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Abstract 

Organizations are increasingly turning to spo-
ken dialog systems for automated call routing 
to reduce call center costs.  To maintain qual-
ity service even in cases of failure, these sys-
tems often resort to ad-hoc rules for 
dispatching calls to a human operator.  We 
present a principled procedure for determining 
when callers should be transferred to opera-
tors based on a cost-benefit analysis.  The 
procedure integrates models that predict when 
a call is likely to fail using spoken dialog fea-
tures with queuing models of call center vol-
ume and service time.  We evaluate how the 
procedure would have performed on cases 
drawn from logs of interactions with a legacy 
spoken dialog system. 

1 Introduction 

Automated call handling systems have provided organi-
zations with an opportunity to reduce the cost of han-
dling incoming calls.  The most common systems utilize 
touch-tone or dial-tone interaction, which many callers 
find difficult to use and frustrating.  Callers in fact fre-
quently seek assistance from a live operator at the first 
opportunity (Suhm et al., 2002).  To improve user ex-
perience, many companies have been turning to spoken 
dialog systems.  These systems utilize automatic speech 
recognition (ASR) to facilitate requests in natural lan-
guage, which customers overwhelmingly favor over 
touch-tone menus (Suhm et al., 2002).  While spoken 
dialog systems purportedly reduce operation costs, 
when they fail, they not only waste the caller’s time but 
also potentially damage customer relations by frustrat-
ing users.  Moreover, failures jeopardize the return on 
investment (ROI) in deploying these systems.  On the 

other hand, while human operators generally provide 
better customer service, they are much more expensive. 

In attempting to get the best of both automation and 
live customer service, spoken dialog systems often re-
sort to ad-hoc rules for dispatching calls.  Most com-
monly, the rule is to simply dispatch a call when the 
system fails.  Even when these rules are tuned from 
data, the decision to transfer a call typically does not 
take into consideration the real-time stakes, such as the 
cost of customer time and the loss of ROI.  We present a 
principled procedure and systems design framework, 
based on modeling techniques from decision analysis 
and queuing theory, for determining when callers should 
be dispatched so as to minimize support costs.  The pro-
cedure integrates models that predict when a call is 
likely to fail based on spoken dialog features with queu-
ing models of call center volume and service time. 

In the first part of the paper, we describe and evalu-
ate predictive models learned from the session logs of a 
legacy call routing system deployed at Microsoft.  Then, 
we present the formal details of the optimization proce-
dure and evaluate how it would have performed on the 
real-world outcomes of the legacy system. 

2 Related Research 

The prediction of problematic situations in a spoken 
dialog system has links to research on the identification 
of when users are experiencing poor speech recognition 
performance (Litman et al., 1999).  In the TOOT sys-
tem, dialog strategies, such as taking system or mixed 
initiative, are adapted to user responses (Litman & Pan, 
2002) based on rules from a classifier of “good” and 
“bad” dialogs trained over whole dialog sessions.  
Unlike the cost-benefit approach that we propose, the 
investigators employed deterministic policies as a func-
tion of the output of the classifiers. 

Models that move beyond identification and actually 
predict where problematic situations in a call handling 
context are likely to occur have been previously ex-
plored with the AT&T How May I Help You (HMIHY) 



call routing system (Langkilde et al., 1999; Walker et 
al., 2002; Walker et al., 2000).  The HMIHY system 
provided over a dozen services.  Using features from the 
speech engine, the natural language understanding com-
ponent, and dialog manager, as well as hand-labeled 
features, classifiers were trained to predict failures be-
fore they occurred based on observations available to 
the system after the first exchange, second, third, etc.  

In similar spirit to the HMIHY work, we explored 
the use of online models that could predict the duration 
of time until various outcomes with an automated dialog 
system were likely occur, in support of decision-
theoretic procedures for minimizing a caller’s time 
(Horvitz & Paek, 2003).  This work was initially per-
formed in the context of static call handling resources, 
taking as input a variable wait time for a human opera-
tor.  In this paper, we relax this constraint with the in-
troduction of a queue-theoretic model for predicting 
operator load and wait time based on actual call center 
data.  The queue-theoretic model provides a modeling 
and simulation capability that can be used for explora-
tion and design of call center staffing, as informed by 
the performance of a spoken dialog system.  By consid-
ering call center costs, such as the cost of a caller’s 
time, as well as predicted times, such as time waiting for 
an operator or before a failure occurs, the procedure we 
describe endeavors to strike a balance as a call pro-
gresses between keeping customers in the automated 
system versus transferring them to a live operator so as 
to minimize overall support costs. 

