
GRASS: Trimming Stragglers in Approximation Analytics

Ganesh Ananthanarayanan1, Michael Chien-Chun Hung2, Xiaoqi Ren3, Ion Stoica4, Adam Wierman3, Minlan Yu2

1Microsoft Research, 2University of Southern California, 3California Institute of Technology,
4University of California, Berkeley

ga@microsoft.com, {chienchun.hung, minlanyu}@usc.edu, {xren, adamw}@caltech.edu, istoica@cs.berkeley.edu

Abstract

In big data analytics, timely results, even if based on

only part of the data, are often good enough. For this

reason, approximation jobs, which have deadline or er-

ror bounds and require only a subset of their tasks to

complete, are projected to dominate big data workloads.

Straggler tasks are an important hurdle when designing

approximate data analytic frameworks, and the widely

adopted approach to deal with them is speculative execu-

tion. In this paper, we present GRASS, which carefully

uses speculation to mitigate the impact of stragglers in

approximation jobs. GRASS’s design is based on first

principles analysis of the impact of speculation. GRASS

delicately balances immediacy of improving the approx-

imation goal with the long term implications of using ex-

tra resources for speculation. Evaluations with produc-

tion workloads from Facebook and Microsoft Bing in an

EC2 cluster of 200 nodes shows that GRASS increases

accuracy of deadline-bound jobs by 47% and speeds up

error-bound jobs by 38%. GRASS’s design also speeds

up exact computations (zero error-bound), making it a

unified solution for straggler mitigation.

1 Introduction

Large scale data analytics frameworks automatically

compose jobs operating on large data sets into many

small tasks and execute them in parallel on compute

slots on different machines. A key feature catalyzing the

widespread adoption of these frameworks is their abil-

ity to guard against failures of tasks, both when tasks

fail outright as well as when they run slower than the

other tasks of the job. Dealing with the latter, referred to

as stragglers, is a crucial design component that has re-

ceived widespread attention across prior studies [1, 2, 3].

The dominant technique to mitigate stragglers

is speculation—launching speculative copies for the

slower tasks, where a speculative copy is simply a dupli-

cate of the original task. It then becomes a race between

the original and the speculative copies. Such techniques

are state-of-the-art and deployed in production clusters

at Facebook and Microsoft Bing, thereby significantly

speeding up jobs. The focus of this paper is on specula-

tion for an emerging class of jobs: approximation jobs.

Approximation jobs are starting to see considerable

interest in data analytics clusters [4, 5, 6]. These jobs

are based on the premise that providing a timely result,

even if only on part of the dataset, is more important than

processing the entire data. These jobs tend to have ap-

proximation bounds on two dimensions—deadline and

error [7]. Deadline-bound jobs strive to maximize the

accuracy of their result within a specified time deadline.

Error-bound jobs, on the other hand, strive to minimize

the time taken to reach a specified error limit in the re-

sult. Typically, approximation jobs are launched on a

large dataset and require only a subset of their tasks to

finish based on the bound [8, 9, 10].

Our focus is on the problem of speculation for approx-

imation jobs.1 Traditional speculation techniques for

straggler mitigation face a fundamental limitation when

dealing with approximation jobs, since they do not take

into account approximation bounds. Ideally, when the

job has many more tasks than compute slots, we want to

prioritize those tasks that are likely to complete within

the deadline or those that contribute the earliest to meet-

ing the error bound. By not considering the approxi-

mation bounds, state-of-the-art straggler mitigation tech-

niques in production clusters at Facebook and Bing fall

significantly short of optimal mitigation. They are 48%
lower in average accuracy for deadline-bound jobs and

40% higher in average duration of error-bound jobs.

Optimally prioritizing tasks of a job to slots is a classic

scheduling problem with known heuristics [11, 12, 13].

These heuristics, unfortunately, do not directly carry

over to our scenario for the following reasons. First,

they calculate the optimal ordering statically. Straggling

of tasks, on the other hand, is unpredictable and ne-

cessitates dynamic modification of the priority ordering

of tasks according to the approximation bounds. Sec-

ond, and most importantly, traditional prioritization tech-

niques assign tasks to slots assuming every task to oc-

cupy only one slot. Spawning a speculative copy, how-

ever, leads to the same task using two (or multiple)

slots simultaneously. Hence, this distills our challenge

1Note that an error-bound job with error of zero is the same as an

exact job that requires all its tasks to complete. Hence, by focusing on

approximation jobs, we automatically subsume exact computations.

1

to achieving the approximation bounds by dynamically

weighing the gains due to speculation against the cost of

using extra resources for speculation.

Scheduling a speculative copy helps make immediate

progress by finishing a task faster. However, while not

scheduling a speculative copy results in the task running

slower, many more tasks may be completed using the

saved slot. To understand this opportunity cost, consider

a cluster with one unoccupied slot and a straggler task.

Letting the straggler complete takes five more time units

while a new copy of it would take four time units. While

scheduling a speculative copy for this straggler speeds it

up by one time unit, if we were not to, that slot could

finish another task (taking five time units too).

This simple intuition of opportunity cost forms the ba-

sis for our two design proposals. First, Greedy Spec-

ulative (GS) scheduling is an algorithm that greedily

picks the task to schedule next (original or speculative)

that most improves the approximation goal at that point.

Second, Resource Aware Speculative (RAS) scheduling

considers the opportunity cost and schedules a specula-

tive copy only if doing so saves both time and resources.

These two designs are motivated by first principles

analysis within the context of a theoretical model for

studying speculative scheduling. An important guideline

from our model is that the value of being greedy (GS)

increases for smaller jobs while considering opportunity

cost of speculation (RAS) helps for larger jobs. As our

model is generic, a nice aspect is that the guideline holds

not only for approximation jobs but also for exact jobs

that require all their tasks to complete.

We use the above guideline to dynamically combine

GS and RAS, which we call GRASS. At the beginning

of a job’s execution, GRASS uses RAS for scheduling

tasks. Then, as the job gets close to its approximation

bound, it switches to GS, since our theoretical model

suggests that the opportunity cost of speculation dimin-

ishes with fewer unscheduled tasks in the job. GRASS

learns the point to switch from RAS to GS using job and

cluster characteristics.

We demonstrate the generality of GRASS by imple-

menting it in both Hadoop [14] (for batch jobs) and

Spark [15] (for interactive jobs). We evaluate GRASS

using production workloads from Facebook and Bing on

an EC2 cluster with 200 machines. GRASS increases

accuracy of deadline-bound jobs by 47% and speeds up

error-bound jobs by 38% compared to state-of-the-art

straggler mitigation techniques deployed in these clus-

ters (LATE [2] and Mantri [1]). In fact, GRASS results

in near-optimal performance. In addition, GRASS also

speeds up exact jobs, that require all their tasks to com-

plete, by 34%. Thus, it is a unified speculation solution

for both approximation as well as exact computations.

2 Challenges and Opportunities

Before presenting our system design, it is important to

understand the challenges and opportunities for speculat-

ing straggler tasks in the context of approximation jobs.

2.1 Approximation Jobs

Increasingly, with the deluge of data, analytics applica-

tions no longer require processing entire datasets. In-

stead, they choose to tradeoff accuracy for response time.

Approximate results obtained early from just part of the

dataset are often good enough [4, 6, 5]. Approximation

is explored across two dimensions—time for obtaining

the result (deadline) and error in the result [7].

• Deadline-bound jobs strive to maximize the accu-

racy of their result within a specified time limit.

Such jobs are common in real-time advertisement

systems and web search engines. Generally, the job

is spawned on a large dataset and accuracy is pro-

portional to the fraction of data processed [8, 9, 10]

(or tasks completed, for ease of exposition).

