf 1, reassigned … 

Time 0: leaf 4, reassigned …

Time 1: leaf 1, reassigned … 

Rewind!

A Rewinding Attack!
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For rewinding attacks, ORAM uses 
PRFK(program digest, input digest)



Stateless Token – Rewinding on inputs

Oblivious 
RAM

Inp 1 = 20
Inp 2 = 10
Inp 3 = 30

auth’
PID

oramSt’
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Inp 1 = 20
Inp 2 = 10
Inp 3 = 40
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For rewinding on inputs, adversary 
commits input digest during 

initialization



Our scheme UC realizes the ideal functionality in the Ftoken-hybrid 
model assuming 
- ORAM satisfies obliviousness
- sstore adopts a semantically secure encryption scheme and a 

collision resistant Merkle hash tree scheme and 
- Assuming the security of PRFs

Main Theorem: Informal

Proof in the paper.
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Efficient obfuscation of RAM programs 
using stateless trusted hardware token1

2

Design and implement hardware system 
called HOP3

Scheme 
Optimizations

1. Interleaving arithmetic 
and memory instructions

2. Using a scratchpad
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Next:



Optimizations to the Scheme – 1. ANM Scheduling
Types of instructions – Arithmetic and Memory

1 cycle ~3000 cycles

1170: load a5,0(a0) 
1174: addi a4,sp,64    
1178: addi a0,a0,4    
117c: slli a5,a5,0x2    
1180: add a5,a4,a5 
1184: load a4,-64(a5)
1188: addi a4,a4,1    
118c: bne a3,a0,1170

+ dummy memory access

+ dummy memory access
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Histogram – main loop

M

A

A

+ dummy memory accessA

+ dummy memory accessA

A

A

M

Memory accesses visible to the adversary

Naïve schedule:
A M A M A M …



Optimizations to the Scheme - 1. ANM Scheduling

What if a memory access is performed after “few” 
arithmetic instructions?

A A A A M A A M  A M A M A M A M A M A M

A A A A M A A M  A A A A M A A A A M (A4M schedule)

Naïve scheduling: 12000 extra cycles

A4M scheduling: 2 extra cycles
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Optimizations to the Scheme - 1. ANM Scheduling

Ideally, N should be program independent

𝑁 =
𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠 𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐴𝑐𝑐𝑒𝑠𝑠 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

3000

1

A A A A M A A M

2996 2998 < 6000 cycles of dummy work

6006 cycles of actual work
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Amount of dummy work < 50% of the 
total work

In other words, our scheme is 2x-
competitive, i.e., in the worst case, it 
incurs ≤ 2x- overhead relative to best 

schedule with no dummy work



Optimizations to the Scheme – 2. Using a Scratchpad

void bwt-rle(char *a) {
bwt(a, LEN);
rle(a, LEN);

}

void main() {
char *inp = readInput();
for (i=0; i < len(inp); i+=LEN)

spld(inp + i, LEN, 0);
len = bwt-rle(inp + i);

}

Program Why does a scratchpad help?

Memory accesses served 
by scratchpad

Why not use regular hardware 
caches?

Cache hit/miss reveals 
information as they are 
program independent
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HOP Architecture 512 KB
Variant of Path ORAM

16 KB

1. single stage 32b 
integer base
2. spld

- Freecursive ORAM
- PMMAC
- 64 byte block,
- 4 GB memory
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For efficiency, use stateful tokens



Evaluation – Speed-up over Baseline Scheme

3x – 238x better than 
baseline scheme

Scratchpad with ANM

1.5x – 18x better than 
baseline scheme

ANM scheme only
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Slowdown Relative to Insecure Schemes

8x-76x

Slowdown to Insecure

2x-41x

Slowdown to GhostRider
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Case Study: bzip2

bzip2: Compression algorithm

Performance does not vary much based on input, so perhaps 
“easy” to determine running time T

Two highly compressible strings

String S1
106x speedup wrt baseline
17x slowdown wrt insecure

String S2
234x speedup wrt baseline
8x slowdown wrt insecure
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Time for Context Switching

Program State: program params

Memory State: ORAM state, auth

Execution State: cpustate, time

Scratchpads: Instruction, Data

< 1 KB

~264 KB

< 1 KB

~528 KB

Data stored by token: ~800 KB

Assuming 10 GB/s, will require ~160μs to swap state
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Conclusion

We are among the first to design and 
implement a secure processor with a 

matching cryptographically sound formal 
abstraction (in the UC framework)

kartik@cs.umd.edu
34

Paper will be on eprint soon.
Code will be open sourced.