3 Predicting Dialog Failure 

In this section, we first describe the legacy call routing 
system that has been deployed at Microsoft.  Then we 
summarize the logged data obtained from the system 
and review details of the spoken dialog features we ex-
tracted to construct case libraries for training and test-
ing.  Finally, we evaluate the performance of the models 
we learned for predicting whether a call is likely to ul-
timately fail or succeed. 

3.1 Legacy Call Routing System 

In the past, the Microsoft Corporation fielded a com-
mercially available spoken dialog system called Voice-
Dialer for handling directory assistance requests.  Using 
speech recognition, VoiceDialer attempted to identify 
one of over 20,000 name entries in a global address 
book.  We analyzed nearly 60,000 session logs collected 
over 11 months. We found that the system succeeded in 
correctly identifying the proper name in only 45% of the 
sessions.  The success rate jumped to 69% when ses-
sions in which the caller did not even attempt to engage 
the system were removed; in such “no name attempt” 
sessions, accounting for roughly one out of every three 
sessions, users completely bypassed interaction with the 

spoken dialog system by either immediately transferring 
to an operator with a touchtone command or hanging 
up.  On top of this alarming failure rate and immediate 
bypass of the system, longitudinal trends revealed that a 
growing percentage of callers were requesting the op-
erator.  The urgency of these findings motivated the 
need to devise a procedure for optimizing dispatch to an 
operator based on predictive models constructed from 
features drawn from the session logs. 

3.2 Extracting Cases 

In seeking to extract cases for building predictive mod-
els, we analyzed the logs generated by VoiceDialer.  
The session logs included transcriptions of all system 
actions as well as the main output of the speech recog-
nizer; namely, n-best lists of hypotheses for the first and 
last names with their corresponding confidence scores.  
The definitions and distribution of final outcomes for 
sessions, as labeled by the system, were as follows: 

 
•  SpeakFound (45%): System finds the correct 

name in the directory, as confirmed by a transfer. 

•  OperatorRequest (23%): Caller presses ‘0’ for an 
operator. 

•  HangUp (13%): Caller hangs at some point in 
the session. 

•  MaxErrors (12%): System reaches threshold of 
allowed misrecognitions and routes the call to an 
operator. 

•  SpeakNotFound (6%): System concludes that the 
name is not in the directory and routes the call to 
an operator. 

•  Undefined (1%): Caller presses other numeric 
keys. 

•  HelpRequest (<1%): Caller requests help by 
pressing ‘*’ or ‘#’. 

•  NotReady (<1%): System is temporarily out of 
service. 

We built models to predict these outcomes from a set of 
observational features encoded in the logs.  We were 
particularly interested in inferring the likelihood of the 
eventual success versus failure of the spoken dialog 
interaction.  For our cost-benefit modeling, we also 
sought to infer probability distributions over the dura-
tion of time until success or failure of the system. 

The spoken dialog features we extracted from the 
session logs fell into four broad categories (listed along 
with the total number of features for each category): 

 
•  Sequences of system and user action types (3): 

Sequences of system actions, such as asking the 



user to repeat first/last/full name, sequences of 
user actions such as pressing a key, etc. 

•  Whole dialog features (2): Outcome, total com-
pletion time or duration 

•  ASR features (22): Number of hypotheses in the 
n-best list, range of confidence scores, mode, 
greatest consecutive score difference (gcdiff), 
skewness of the scores (skew), maximum score 
(max), minimum score (min), etc. 

•  Pairwise ASR features (8): Number of recurring 
first/last/full names that match in consecutive n-
best lists, whether the maximum score increased 
or decreased, etc. 

Note that all these features can be observed in real-time 
as a dialog session progresses, with the exception of 
whole dialog features, which constitute the target vari-
ables. 

3.3 Incremental Data Sets 

Because the optimization procedure harnesses models 
for real-time decision making over the course of a dia-
log, we decomposed the data into sets of features that 
are revealed incrementally with dialog progression.  We 
take as the fundamental unit of time each posting by the 
speech engine of ASR outputs.  We segmented the data 
by detected ASR outputs for two reasons: first, ASR 
features constituted the vast majority of automatically 
extractable real-time features, and second, alternative 
dialog units (e.g., “moves,” “adjacency pairs” or ex-
changes) were either unavailable in the transcriptions or 
provided insufficient discriminatory features. 