• Error-bound jobs strive to minimize the time taken

to reach a specified error limit in the result. Again,

accuracy is measured in the amount of data pro-

cessed (or tasks completed). Error-bound jobs are

used in scenarios where the value in reducing the

error below a limit is marginal, e.g., counting of the

number of cars crossing a section of a road to the

nearest thousand is sufficient for many purposes.

Approximation jobs require schedulers to prioritize

the appropriate subset of their tasks depending on the

deadline or error bound. Prioritization is important for

two reasons. First, due to cluster heterogeneities [2, 3,

16], tasks take different durations even if assigned the

same amount of work. Second, jobs are often multi-

waved, i.e., their number of tasks is much more than

available compute slots, thereby they run only a fraction

of their tasks at a time [17]. For example, when a job

with 1000 tasks is given only 100 slots simultaneously

(due to, say, fair scheduling), it runs only one-tenth of its

tasks at a time. These tasks, though, are independent and

can be scheduled in any order. The trend of multi-waved

jobs is expected to grow with smaller tasks [18].

2.2 Challenges

The main challenge in prioritizing tasks of approxima-

tion jobs arises due to some of them straggling. Even

after applying many proactive techniques, in production

clusters in Facebook and Microsoft Bing, the average

2

job’s slowest task is eight times slower than the median.2

It is difficult to model all the complex interactions in

clusters to prevent stragglers [3, 20]. Ananthanarayanan

et al. (Section 2.1.2 in [3]) also show that blacklisting

machines based on their likeliness to cause stragglers

(in both the short- as well as long-term) has little ben-

efits; machines are neither consistently problematic nor

exhibit simple correlations with task durations.

The widely adopted technique to deal with straggler

tasks is speculation. This is a reactive technique that

spawns speculative copies for tasks deemed to be strag-

gling. The earliest among the original and speculative

copies is picked while the rest are killed. While schedul-

ing a speculative copy makes the task finish faster and

thereby increases accuracy, they also compete for com-

pute slots with the unscheduled tasks.

Therefore, our problem is to dynamically prioritize

tasks based on the deadline/error-bound while choosing

between speculative copies for stragglers and unsched-

uled tasks. This problem is, unfortunately, NP-Hard and

devising good heuristics (i.e., with good approximation

factors) is an open theoretical problem.

2.3 Potential Gains

Given the challenges posed by stragglers discussed

above, it is not surprising that the potential gains from

mitigating their impact are significant. To highlight this

we use a simulator with an optimal bin-packing sched-

uler. Our baselines are the the state-of-the-art mitigation

strategies (LATE [2] and Mantri [1]) in the production

clusters. Optimally prioritizing the tasks while correctly

balancing between speculative copies and unscheduled

tasks presents the following potential gains. Deadline-

bound jobs improve their accuracy by 48% and 44%, in

the Facebook and Bing traces, respectively. Error-bound

jobs speed up by 32% and 40%. We next develop an

online heuristic to achieve these gains.

3 Speculation Algorithm Design

The key choice made by a cluster scheduling algorithm

is to pick the next task to schedule given a vacant slot.

Traditionally, this choice is made among the set of tasks

that are queued; however when speculation is allowed,

the choice also includes speculative copies of tasks that

are already running. This extra flexibility means that

a design must determine a prioritization that carefully

weighs the gains from speculation against the cost of

extra resources while still meeting the approximation

goals. Thus, we first focus on tradeoffs in the design

2Task durations are normalized by their input sizes to be resistant

to data skews [19, 1].

of the speculation policy. Specifically, using both small

examples and analytic modeling we motivate the use of

two simple heuristics, Greedy Speculative (GS) schedul-

ing and Resource Aware Speculative (RAS) scheduling

that together make up the core of GRASS.

3.1 Speculation Alternatives

For simplicity, we first introduce GS and RAS in the

context of deadline-bound jobs and then briefly describe

how they can be adapted to error-bound jobs.

3.1.1 Deadline-bound Jobs

If speculation was not allowed, there is a natural, well-

understood policy for the case of deadline-bound jobs:

Shortest Job First (SJF), which schedules the task with

the smallest processing time. In many settings, SJF can

be proven to minimize the number of incomplete tasks

in the system, and thus maximize the number of tasks

completed, at all points of time among the class of non-

preemptive policies [11, 12]. Thus, without speculation,

SJF finishes the most tasks before the deadline.

If one extends this idea to the case where speculation

is allowed, then a natural approach is to allow the cur-

rently running tasks to also be placed in the queue, and

to choose the task with the smallest size, i.e., tnew (requir-

ing, of course, that the task finishes before the deadline).

If the chosen task has a copy currently running, we check

that the speculative copy being considered provides a

benefit, i.e., tnew < trem. So, the next task to run is still

chosen according to SJF, only now speculative copies are

also considered. We term this policy Greedy Speculative

(GS) scheduling, because it picks the next task to sched-

ule greedily, i.e., the one that will finish the quickest, and

thus improve the accuracy the earliest at present.

Figure 1 (left) presents an illustration of GS for a sim-

ple job with nine tasks and two concurrent slots. Tasks

T1 and T2 are scheduled first, and when T2 finishes, the

trem and tnew values are as indicated. At this point, GS

schedules T3 next as it is the one with the lowest tnew,

and so forth. Assuming the deadline was set to 6 time

units, the obtained accuracy is 7
9 (or 7 completed tasks).

Picking the earliest task to schedule next is often op-

timal when a job has no unscheduled tasks (i.e., either

single-waved jobs or the last wave of a multi-waved job).

However, when there are unscheduled tasks it is less

clear. For example, in Figure 1 (right) if we schedule

a speculative copy of T1 when T2 finished, instead of

T3, 8 tasks finish by the deadline of 6 time units.

The previous example highlights that running a spec-

ulative copy has resource implications which are impor-

tant to consider. If the speculative copy finishes early,

both slots (of the speculative copy and the original) be-

3

Figure 1: GS and RAS for a deadline-bound job with 9
tasks. The trem and tnew values are when T2 finishes. The

example illustrates deadline values of 3 and 6 time units.

come available sooner to start the other tasks. This op-

portunity cost of speculation is an important tradeoff to

consider, and leads to the second policy we consider: Re-

source Aware Speculative (RAS) scheduling.

To account for the opportunity cost of scheduling a

speculative copy, RAS speculates only if it saves both

time and resources. Thus, not only must tnew be less

than trem to spawn a speculative copy but the sum of the

resources used by the speculative and original copies,

when running simultaneously, must be less than letting

just the original copy finish. In other words, for a task

with c running copies, its resource savings, defined as

c× trem − (c+ 1)× tnew, must be positive.

By accounting for the opportunity cost of resources,

RAS can out-perform GS in many cases. As mentioned

earlier, in Figure 1 (right) where RAS achieves an ac-

curacy of 8
9 versus GS’s 7

9 in the deadline of 6 time

units. This improvement comes because, when T2 fin-

ishes, speculating on T1 saves 1 unit of resource.

However, RAS is not uniformly better than GS. In par-

ticular, RAS’s cautious approach can backfire if it over-

estimates the opportunity cost. In the same example in

Figure 1, if the deadline of the job were reduced from

6 time units to 3 time units instead, GS performs bet-

ter than RAS. At the end of 3 time units, GS has led to

three completed tasks while RAS has little to show for

its resource gains by speculating T1.

As the example alludes to, the value of the deadline

and the number of waves are two important factors im-

pact whether GS or RAS is a better choice. A third im-

portant factor, which we discuss later in §4.1, is the esti-

mation accuracy of trem and tnew.

Pseudocode 1 describes the details of GS and RAS.