Four data sets were created with incrementally 
growing number of features, as summarized in Table 1.  
The data was split 70/30 for training and testing.  Hav-

ing no ASR output was not included as a data set since 
not enough features could be extracted, rendering it 
functionally equivalent to using the marginal distribu-
tion in lieu of an inference.  Furthermore, data sets with 
greater than 4 ASR outputs were dropped since, out of 
nearly 60,000 session logs, we only found 6 such cases. 

3.4 Building Predictive Models 

For model building, we learned Bayesian networks em-
ploying decision trees to encode local conditional prob-
ability distributions within variables using a tool that 
performs Bayesian structure search (Chickering, 2002).  
Decision trees can be learned for both discrete and con-
tinuous variables, where splits in the trees are made 
through greedy search guided by a Bayesian scoring 
function (Chickering et al., 1997).  We learned Bayesian 
networks not only to perform inference over the joint 
distributions needed for the decision-theoretic proce-
dure, but also to determine what spoken dialog features 
would comprise the local structure of three primary 
variables of interest: Outcome, as previously defined, 
Failure, a binary recoding of Outcome with Speak-
Found as ‘1’ and ‘0’ for everything else, and finally, 
Duration, the expected completion time of the session.  
Note that Duration, a continuous variable for which the 
decision tree learned a Gaussian distribution, is required 
since cost is oftentimes a function of time. 

Table 2 shows a summary of the decision trees that 
were learned for the target variables in all four data sets.  
In all cases, the first splits in the decision trees, which 
represent the feature with the strongest dependency, 
were ASR features for the most recent n-best list.  For 
example, the decision tree for Outcome trained on all 
available features after the fourth ASR output depended 
most on the greatest consecutive difference between any 
two hypotheses for just the last n-best list, and not on 
any pairwise features between the third and fourth, or 
the second and third n-best lists, though pairwise fea-
tures and action sequences were included as dependen-
cies.  We were surprised to find that Outcome after the 
fourth recognition only depended on that feature. 

3.5 Evaluation 

Table 3 displays the classification accuracies of the de-
cision trees for Outcome and Failure on the test data.  

Target Recognition 1 Recognition 2 Recognition 3 Recognition 4 

  First Split 
Nodes 

(Depth) First Split 
Nodes 

(Depth) First Split 
Nodes  

(Depth) First Split 
Nodes  

(Depth) 

Outcome skew_1 18 (8) gcdiff_2 27 (9) max_3 12 (6) gcdiff_4 1 (2) 
Failure skew_1 18 (8) gcdiff_2 23 (9) max_3 12 (6) gcdiff_4 13 (6) 
Duration skew_1 19 (10) skew_2 16 (7) min_3 13 (6) max_4 7 (4) 

 
Table 2.  Summary of decision trees for the primary target variables. 

 Features Train Test Total 

Recognition 1 32 27587 11824 39411 
Recognition 2 62 13556 5811 19367 
Recognition 3 93 5625 2411 8036 
Recognition 4 122 2579 1106 3685 

 
Table 1.  Summary of incremental data sets. 



The baselines represent their marginal distributions.  
Not surprisingly, the Failure models outperformed the 
Outcome models, with a maximum accuracy of 82% for 
the data after the fourth recognition.  Consistent with 
intuition, the lift above the marginal gradually rises, 
with the highest gain relative to the baseline at 23%.  
Looking at the classification accuracy for Outcome after 
the fourth recognition, despite the fact that there was 
only one dependency, as stated previously, the model 
performed 20% better than the baseline.  While the lifts 
for the third and fourth recognitions seem impressive, 
the baselines are dismally low, attesting to the poor per-
formance of the legacy spoken dialog system. 

The log posterior of the data given the models are 
reported in Table 4.  To evaluate the relative perform-
ance of the learned Gaussians for Duration over the 
marginal log score, models were trained using just that 
as the target variable.  Thereafter, models included ei-
ther Outcome or Failure as the second target variable.  
Note that positive log scores reflect a non-normalized 
Gaussian density function.  The maximum lift above the 
marginal was 0.24, though unlike the classification ac-
curacies, the lifts for the log scores do not exhibit a 
trend upward.  On the other hand, the log scores in gen-
eral do seem to improve with more features. 

4 Optimization 

The purpose of building models that can predict the 
likely outcome of a call with a spoken dialog system 
using real-time, extractable features is to employ them 
in a modeling and design setting as well as for optimal 
decision making.  Optimization can be approached from 
with different objective functions.  Given that the goal 

of optimizing dispatch to a live operator is to minimize 
support costs at the enterprise level, while at the same 
time exploiting real-time likelihoods, we combine prob-
ability and utility within the framework of decision the-
ory according to the principle of maximum expected 
utility (MEU), which states that we should select the 
action A = a that maximizes its expected utility, 
EU(a|ξ).  If ξ denotes all background information and H 
represents all possible states of the world, then we select 
actions guided by the following optimization: 

 

 ),()|(maxarg)|(maxarg hauhHPaEU
haa
∑ == ξξ  (1) 

where u(a,h) expresses the utility of taking action a 
when the state of the world is h.  Note that cost is sim-
ply negative utility. 

Relating the MEU principle to the process of opti-
mizing dispatch, let d denote the action of dispatching a 
call.  Furthermore, let S denote the possible outcomes of 
the call routing system, which, for the sake of simplic-
ity, corresponds to the binary variable Failure.  Since 
transferring a call when the operator is busy poses a 
problem, let O denote the state of the operators, which 
may or may not be busy.  Rewriting (1) to include O 
and S, we obtain the following optimization procedure: 

 
Dispatch Procedure: Dispatch a call to an operator 
only when the expected utility of d, given the state of 
the operator O and call routing system S, exceeds that of 
any dialog action a. That is, 
 

 [ ]),|(),|( OSaEUOSdEUda >∀ ≠
 (2) 

 Recognition 1 Recognition 2 Recognition 3 Recognition 4 

Marginal Outcome 68.7% 61.8% 48.3% 56.8% 

Outcome (Lift) 71.5% (2.9%) 67.0% (5.2%) 62.9% (14.6%) 77.1% (20.3%) 

Marginal Failure 68.7% 61.8% 48.3% 61.8% 

Failure (Lift) 75.9% (7.2%) 75.1% (13.3%) 71.3% (23.0%) 82.3% (20.4%) 
 

Table 3.  Classification accuracies for predicting dialog outcome and failure, and their relative improvement. 
 

  Recognition 1 Recognition 2 Recognition 3 Recognition 4 

Marginal Duration -0.38 -0.28 -0.15 -0.09 
Duration (Lift) -0.05 (0.33) -0.06 (0.22) 0.04 (0.19) 0.11 (0.20) 
Marginal Duration + Outcome -0.71 -0.72 -0.65 -0.49 
Duration + Outcome (Lift) -0.50 (0.21) -0.52 (0.20) -0.48 (0.18) -0.25 (0.24) 
Marginal Duration + Failure -0.50 -0.47 -0.42 -0.38 
Duration + Failure (Lift) -0.30 (0.20) -0.30 (0.18) -0.25 (0.17) -0.15 (0.23) 

 
Table 4.  Log posterior scores for the learned Bayesian network models and their corresponding lifts above 

the marginal model. 



In particular, for dispatch d, applying the definition of 
conditional probability, we obtain: 

 

 ),,()|,()( OSdudOSPdEU
s o
∑∑=   

 ),,()(),|()( OSduSPdSOPdEU
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Calculating the expected utility of a dispatch, as deline-
ated in (3), involves three components: first, P(O|S,d), 
or the likely state of the operator queue; second, P(S), or 
the likely outcome of the call routing system; and third, 
u(d,S,O), or the utility of dispatching a call when the 
operators may or may not be busy and the system may 
or may not be failing.  The first component requires 
stochastic modeling of the call center queue.  The sec-
ond component was discussed previously.  And finally, 
the third component involves the application of standard 
cost functions in operations research.  We elucidate the 
first and last components in detail below. 

It is important to note that the only dialog action that 
affects O, whether or not the operator is busy, is d since 
a transfer increases the number of callers waiting to be 
serviced by the operator.  The effect of all other dialog 
actions taken by a call routing system remain within the 
system, and as such: 

 

 )()|()(),|( SPdOPSPdSOP ¬=¬  (4) 

In other words, O and S are probabilistically independ-
ent for all other dialog actions, though for simplicity, we 
only consider the action of keeping someone engaged 
with the spoken dialog system. 