The set T consists of all the running and unscheduled

tasks of the jobs. There are two stages in the scheduling

process: (i) Pruning Stage: In this stage (lines 5 − 12),

tasks that are not slated to complete by the deadline are

removed from consideration. Further, GS removes those

tasks whose speculative copy is not expected to finish

earlier than the running copy. RAS removes those tasks

1: procedure DEADLINE(〈Task〉 T , float δ, bool OC)

⊲ OC = 1→ use RAS; 0→ use GS

2: if OC then

3: for each Task t in T do

4: if t.running then

t.saving = t.c×t.trem − (t.c+1)× tnew

⊲ PRUNING STAGE

δ’← Remaining Time to δ

〈Task〉Γ← φ

5: for each Task t in T do

6: if t.tnew > δ’ then continue ⊲ Exceeds deadline

7: if OC then

8: if t.saving > 0 then Γ.add(t)

9: else

10: if t.running then

11: if t.tnew < t.trem then Γ.add(t)

12: else Γ.add(t)

⊲ SELECTION STAGE

13: if Γ 6= null then

14: if OC then SortDescending(Γ, “saving”)

15: else SortAscending(Γ, tnew)

return Γ.first()

Pseudocode 1: GS and RAS algorithms for deadline-

bound jobs (deadline of δ). T is the set of unfinished tasks

with the following fields per task: trem, tnew, and a boolean

“running” to denote if a copy of it is currently executing.

RAS is used when OC is set. At default, both algorithms

schedule the task with the lowest tnew within the deadline.

which do not save on resources by speculation. (ii) Se-

lection Stage: From the pruned set, GS picks the task

with the lowest tnew while RAS picks the task with the

highest resource savings (lines 13− 15).

3.1.2 Error-bound Jobs

Though error-bound jobs require a different form of

prioritization than deadline-bound jobs, the speculative

core of the GS and RAS algorithms are again quite natu-

ral. Specifically, the goal of error-bound jobs is to mini-

mize the makespan of the tasks needed to achieve the er-

ror limit. Thus, instead of SJF, Longest Job First (LJF) is

the natural prioritization of tasks. In particular, LJF min-

imizes the makespan among the class of non-preemptive

policies in many settings [11, 12]. This again represents

a “greedy” prioritization for this setting.

Despite the above change to the prioritization of which

task to schedule, the form of GS and RAS remain the

same as in the case of deadline-bound jobs. In particular,

speculative copies are evaluated in the same manner, e.g.,

RAS’s criterion is still to pick the task whose specula-

tion leads to the highest resource savings. Pseudocode 2

presents the details. The pruning stage (lines 5 − 11)

will remove from consideration those tasks that are not

the earliest to contribute to the desired error bound. The

4

1: procedure ERROR(〈Task〉 T , float ǫ, bool OC)

⊲ OC = 1→ use RAS; 0→ use GS

⊲ Error ǫ is in #tasks

2: for each Task t in T do

t.duration = min(t.trem, t.tnew)
3: if OC then

4: if t.running then

t.saving = t.c ×t.trem − (t.c+1)× tnew

⊲ PRUNING STAGE

SortAscending(T , “duration”)

〈Task〉Γ← φ

5: for each Task t in T [0 : T .count() (1− ǫ)] do

⊲ Earliest tasks

6: if OC then

7: if t.saving > 0 then Γ.add(t)

8: else

9: if t.running then

10: if t.tnew < t.trem then Γ.add(t)

11: else Γ.add(t)

⊲ SELECTION STAGE

12: if Γ 6= null then

13: if OC then SortDescending(Γ, “saving”)

14: else SortDescending(Γ, trem)

return Γ.first()

Pseudocode 2: GS and RAS speculation algorithms for

error-bound jobs (error-bound of ǫ). T is the set of un-

finished tasks with the following fields per task: trem, tnew,

and a boolean “running” to denote if a copy of it is cur-

rently executing. The trem of the task is the minimum of all

its running copies. RAS is used when OC is set. At default,

both algorithms schedule the task with the highest trem.

list of earliest tasks is based on the effective duration of

every task, i.e., the minimum of trem and tnew. During se-

lection (lines 12−14), GS picks the task with the highest

trem while RAS picks the task with the highest saving.

Figure 2 presents an illustration of GS and RAS for an

error-bound job with 6 tasks and 3 compute slots. The

trem and tnew values are at 5 time units. GS decides to

launch a copy of T3 as it has the highest trem. RAS con-

servatively avoids doing so. Consequently, when the er-

ror limit is high (say, 40%) GS is quicker, but RAS is

better when the limit decreases (to, say, 20%).

3.2 Contrasting GS and RAS

To this point, we have seen that GS and RAS are two nat-

ural approaches for integrating speculation into a clus-

ter scheduler for approximation jobs. However, the ex-

amples we have considered highlight that neither of GS

or RAS is uniformly better. In order to develop a bet-

ter understanding of these two algorithms, as well as

other possible alternatives, we have developed a sim-

ple analytic model for speculation in approximation jobs.

The model assumes wave-based scheduling and constant

Figure 2: GS and RAS for error-bound job with 6 tasks.

The trem and tnew values are when T2 finishes. The example

illustrates error limit of 40% (3 tasks) and 20% (4 tasks).

1 2 3 4
x 10

6

0

1

2

3

4

β = 1.259

order statistics
H

il
l
e
s
ti

m
a
te

 o
f

β
Figure 3: Hill plot of Face-

book task durations.

1 2 3 4 5
1

1.02

1.04

1.06

1.08

1.1

1.12 GS RAS

ω

P
ro

ce
ss

in
g

 T
im

e/
O

p
ti

m
al

5 waves
4 waves
3 waves
2 waves
1 waves

Figure 4: Near-optimality

of GS & RAS under Pareto

task durations (β = 1.259).

wave-width for a job (see §A for details along with for-

mal results). For readability, here we present only the

three major guidelines from our analysis. Most impor-

tantly, these guidelines highlight that different specula-

tion policies are required during the early waves of a job

than during the final wave.

Guideline 1 During the early waves of a job, specu-

lation is only valuable if task durations are extremely

heavy tailed, e.g., Pareto with infinite variance (i.e., with

shape parameter β < 2). In this case, it is optimal to

speculate conservatively, using ≤ 2 copies of a task.

This guideline is relevant because task durations are in-

deed heavy-tailed for the Facebook and Bing traces (see

the Hill plot in Figure 3), which suggests that task dura-

tions have a Pareto tail (i.e., P (τ > x) = θ(x−β)) with

shape parameter β = 1.259.3 While both GS and RAS

speculate during early waves, RAS is more conservative

than GS and thus outperforms it during early waves.

Guideline 2 During the final wave of a job, speculate

aggressively to fully utilize the allotted capacity.

3A Hill plot provides a more robust estimation of Pareto distribu-

tions than the, more commonly used, regression on a log-log plot [21].

To interpret the plot, a flat region corresponds to an estimate of β. The

fact that the curve in Figure 3 is flat over a large range of order statistics

(on the x-axis), but not all order statistics, indicates that the distribu-

tion of task sizes is not exactly Pareto distribution in its body, but is

well-approximated by a Pareto (power-law) tail.

5

This guideline says that, even if all tasks are currently

scheduled, if a slot becomes available it should be filled

with a speculative copy. While both GS and RAS do this

to some extent, GS speculates more aggressively than

RAS and thus, outperforms RAS during the final wave.

The previous two guidelines highlight a tradeoff be-

tween RAS and GS, which we formalize next.

Guideline 3 For jobs that require more than two waves

RAS is near-optimal, while for jobs that require fewer

than two waves GS is near-optimal.

To make this point more salient, consider the general

class of speculative replication policies that waits until

a task has run ω time before starting a speculative copy.

We study this broad class in §A, and GS and RAS corre-

spond to particular rules for how to chooseω. To see this,

we can define tnew = E[τ] and trem = E[τ − ω|τ > ω],
where τ is a random task size. Then, under GS, ω is the

time when E[τ] = E[τ − ω|τ > ω], and, under RAS, ω
is the time when 2E[τ] = E[τ − ω|τ > ω].

Figure 4 contrasts the performance of all the replica-

tion policies in this more general class. Specifically, it

shows the ratio of the response time of the replication

policy with parameter ω normalized to the optimal re-

sponse time. It illustrates this ratio for jobs of differing

numbers of waves, and for ω ∈ [0, 5]. To highlight GS

and RAS, they are shown via vertical lines. The response

times shown in the figure are computed using the model

and analysis described in §A. The main conclusion from

this figure is, as described in the guideline above, that

neither GS or RAS is universally optimal, but each is

near-optimal for jobs with a certain number of waves:

RAS for jobs with large numbers of waves and GS for

jobs with small numbers of waves.

4 GRASS Speculation Algorithm

In this section, we build our speculation algorithm called

GRASS.4 Our theoretical analysis summarized in §3.2

motivates a design that uses RAS during the early waves

of jobs and GS during the final two waves. A simple

strawman solution to achieve this would be as follows.

For deadline-bound jobs, switch from RAS to GS when

the time to the deadline is sufficient for at most two

waves of tasks. Similarly, for error-bound jobs, switch

when the number of (unique) scheduled tasks needed to

satisfy the error-bound makes up two waves.

Identifying the final two waves of tasks is difficult in

practice. Tasks are not scheduled at explicit wave bound-

aries but rather as and when slots open up. In addition,

the wave-width of jobs does not stay constant but varies

4GRASS is a concatenation of GS and RAS

considerably depending on cluster utilization. Finally,

task durations are varied and hard to estimate.

In light of these difficulties, we interpret the guideline

as follows: RAS is better when the deadline is loose or

the error limit is low, while otherwise GS performs bet-

ter. This mimics the intuition from the examples in §3.1.

Therefore, GRASS seeks to switch from RAS to GS as it

gets close to the job’s approximation bound.

The complexities in these systems mean that precise

estimates of the optimal switching point cannot be ob-

tained from our model. Instead, we adopt an indi-

rect learning based approach where inferences are made

based on executions of previous jobs (with similar num-

ber of tasks) and cluster characteristics (utilization and

estimation accuracy). We compare our learning ap-

proach to the strawman described above in §6.3.

4.1 Learning the Switching Point

An ideal approach would accumulate enough samples of

job performance (accuracy or completion time) based on

switching to GS at different points. For deadline-bound

jobs, this is decided by the remaining time to the dead-

line. For error-bound jobs, this is decided by the number

of tasks to complete towards meeting the error. To speed

up our sample collection, instead of accumulating sam-

ples of switching to GS, we simply generate samples of

job performance using GS or RAS throughout the job

(described shortly in §4.2).

An incoming job starts with RAS and periodically

compares samples of jobs smaller than its size during its

execution to check if it is better to switch to GS. It checks

by using its remaining work at any point (measured in

time remaining or tasks to complete). It steps through all

possible points in its remaining work at which it could

switch and estimates the optimal point using job sam-

ples of appropriate sizes. It continues with RAS until the

optimal switching point turns out to be at present. The

above calculation for the optimal switching point is per-

formed periodically during the job’s execution.

For example, when a deadline-bound job has 6s of its

deadline remaining, GRASS compares the potential ac-

curacy obtained if it were to switch at each point in its fu-

ture (at 1s granularity). The accuracy if it were to switch

after, say, 2s is the sum of accuracies of jobs with dead-

lines of 2s that used only RAS and those with 4s that used

only GS. Switching happens if among all such points, the

best accuracy is obtained by switching now.

The size of the job alone is insufficient to calculate the

optimal switching point. Even jobs of comparable size

might have different number of waves depending on the

number of available slots. Therefore, we augment our

samples of job performance with the number of waves,

simply approximated using current cluster utilization.

6

Finally, estimation accuracy of trem and tnew also de-

cides the optimal switching point. RAS’s cautious ap-

proach of considering the opportunity cost of speculat-

ing a task is valuable when task estimates are erroneous.

In fact, at low estimation accuracies (along with certain

values of utilization and deadline/error-bound), it is bet-

ter to not switch to GS at all and employ RAS all along.

§6.3.2 analyzes the impact of these three factors.

Therefore, GRASS obtains samples of job per-

formance with both GS and RAS across values of

deadline/error-bound, estimation accuracy of trem and

tnew, and cluster utilization. It uses these three factors

collectively to decide when (and if) to switch from RAS

to GS. We next describe how the samples are collected.

4.2 Generating Samples

As described above, GRASS compares samples of job

performance that use only GS or RAS throughout, to

decide when to switch. These samples have to be up-

dated continuously to stay abreast with dynamic changes

in clusters. To continuously generate such samples, we

introduce a perturbation in GRASS’s switching decision.

With a small probability ξ, GRASS decides to not switch

and instead picks one of GS or RAS for the entire dura-

tion of the job (both GS and RAS are equally probable).

Such perturbation helps us obtain comparable samples.

The crucial trade-off in setting ξ is in balancing the

benefit of obtaining such comparable samples with the

performance loss incurred by the job due to not mak-

ing the right switching decision. Theoretical analyses of

such multi-armed bandit problems in prior work defines

an optimal value of ξ by making stochastic assumptions

about the distribution of the costs and the associated re-

wards [22]. Our setup, however, does not yield itself to

such assumptions as the underlying distribution can be

arbitrary. Another class of techniques that we consid-

ered modified ξ with time [23]. Over time, the value of

ξ is gradually reduced using a damping function, thus

indicating higher confidence in the learned value. We

decided against such damping of ξ because clusters con-

stantly evolve with new software and hardware modules,

leading to newer interactions between them.

Therefore, we pick a constant value of ξ using empiri-

cal analysis. A job is marked for generating performance

samples with a probability of ξ, and we pick GS or RAS

with equal probability. In practice, we bucket jobs by

their number of tasks and compare only within jobs of

the same bucket.

5 Implementation

We implement GRASS on top of two data-analytics

frameworks, Hadoop (version 0.20.2) [14] and Spark

(version 0.7.3) [15], representing batch jobs and inter-

active jobs, respectively. Hadoop jobs read data from

HDFS while Spark jobs read from in-memory RDDs.

Consequently, Spark tasks finished quicker than Hadoop

tasks, even with the same input size. Note that while

Hadoop and Spark use LATE[2] currently, we also im-

plement Mantri[1] to use as a second baseline.

Implementing GRASS required two changes: task ex-

ecutors and job scheduler. Task executors were aug-

mented to periodically report progress. We piggyback on

existing update mechanisms of tasks that conveyed only

their start and finish. Progress reports were configured to

be sent every 5% of data read/written. The job scheduler

collects these reports, maintains samples of completed

tasks and jobs, and decides the switching point.

5.1 Task Estimators

GRASS uses two estimates for tasks: remaining duration

of a running task (trem) and duration of a new copy (tnew).

Estimating trem: Tasks periodically update the sched-

uler with progress reports containing the fraction of in-

put read and output written. Since tasks of analytics jobs

are IO-intensive, we extrapolate the remaining duration

of the task based on the time elapsed thus far.

Estimating tnew: We estimate the duration of a new task

by sampling from durations of completed tasks (normal-

ized to input and output sizes). The tnew values of all

tasks are updated whenever a task completes.

Accuracy of estimation: While the above techniques

are simple, the downside is the error in estimation. Our

estimates of trem and tnew achieve moderate accuracies of

72% and 76%, respectively, on average. When a task

completes, we update the accuracy using the estimated

and actual durations. GRASS uses the accuracy of esti-

mation to appropriately switch from RAS to GS.