4.1 Modeling the Call Center Queue 

While modeling the call center may require more than 
simple parameter estimation, calculating whether or not 
the operators are busy, once the queuing models have 
been fit, entails either closed-form solutions or can be 
estimated using Monte Carlo methods.  Since the calcu-

lations depend on what kind of queuing models evince 
the best goodness-of-fit, we first describe how we fit the 
models using data collected from the call center at Mi-
crosoft, and then discuss the calculations. 

4.1.1 Fitting a Poisson Process 

Many queues, and in particular, call centers, are gov-
erned by two parameters: λ, the average arrival rate into 
the call center, and µ, the average service time to com-
plete a call once an operator receives it.  If the counts of 
inter-arrival and service times follow an exponential 
distribution, which exhibits the memoryless property of 
being probabilistically independent of any previous call, 
the process over time is called a Poisson process (Gross 
& Harris, 1998). 

Since a Poisson process is mathematically well-
characterized, we sought to ascertain whether the call 
center at our organization could be modeled as such.  
For that effort, we obtained about two months of call 
center data for weekday working hours.  Over 1700 
calls were received with varying service completion 
times.  The average rates, which represent both the 
maximum likelihood estimate and method of moments 
estimate for the exponential distribution, were 4.41 sec-
onds (λ) between calls and 28.22 seconds (µ) to dis-
pense a call.  To make sure that the distributions were 
indeed exponential, we performed a log transformation 
of the empirical distributions and fit regression lines to 
estimate the correlation coefficients.  Figure 1 shows the 
linear regression fit for the inter-arrival times.  The cor-
relation for the arrival rate (r=.997) was significant 
(t(26)=63.06, p<.001), and likewise, the correlation for 
service rate (r=.710) was significant (t(24)=4.69, 
p<.001).  Hence, the fit arrival and service processes 
were quite reasonably Poisson. 

4.1.2 Calculating Operator Load 

Given that the arrival and service rates for the call cen-
ter were Poisson processes, we used the estimated λ and 
µ parameters to model an M/M/s queue, which denotes 
a queue in which the arrival process is “memory-less,” 
as well as the service process, and the number of servers 
is s, though we use z to avoid confusion with S, the state 
of the system.  The call center at Microsoft employs 10 
operators or servers. 

Returning to the first component of (3), calculating 
the likelihood that all the operators are busy in a call 
center if a call is dispatched for an M/M/z queue is: 

 )(),|( znPdSOP ≥=   

 





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where n represents the number of callers, and Pn is a 
closed form solution for multiple servers (Gross & Har-
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Figure 1.  Linearity of the log transformed inter-
arrival times. 



ris, 1998).  According to (5), an operator is busy when 
the number of callers in the queue, including the dis-
patch call from the automated system, exceeds the num-
ber of operators at the call center. 

Figure 2 displays the distribution over the likely 
number of callers in the queue for an M/M/z queue us-
ing the fitted parameters for the call center data and 10 
operators.  According to this distribution, the likely 
number of callers at any given time is around 7.  To 
verify the appropriateness of our queuing model, we 
checked all statistical implications with supervisors of 
the call center, including total waiting time, and found 
that indeed the M/M/z queue made accurate predictions 
regarding call center statistics. 

4.2 Assessing Costs 

Having delineated how to calculate the likelihood of the 
operators being busy, and how to predict the likelihood 
of success using spoken dialog features, we now turn to 
the last component of the optimization in (3), assess-
ment of the utility of dispatching a call given the state of 
the operators and the spoken dialog system.  In many 
respects, the utilities drive the optimization in that ulti-
mately a company has to defray the expense of main-
taining a call center.  This is what distinguishes the 
procedure: it bases its decisions on the overall cost and 
benefit of running a call center with both an automated 
call routing system and a staff of human operators, 
weighted by the efficiency and performance of both.  
Since queuing models are integrated with dialog mod-
els, the cost-benefit analysis allows call center managers 
to determine if less operators are needed as the auto-
mated system improves its performance, and vice versa.  
In other words, the integration provides a framework for 
optimizing call center design with support costs playing 
the principal role. 