5.2 DAG of Tasks

Jobs are typically composed as a DAG of tasks with in-

put tasks (e.g., map or extract) reading data from the un-

derlying storage and intermediate tasks (e.g., reduce or

join) aggregating their outputs. Even in DAGs of tasks,

the accuracy of the result is decided by the fraction of

completed input tasks. This makes GRASS’s functioning

straightforward in error-bound jobs—complete as many

input tasks as required to meet the error-bound and all

intermediate tasks further in the DAG.

For deadline-bound jobs, we use a widely occurring

property that intermediate tasks perform similar func-

tions across jobs. Further, they have relatively fewer

stragglers. Thus, we estimate the time taken for interme-

diate tasks by comparing jobs of similar sizes and then

subtract it to obtain the deadline for the input tasks.

7

Input tasks of a job, typically, read equal amounts of

data. Thus, the fraction of tasks completed represents

fraction of data processed too, thus making it a good in-

dicator of the result’s accuracy.

6 Evaluation

We evaluate GRASS on a 200 node EC2 cluster.

Our focus is on quantifying the performance improve-

ments compared to current designs, i.e., LATE [2] and

Mantri [1], and on understanding how close to the opti-

mal performance GRASS comes. Our main results can

be summarized as follows.

1. GRASS increases accuracy of deadline-bound jobs

by 47% and speeds up error-bound jobs by 38%.

Even non-approximation jobs (i.e., error-bound of

zero) speed up by 34%. Further, GRASS nearly

matches the optimal performance. (§6.2)

2. GRASS’s learning based approach for determining

when to switch from RAS to GS is over 30% better

than simple strawman techniques. Further, the use

of all three factors discussed in §4.1 is crucial for

inferring the optimal switching point. (§6.3)

6.1 Methodology

Workload: Our evaluation is based on traces from

Facebook’s production Hadoop [14] cluster and Mi-

crosoft Bing’s production Dryad [24] cluster. The traces

capture over half a million jobs running across many

months (Table 1). The clusters run a mix of interactive

and production jobs whose performance have significant

impact on productivity and revenue. The jobs had di-

verse resource requirements of CPU, memory and IO.

To create our experimental workload, we retain the inter-

arrival times, input files and number of tasks of jobs. The

jobs were, however, not approximation queries and re-

quired all their tasks to complete. Hence, we convert the

jobs to mimic deadline- and error-bound jobs as follows.

For experiments on error-bound jobs, we pick the er-

ror tolerance of the job randomly between 5% and 30%.

This is consistent with the experimental setup in recently

reported research [4, 25]. Prior work also recommends

setting deadlines by calibrating task durations [4, 9]. For

the purpose of calibration, we obtain the ideal duration of

a job in the trace by substituting the duration of each of

its task by the median task duration in the job, again, as

per recent work on straggler mitigation [3]. We set the

deadline to be an additional factor (randomly between

2% to 20%) on top of this ideal duration.

Job Bins: We bin jobs by their number of tasks. We

use three distinctions “small” (< 50 tasks), “medium”

(51− 500 tasks), and “large” (> 500 tasks).

Facebook Microsoft Bing

Dates Oct 2012 May-Dec 2011
Framework Hadoop Dryad

Script Hive [26] Scope [27]

Jobs 575K 500K

Cluster Size 3,500 Thousands

Straggler– LATE [2] Mantri [1]

mitigation

Table 1: Details of Facebook and Bing traces.

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

(a) Facebook Workload–Hadoop

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(b) Bing Workload–Hadoop

0

10

20

30

40

50

60

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

(c) Facebook Workload–Spark

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(d) Bing Workload–Spark

Figure 5: Accuracy Improvement in deadline-bound jobs

with LATE [2] and Mantri [1] as baselines.

EC2 Deployment: We deploy our Hadoop and Spark

prototypes on a 200-node EC2 cluster and evaluate them

using the workloads described above. Each experiment

is repeated five times and we pick the median. We mea-

sure improvement in the average accuracy for deadline-

bound jobs and average duration for error-bound jobs.

We also use a trace-driven simulator to evaluate at

larger scales and over longer durations. The simulator

replays all the task properties including their straggling.

Baseline: We contrast GRASS with two state-of-the-art

speculation algorithms—LATE [2] and Mantri [1].

6.2 Improvements from GRASS

We contrast GRASS’s performance with that of

LATE [2], Mantri [1], and the optimal scheduler.

6.2.1 Deadline-bound jobs

GRASS improves the accuracy of deadline-bound jobs

by 34% to 40% in the Hadoop prototype. Gains in both

the Facebook and Bing workloads are similar. Figure 5a

and 5b split the gains by job size. The gains compared

8

0

10

20

30

40

50

2-5 6-10 11-15 16-20

Facebook Bing

Deadline (%) Bin

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

(a) Deadline Bins

0

10

20

30

40

5-10 11-15 16-20 21-25 26-30

Facebook Bing

Error (%) Bin

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

(b) Error Bins

Figure 6: GRASS’s overall gains (compared to LATE)

binned by the deadline and error bound. Deadlines are

binned by the factor over ideal job duration (see §6.1)

to LATE as baseline are consistently higher than Mantri.

Also, the gains in large jobs are pronounced compared to

small and medium sized jobs because their many waves

of tasks provides plenty of potential for GRASS.

The Spark prototype improves accuracy by 43% to

47%. The gains are higher because Spark’s task sizes

are much smaller than Hadoop’s due to in-memory in-

puts. This makes the effect of stragglers more distinct.

Again, large jobs gain the most, improving by over 50%
(Figure 5c and 5d). Large multi-waved jobs improving

more is encouraging because smaller task sizes in fu-

ture [18] will ensure that multi-waved executions will

be the norm. Unlike the Hadoop case, gains compared

to both LATE and Mantri are similar because both have

only limited effect when the impact of stragglers is high.

Figure 6a dices the improvements by the deadline

(specifically, the additional factor over the ideal job du-

ration (see §6.1)). Note that gains are nearly uniform

across deadline values. This indicates that GRASS can

not only cope with stringent deadlines but be valuable

even when the deadline is lenient.

Gains with simulations are consistent with deploy-

ment, indicating not only that GRASS’s gains hold over

longer durations but also the simulator’s robustness.

6.2.2 Error-bound jobs

Similar to deadline-bound jobs, improvements with the

Spark prototype (33% to 37%) are higher compared to

the Hadoop prototype (24% to 30%). This shows that

GRASS works well not only with established frame-

works like Hadoop but also upcoming ones like Spark.

Note that the gains are indistinguishable among differ-

ent job bins (Figures 7a and 7b) in the Spark prototype;

large jobs gain a touch more in the Hadoop prototype

(Figures 7c and 7d). Again, our simulation results are

consisten with deployment, and so are omitted.

As Figure 6b shows, GRASS’s gains persist at both

tight as well as moderate error bounds. At high error

bounds, there is smaller scope for GRASS beyond LATE.

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(a) Facebook Workload–Hadoop

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

0

10

20

30

40

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(b) Bing Workload–Hadoop

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(c) Facebook Workload–Spark

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(d) Bing Workload–Spark

Figure 7: Speedup in error-bound jobs with LATE [2] and

Mantri [1] as baselines.

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

0

10

20

30

40

50

60

< 50 51-500 > 501

GRASS Optimal

(a) Deadline-bound Jobs

0

10

20

30

40

50

< 50 51-500 > 501

GRASS Optimal

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

(b) Error-bound Jobs

Figure 8: GRASS’s gains matches the optimal scheduler.

The gains at tight error bounds is noteworthy because

these jobs are closer to exact jobs that require all (or most

of) their tasks to complete. In fact, exact jobs speed up

by 34%, thus making GRASS valuable even in clusters

that are yet to deploy approximation analytics.