The utility of a dialog action a given the operator 
state O and system state S can be approximately decom-
posed as follows:  

 

 ),(),(),,( OauSauOSau +≅  (6) 

Suppose a = d, or dispatch to an operator.  Then, (6) 
can be further decomposed into the general cost func-
tion (note c instead of u): 

 

 zOpCostWtCustCostOSdc ⋅++⋅≅ )(),,(  (7) 

where t is the time a caller has already spent in the 
automated system, and W is the predicted “dwell time,” 
which includes both the time waiting in line and the 
time being served (Gross & Harris, 1998).  W is derived 
from the M/M/z queuing model.  According to (7), the 
cost of dispatching a call is simply the cost of a caller’s 
time with the automated system in the call center, plus 
the cost of employing z operators for that call.  When 
the state of O is “Not Busy,” we can drop out the W.  
When the state of S is “System Failing,” we require an-
other term in (7); namely, the return on investment 
(ROI).  The ROI in this context is the amount of capital 
that the organization would have saved in not hiring 
more operators. 

In order to calculate ROI for the call center, we first 
modeled the inter-arrival rate of calls entering the spo-
ken dialog system as a Poisson process.  The average 
arrival rate was 1.51 seconds, and a linear regression 
line fit to the log transformation of the empirical distri-
bution revealed a significant correlation (r=.997, 
t(30)=65.9, p<.001), indicating an exponential distribu-
tion.  Since the average service time of the operators 
remains the same, we used an M/M/z queuing model 
and (7), without the variable t, which is unknown, to 
determine the optimal number of the operators.  This 
optimization is common in operations research (Ashley, 
2002).  The optimal number of operators needed to field 
the calls that would have been handled by the automated 
system is 25, as shown in Figure 3.  Note that this is a 
conservative estimate since operators not only handle 
those calls dispatched from the automated system but 
also direct operator lines.  ROI is then simply Op-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Callers

P
ro

ba
bi

lit
y

 
 

Figure 2.  Distribution of the likely number of 
callers in the call center. 
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Figure 3.  Optimizing the number of operators 

that would have been required to handle calls to 
the automated call routing system. 



Cost·25.  We also performed the same optimization us-
ing the inter-arrival rate for the call center, and found 
that the optimal number of operators was 11, one more 
than the call center was currently employing, though 
apparently 2 supervisors are always on hand to take 
calls to avoid overly lengthy queues.  This was yet an-
other validation of queuing model. 

When the dialog action is to not dispatch, ¬d, but to 
keep a caller in the automated spoken dialog system, the 
second term of (7) drops out since we only need to con-
sider the cost of a caller’s time.  Furthermore, if the 
state of S is “System Not Failing,” then having kept the 
caller in the system would have saved ROI.  Hence, ROI 
needs to be subtracted from the cost function.  Finally, 
we need to consider the future cost of remaining in the 
system for an estimated amount of time longer than t, 
the equivalent of W in the queuing model.  Here we 
apply the Gaussian models we learned from the session 
logs in the previous section to estimate this duration. 

4.3 Evaluation 

Putting everything together, we can combine the spoken 
dialog models we learned in the first section, with the 
fitted M/M/z queuing models, along with the cost func-
tions for both d and ¬d for every cross product of S and 
O within the decision-theoretic procedure for optimizing 
dialog actions delineated in (6).  To assess the effective-
ness of the procedure, we used the same test data for 
evaluating the spoken dialog models to examine how 
many calls the procedure would have dispatched after 
each ASR output given the incrementally growing num-
ber of spoken dialog features.  As a comparison, we 
considered an alternative baseline procedure of using 
the marginal distribution to decide whether to dispatch: 
namely, if the most likely state of S, or the binary vari-
able Failure, is “System Not Failing,” then keep the call 
in the system; otherwise, dispatch the call.  Note that in 
using the marginal distribution, the alternative proce-
dure represents a more intelligent way of transferring a 
call than simply dispatching when the system reaches a 
failure, the most prevalent procedure in automated call 
routing.  The marginal procedure was also selected be-
cause it allows us to compare how the system would 
have performed without consideration of the queue. 

Table 5 displays the results of the analysis on each 
test set comparing the decision theoretic (DT) procedure 

against the marginal procedure (Marg).  Looking at the 
second row, which corresponds to the “false positive” 
cases; that is, incorrectly dispatching a call that was 
actually ultimately successful, the DT procedure is 
fairly conservative about making false positives, consis-
tently dispatching less than 7% of the calls.  On the 
other hand, the marginal procedure continually in-
creases its rate of false positives, reaching 28% by the 
last ASR output.  One way to interpret these results is to 
say that using just the predictive models, as in the case 
of the marginal procedure, is not enough.  Optimal per-
formance benefits from the incorporation of both a 
model of the operator queue and the stakes involved. 

Looking at the first row, corresponding to those 
“true positive” cases in which the calls that would have 
ultimately failed were dispatched correctly, the DT pro-
cedure starts off conservatively dispatching cases, 
whereas the marginal procedure immediately transfers 
close to half of the calls, which makes sense given that 
these are the calls that ultimately failed.  The reason 
why the DT procedure does not transfer as many calls is 
because the loss of ROI is heavy in the beginning but is 
eventually outweighed by the cost of failure.  In other 
words, the DT procedure is attempting to save the ROI.  
As more recognition results are received and the per-
centage of calls that ultimately fail in the system in-
crease, the DT procedure gradually lifts the percentage 
of dispatch, even transferring over half of the failed 
calls by the fourth ASR output.  Although the marginal 
procedure also demonstrates a similar trend, it does so 
in a much more aggressive fashion.  

4.4 Approximate Cost Savings 

To better appreciate how the DT procedure balances the 
tradeoffs between dispatching a call to an operator and 
keeping it within the automated system, we can ap-
proximately monetize the average cost savings for each 
test data set as follows: 
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The intuition behind (8) is that if the expected cost of 
dispatching is greater than not dispatching and we de-
cide to stay in, we would cut costs.  Conversely, if the 

 Recognition 1 Recognition 2 Recognition 3 Recognition 4 

Outcome Total Marg DT Total Marg DT Total Marg DT Total Marg DT 

Failure 31.3% 48.4% 1.5% 38.2% 55.7% 30.9% 51.7% 61.2% 30.7% 61.8% 88.9% 52.6% 

Success 68.7% 11.6% 6.8% 61.8% 12.9% 2.9% 48.3% 17.9% 2.5% 38.2% 28.4% 4.7% 
 

Table 5.  Percentage of failure and success calls that would have been dispatched by the decision theoretic 
(DT) procedure and by an alternative procedure using the marginal (Marg) 



expected cost of staying in is greater than dispatching 
and we decide to transfer the call, we would again cut 
costs.  (8) approximates the average amount of cut costs 
saved for both decisions.  

Table 6 displays the average cost savings using the 
DT procedure for all four data sets.  The procedure cuts 
more costs in the first recognition, where it keeps calls 
in the system at a point when the probability of success 
is highest, and again in the fourth recognition, where it 
dispatches calls to the call center at a point when the 
probability of success is lowest.  Looking only at the 
average savings when the expected cost of dispatch is 
lower than the expected cost of keeping a caller in the 
automated system, we can see a gradually increasing 
trend of cost savings, culminating at roughly 3 cents. 

5 Discussion and Future Research 

In this paper, we presented a decision-theoretic proce-
dure for determining when callers should be dispatched 
to a live operator so as to minimize support costs at the 
enterprise level.  The procedure integrated learned mod-
els of call failure and success based on extractable real-
time spoken dialog features with queuing models of call 
center volume and service time.  The spoken dialog 
models predicted failure with a maximum accuracy of 
82%, a 20% relative lift above the baseline.  Using an 
M/M/z queue fit to call center data, we evaluated the 
procedure against making decisions from the marginal 
distribution.  The procedure was shown to be conserva-
tive about making false positives.  For true positives, the 
procedure reliably dispatched more calls as the prob-
ability of success diminished. 

One limitation in the evaluation we performed of the 
procedure was that we did not account for the increase 
in average arrival rate into the call center as the proce-
dure dispatched more calls.  In a live system, we would 
monitor the average rate of dispatch, and adjust the av-
erage rate of arrival in the queuing models of the call 
center accordingly.  Although we have not implemented 
a live system, we are exploring the possibility of inte-
grating the decision-theoretic procedure with a new call 
routing system that has recently been deployed.  

Finally, while this paper investigated the problem of 
optimizing dispatch at the enterprise level, the same 
framework can be applied to optimizing different costs, 

such as user frustration.  We discuss different kinds of 
utility models including those that consider the principal 
agent of call-handling decisions to be the caller, versus 
the hosting organization in (Horvitz & Paek, 2003). 
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 Average Savings Dispatch Only 

Recognition 1 $0.1952 $0.0010 

Recognition 2 $0.1399 $0.0065 
Recognition 3 $0.1565 $0.0101 
Recognition 4 $0.1973 $0.0288 

 
Table 6.  Average cost savings in dollars per 

second using the decision-theoretic procedure. 