6.2.3 Optimality of GRASS

While the results above show the speed up GRASS pro-

vides, the question remains as to whether further im-

provements are possible. To understand the room avail-

able for improvement beyond GRASS, we compare its

performance with an optimal scheduler that knows task

durations and slot availabilities in advance.

Figure 8 shows the results for the Facebook workload

with Spark. It highlights that GRASS’s performance

matches the optimal for both deadline as well as error-

bound jobs. Thus, GRASS is an efficient near-optimal

solution for the NP-hard problem of scheduling tasks for

approximation jobs with speculative copies.

9

Length of DAG

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

0

10

20

30

40

50

2 3 4 5 6

Bing Facebook

(a) Deadline-bound Jobs.

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

Length of DAG

0

10

20

30

40

2 3 4 5 6

Bing Facebook

(b) Error-bound Jobs.

Figure 9: GRASS’s gains holds across job DAG sizes.

6.2.4 DAG of tasks

To complete the evaluation of GRASS we investigate

how performance gains depend on the length of the job’s

DAG. Intuitively, as long as our estimation of interme-

diate phases is accurate, GRASS’s handling of the input

phase should remain unchanged, and Figure 9 confirms

this for both deadline and error-bound jobs. Gains from

GRASS remain stable with the length of the DAG.

6.3 Evaluating GRASS’s Design Decisions

To understand the impact of the design decisions made in

GRASS, we focus on three questions. First, how impor-

tant is it that GRASS switches from RAS to GS? Second,

how important is it that this switching is learned adap-

tively rather than fixed statically? Third, how sensitive

is GRASS to the perturbation factor ξ? In the interest

of space, we present results on these topics for only the

Facebook workload using LATE as a baseline; results for

the Bing workload with Mantri are similar.

6.3.1 The value of switching

To understand the importance of switching between RAS

and GS we compare GRASS’s performance with using

only GS and RAS all through the job. Figure 10 performs

the comparison for deadline-bound jobs. GRASS’s im-

provements, both on average as well as in individual job

bins, are strictly better than GS and RAS. This shows

that if using only one of them is the best choice, GRASS

automatically avoids switching. Further, GRASS’s over-

all improvement in accuracy is over 20% better than the

best of GS or RAS, demonstrating the value of switching

as the job nears its deadline. The above trends are con-

sistent with error-bound jobs as well (Figure 11), though

GRASS’s benefit is slightly lower.

The contrast of GS and RAS is also interesting. GS

outperforms RAS for small jobs but loses out as job sizes

increase. The significant degradation in performance in

the unfavorable job bin (medium and large jobs for GS,

0

10

20

30

40

50

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

(a) Hadoop

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

0

10

20

30

40

50

60

< 50 51-500 > 501

GS-only RAS-only GRASS

(b) Spark

Figure 10: GRASS’s switching is 25% better than using

GS or RAS all through for deadline-bound jobs. We use

the Facebook workload and LATE as baseline.

0

10

20

30

40

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)
Im

p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

(a) Facebook Workload–Hadoop

0

10

20

30

40

50

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

(b) Facebook Workload–Spark

Figure 11: GRASS’s switching is 20% better than using

GS or RAS all through for error-bound jobs. We use the

Facebook workload and LATE as baseline.

versus small jobs for RAS) illustrates the pitfalls of stat-

ically picking the speculation algorithm.

6.3.2 The value of learning

Given the benefit of switching, the question becomes

when this switching should occur. GRASS does this

adaptively based on three factors: deadline/error-bound,

cluster utilization and estimation accuracy of trem and

tnew. Now, we illustrate the benefit of this approach

compared to simpler options, i.e., choosing the switch-

ing point statically or based on a subset of these three

factors. Note that we have already seen that these three

factors are enough to be near optimal (Figure 8).

Static switching: First, when considering a static de-

sign, a natural “strawman” based on our theoretical anal-

ysis is to estimate the point when there are two remaining

waves as follows. For deadline-bound jobs, it is the point

when the time to the deadline is sufficient for at most

two waves of tasks. For error-bound jobs, it is when the

number of (unique) scheduled tasks sufficient to satisfy

the error-bound make up two waves. The strawman uses

the current wave-width of the job and assumes task du-

rations to be median of completed tasks.

Figure 12 compares GRASS with the above strawman.

Gains with the strawman are 66% and 73% of the gains

with GRASS for deadline-bound and error-bound jobs,

10

0

10

20

30

40

50

60

< 50 51-500 > 501

Strawman GRASS

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

(a) Deadline-bound Jobs

0

10

20

30

40

50

< 50 51-500 > 501

Strawman GRASS

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

Job Bin (#Tasks)

(b) Error-bound Jobs

Figure 12: Comparing GRASS’s learning based switching

approach to a strawman that approximates two waves of

tasks. GRASS is 30%− 40% better than the strawman.

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

0

10

20

30

40

50

< 50 51-500 > 501

Best-1 Best-2 GRASS

(a) Hadoop

0

10

20

30

40

50

60

< 50 51-500 > 501

Best-1 Best-2 GRASS

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

(b) Spark

Figure 13: Using all three factors for deadline-bound jobs

compared to only one or two is 18% − 30% better.

respectively. Small and medium jobs lag the most as

wrong estimation of switching point affects a large frac-

tion of their tasks. Thus, the benefit of adaptively deter-

mining the switching point is significant.

Adaptive switching: Next, we study the impact of

the three factors used to adaptively learn the switching

threshold. To do this, Figures 13 and 14 compares the

designs using the best one or two factors with GRASS.

When only one factor can be used to switch, picking

the deadline/error-bound provides the best results. This

is intuitive given the importance of the approximation

bound to the ordering of tasks. When two factors are

used, in addition to the deadline/error-bound, cluster uti-

lization matters more for the Hadoop prototype while

estimation accuracy is important for the Spark proto-

type. Tasks of Hadoop jobs are longer and more sen-

sitive to slot allocations, which is dictated by the utiliza-

tion. While the smaller Spark tasks are more fungible,

this also makes them sensitive to estimation errors.

Using only one factor is significantly worse than us-

ing all three factors. The performance picks up with

deadline-bound jobs when two factors are used, but

error-bound jobs’ gains continue to lag until all three are

used. Thus, in the absence of a detailed model for job

executions, the three factors act as good predictors.

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

0

10

20

30

40

< 50 51-500 > 501

Best-1 Best-2 GRASS

(a) Hadoop

0

10

20

30

40

50

< 50 51-500 > 501

Best-1 Best-2 GRASS

Job Bin (#Tasks)

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

(b) Spark

Figure 14: Using all three factors for error-bound jobs

compared to one or two factors is 15% − 25% better.

0

10

20

30

40

50

0 5 10 15 20

Facebook

Bing

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 A
c
c
u
ra
c
y

Perturbation (ξ)

(a) Deadline-bound Jobs

0

10

20

30

40

0 5 10 15 20

Facebook

Bing

Im
p
ro
v
e
m
e
n
t
(%

)
in

A
v
e
ra
g
e
 J
o
b
 D
u
ra
ti
o
n

Perturbation (ξ)

(b) Error-bound Jobs

Figure 15: Sensitivity of GRASS’s performance to the per-

turbation factor ξ. Using ξ = 15% is empirically best.

6.3.3 Sensitivity to Perturbation

The final aspect of GRASS that we evaluate is the pertur-

bation factor, ξ, which decides how often the scheduler

does not switch during a job’s execution (described in

§4.2). This perturbation is crucial for GRASS’s learning

of the optimal switching point. All results shown previ-

ously set ξ to 15%, which was picked empirically.

Figure 15 highlights the sensitivity of GRASS to this

choice. Low values of ξ hamper learning because of

the lack of sufficient samples, while high values in-

cur performance loss resulting from not switching from

RAS to GS often enough. Our results show, that this

exploration–exploitation tradeoff is optimized at ξ =
15%, and that performance drops off sharply around this

point. Deadline-bound jobs are more sensitive to poor

choice of ξ than error-bound jobs. Using ξ of 15%
is consistent with studies on multi-armed bandit prob-

lems [28], which is related to our learning problem.

7 Related Work

The problem of stragglers was identified in the origi-

nal MapReduce paper [29]. Since then solutions have

been proposed to mitigate them using speculative execu-

tions [2, 1, 24]. These solutions, however, are not for

approximation jobs. These jobs require proritizing the

right subset of tasks by carefully considering the oppor-

tunity cost of speculation. Further, our evaluations show

11

that GRASS speeds up even for exact jobs that require all

their tasks to complete. Thus, it is a unified solution that

cluster schedulers can deploy for both approximation as

well as non-approximation computations.

Prioritizing tasks of a job is a classic scheduling prob-

lem with known heuristics [11, 12]. These heuristics as-

sume accurate knowledge of task durations and hence do

not require speculative copies to be scheduled dynami-

cally. Estimating task durations accurately, however, is

still an open challenge as acknowledged by many stud-

ies [3, 20]. This makes speculative copies crucial and

we develop a theoretically backed solution to optimally

prioritize tasks with speculative copies.

Modeling real world clusters has been a challenge

faced by other schedulers too. Recently reported re-

search has acknowledged the problem of estimating task

durations [16], predicting stragglers [3, 20] as well as

modeling multi-waved job executions [17]. Their so-

lutions primarily involve sidestepping the problem by

not predicting stragglers and upfront replicating the

tasks [3], or approximating number of waves to file

sizes [17]. Such sidestepping, however, is not an option

for GRASS and hence we build tailored approximations.

Finally, replicating tasks in distributed systems have a

long history [30, 31, 32] with extensive studies in prior

work [33, 34, 35]. These studies assume replication up-

front as opposed to dynamic replication in reaction to

stragglers. The latter problem is both harder and un-

solved. In this work, we take a stab at this problem that

yields near-optimal results in our production workloads.

8 Concluding Remarks and Future Work

This paper explores speculative task scheduling in the

context of approximation jobs. From the analysis of a

generic analytic model, we develop a speculation algo-

rithm, GRASS, that uses opportunity cost to determine

when to speculate early in the job and then switches to

more aggressive speculation as the job nears its approx-

imation bound. Prototypes on Hadoop and Spark, de-

ployed on a 200 node EC2 cluster shows that GRASS

improves accuracy fo deadline-bound jobs by 47% and

speeds up error-bound jobs by 38%, in production work-

loads from Facebook and Bing. Further, the evaluation

highlights that GRASS is a unified speculation solution

for both approximation and exact computations, since it

also provides a 34% speed up for exact jobs.

A topic that requires further work is scheduling spec-

ulative copies for stragglers across jobs. While GRASS

intelligently picks between scheduling a speculative

copy for a running task versus scheduling a new task of a

job, it does so within the slots allocated to the job (typi-

cally, based on fair allocations). The next step to GRASS

is to weigh the impact of speculating a running task with

scheduling a new task of any job. Answering this ques-

tion will not only involve comparing across jobs but also

revisit existing fairness based schedulers.

A Modeling and Analyzing Speculation

In this section we introduce the model and analysis that

led to the guidelines described in §3.2. The model fo-

cuses on one job that has T tasks5 and S slots out of a

total capacity normalized to 1. Let the initial job size

be x and the remaining amount of work in the job at

time t be x(t). We use W = T/S to denote the (frac-

tional) number of waves necessary to complete the job,

and throughout we assume W ≥ 1.

We focus our analysis on the rate at which work is

completed, which we denote by µ(t;x, S, T) or µ(t) for

short. Note that by focusing on the service rate we are

ignoring ordering of the tasks and focusing primarily on

the impact of speculation.

In our analysis we begin with proactive speculation,

and then move to reactive speculation. This progres-

sion is natural since the analysis of proactive speculation

serves as a stepping stone to the design of reactive specu-

lation policies. Further, in the case of proactive specula-

tion we can precisely specify the optimal policy, whereas

in the case of reactive speculation, we must resort to nu-

merical optimization.

A.1 Proactive speculation

We start by considering a general class of proactive poli-
cies that launch k(x(t)) speculative copies of tasks when
the job has remaining size x(t). We propose the follow-
ing approximate model for µ(t) in this case.

[(

x(t)

x

)(

T

S

)

k(x(t))

]1

k(x(t))
S

·

(

E[τ]

k(x(t))E
[

min(τ1, . . . , τk(x(t))

]

)

(1)

where τ is a random task size. Note that we assume task

sizes are i.i.d.

To understand this approximate model, note that the

first term approximates the completion rate of work and

the second term approximates the “blow up factor,” i.e.,

the ratio of the expected work completed without dupli-

cations to the amount of work done with duplications.

To understand the first term, note that (x(t)/x)T is the

fractional number of tasks that remain to be completed at

time t, and thus there are (x(t)/x)Tk(x(t)) tasks avail-

able to schedule at time t including speculative copies.

Recalling that the capacity of a slot is 1/S, that the maxi-

mum capacity that can be allocated is 1, and that the min-

imum number of slots is the number of copies k(x(t)),

5For approximation jobs T should be interpreted as the number of

tasks that are completed before the deadline or error limit is reached.

12

we obtain the first term in (1). The second term com-

putes the “blow up factor,” which is the the expected

amount of work done per task without speculation (E[τ])
divide by the expected work done per task with specula-

tion (k(x(t))E[min(τ1, τ2, . . . , τk(x(t)))], since k(x(t))
copies are created and they are stopped when the first

copy completes. Perhaps the most important aspect of

this approximation is the fact that task sizes are i.i.d. in

this manner, and this is what leads both to stragglers and

to the benefits of replication. While this is certainly sim-

plistic, the value of the model is highlights be the useful-

ness of the guidelines that follow from our analysis.

Given the model in (1), the question is: What proac-

tive speculation policy minimizes job duration? As dis-

cussed in §3.2, the distribution of task sizes shows con-

siderable evidence of a Pareto-tail, and so we focus our

analysis on this setting. The following theorem follows

from first deriving the response time of a job given the

model for µ(t) in (1), and then deriving the k(x(t)) that

minimizes the response time. Each of these steps re-

quires significant, but not difficult, analysis, which we

omit due to space.

Theorem 1 When task sizes are Pareto(xm,β), the
proactive speculation policy that minimizes the comple-
tion time of the job is

k(x(t)) =











σ, x(t)
x

Tσ ≥ S

S/(x(t)
x

T), S > x(t)
x

Tσ and
x(t)
x

T ≥ 1;

S, 1 >
x(t)
x

T .

(2)

where σ = max(2/β, 1).

This theorem leads to Guidelines 1 and 2. Specifi-

cally, the first line corresponds to the “early waves” and

the second and third lines correspond to the “last wave”.

During the “early waves” the optimal policy may or may

not speculate, depending on the task size distribution –

speculation happens only when β < 2, which is when

task sizes have infinite variance. In contrast, during the

“last wave”, regardless of the task size distribution, the

optimal policy speculates to ensure all slots are used.

A.2 Reactive speculation

We now turn to reactive speculation policies, which

launches copies of a task only after it has completed ω
work. Both GS and RAS are examples of such policies

and can be translated into choices for ω as shown in §3.2.

Our analysis of proactive policies provides important

insight into the design of reactive policies. In particular,

during early waves the the optimal proactive policy runs

at most two copies of each task, and so we limit our re-

active policies to this level of speculation. Additionally,

the previous analysis highlights that during the last wave

the it is best to speculate aggressively in order to use up

the full capacity, and thus it is best to speculated imme-

diately without waiting ω time. This yields the following

approximation for µ(t):































E[τ1]
E[τ1|0≤τ1<ω] Pr(0≤τ1<ω)+(2E[Z−ω|τ1≥ω]+ω)Pr(τ1>ω)

,

when
x(t)
x

T (Pr(0 ≤ τ1 < ω) + 2Pr(τ1 ≥ ω)) ≥ S.

optimal proactive speculation (from (1)),

when
x(t)
x

T (Pr(0 ≤ τ1 < ω) + 2Pr(τ1 ≥ ω)) < S.

(3)

τ1, τ2 are random task sizes and Z = min(τ1, τ2 + ω).

Again, the first line in (3) approximates the service

rate during the early waves of the job, while the second

line approximates the service rate during the final wave

of the job. To understand the first line, note that dur-

ing early waves there are enough tasks to use capacity

1 (in expectation) as long as
x(t)
x

T (Pr(0 ≤ τ < ω) +
2Pr(T ≥ ω)) ≥ S. Thus, all that remains is the “blow

up factor.” As before, the numerator is the expected

amount of work per task without speculation (E[τ]) and

the denominator is the expected amount of work per task

with reactive speculation. This is E[τ |τ < ω] if the ini-

tial copy finishes before ω, and 2E[Z −ω|τ > ω] + ω if

the initial copy takes longer than ω.

Within this model, our design problem can now be re-

duced to finding ω that minimizes the response time of

the job. The complicated form of (3) makes it difficult to

understand the optimal ω analytically, and thus we use

numerical calculations. Figure 4 presents a numerical

optimization by comparing GS and RAS to other reac-

tive policies. It leads go Guideline 3, which highlights

that GS is near optimal if the number of waves in the

job is < 2, while RAS is near-optimal if the number of

waves in the job is ≥ 2. Note that the results in Figure 4

are for Pareto task sizes with β = 1.259, but the finding

is robust for β ∈ (1, 2).

Acknowledgments

We thank our shepherd Nina Taft and the anonymous re-

viewers for their suggestions to improve this work. We

also thank Rohan Gandhi for his feedback on our early

drafts. This research was partially funded by research

grant NSF CNS-1319820, NSF CISE Expeditions award

CCF-1139158, the DARPA XData Award FA8750-12-2-

0331, and gifts from Qualcomm, Amazon Web Services,

Google, SAP, Blue Goji, Cisco, Clearstory Data, Cloud-

era, Ericsson, Facebook, General Electric, Hortonworks,

Huawei, Intel, Microsoft, NetApp, Oracle, Quanta, Sam-

sung, Splunk, VMware and Yahoo!.

13

References

[1] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,

E. Harris, and B. Saha. Reining in the Outliers in Map-Reduce

Clusters Using Mantri. In USENIX OSDI, 2010.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.

Improving MapReduce Performance in Heterogeneous Environ-

ments. In USENIX OSDI, 2008.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Ef-

fective Straggler Mitigation: Attack of the Clones. In USENIX

NSDI, 2013.

[4] S.Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and

I. Stoica. BlinkDB: Queries with Bounded Errors and Bounded

Response Times on Very Large Data. In EuroSys. ACM, 2013.

[5] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy,

and R. Sears. MapReduce Online. In USENIX NSDI, 2010.

[6] Interactive Big Data analysis using approximate answers, 2013.

http://tinyurl.com/k5favda.

[7] J. Liu, K. Shih, W. Lin, R. Bettati, and J. Chung. Imprecise Com-

putations. Proceedings of the IEEE, 1994.

[8] S. Lohr. Sampling: design and analysis. Thomson, 2009.

[9] J. Hellerstin, P. Haas, and H. Wang. Online Aggregation. In ACM

SIGMOD, 1997.

[10] M. Garofalais and P. Gibbons. Approximate Query Processing:

Taming the Terabytes. In VLDB, 2001.

[11] M. Pinedo. Scheduling: theory, algorithms, and systems.

Springer, 2012.

[12] L. Kleinrock. Queueing systems, volume II: computer applica-

tions. John Wiley & Sons New York, 1976.

[13] C. Liu and J. Layland. Scheduling Algorithms for Multipro-

gramming in a Hard-real-time Environment. Journal of the ACM

(JACM), 1973.

[14] Hadoop. http://hadoop.apache.org.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-

Cauley, M. Franklin, S. Shenker, and I. Stoica. Resilient Dis-

tributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing. In USENIX NSDI, 2012.

[16] E. Bortnikov, A. Frank, E. Hillel, S. Rao. Predicting Execu-

tion Bottlenecks in Map-Reduce Clusters. In USENIX HotCloud,

2012.

[17] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,

S. Kandula, S. Shenker, and I. Stoica. PACMan: Coordinated

Memory Caching for Parallel Jobs. In USENIX NSDI, 2012.

[18] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin,

S. Ratnasamy, S. Shenker, and I. Stoica. The Case for Tiny Tasks

in Compute Clusters. In USENIX HotOS, 2013.

[19] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A Study of Skew

in MapReduce Applications. In Open Cirrus Summit, 2011.

[20] J. Dean. Achieving Rapid Response Times in Large Online Ser-

vices. In Berkeley AMPLab Cloud Seminar, 2012.

[21] S. Resnick. Heavy-tail phenomena: probabilistic and statistical

modeling. Springer, 2007.

[22] J. C. Gittins. Bandit Processes and Dynamic Allocation Indices.

Journal of the Royal Statistical Society. Series B (Methodologi-

cal), 1979.

[23] I. Sonin. A Generalized Gittins Index for a Markov Chain and Its

Recursive Calculation. Statistics & Probability Letters, 2008.

[24] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly. Dryad:

Distributed Data-parallel Programs from Sequential Building

Blocks. In ACM Eurosys, 2007.

[25] W. Baek and T. Chilimbi. Green: a Framework for Support-

ing Energy-conscious Programming Using Controlled Approxi-

mation. In ACM Sigplan Notices, 2010.

[26] Hive. http://wiki.apache.org/hadoop/Hive.

[27] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,

S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel Pro-

cessing of Massive Datasets. In VLDB, 2008.

[28] M. Tokic and G. Palm. Value-difference Based Exploration:

Adaptive Control between Epsilon-greedy and Softmax. In KI

2011: Advances in Artificial Intelligence. Springer, 2011.

[29] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-

cessing on Large Clusters. Communications of the ACM, 2008.

[30] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko. Charlotte:

Metacomputing on the Web. In 9th Conference on Parallel and

Distributed Computing Systems, 1996.

[31] E. Korpela D. Anderson, J. Cobb. SETI@home: An Experiment

in Public-Resource Computing. In Comm. ACM, 2002.

[32] M. Rinard and P. Diniz. Commutativity Analysis: a New Analy-

sis Framework for Parallelizing Compilers. In ACM PLDI, 1996.

[33] D. Paranhos, W. Cirne, and F. Brasileiro. Trading Cycles for

Information: Using Replication to Schedule Bag-of-Tasks Ap-

plications on Computational Grids. In Euro-Par, 2003.

[34] G. Ghare and S. Leutenegger. Improving Speedup and Response

Times by Replicating Parallel Programs on a SNOW. In JSSPP,

2004.

[35] W. Cirne, D. Paranhos, F. Brasileiro, L. Goes, and W. Voorsluys.

On the Efficacy, Efficiency and Emergent Behavior of Task

Replication in Large Distributed Systems. In Parallel Comput-

ing, 2007.

14

