
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

A Self-Reconfigurable Camera Array

Cha Zhang and Tsuhan Chen

ECE, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract
This paper presents a self-reconfigurable camera array system that captures video sequences from an array of
mobile cameras, renders novel views on the fly and reconfigures the camera positions to achieve better rendering
quality. The system is composed of 48 cameras mounted on mobile platforms. The contribution of this paper
is twofold. First, we propose an efficient algorithm that is capable of rendering high-quality novel views from
the captured images. The algorithm reconstructs a view-dependent multi-resolution 2D mesh model of the scene
geometry on the fly and uses it for rendering. The algorithm combines region of interest (ROI) identification,
JPEG image decompression, lens distortion correction, scene geometry reconstruction and novel view synthesis
seamlessly on a single Intel Xeon 2.4 GHz processor, which is capable of generating novel views at 4–10 frames
per second (fps). Second, we present a view-dependent adaptive capturing scheme that moves the cameras in order
to show even better rendering results. Such camera reconfiguration naturally leads to a nonuniform arrangement
of the cameras on the camera plane, which is both view-dependent and scene-dependent.

1. Introduction

Image-based rendering (IBR) has been an attractive research
area in recent years [SKC03, ZC04a]. Stemming from the
7D plenoptic function [AB91], various approaches have
been proposed, such as plenoptic modeling [MB95], light
field rendering [LH96], Lumigraph [GGSC96], concentric
mosaics [SH99], etc. These approaches are capable of ren-
dering realistic scenes with little or no scene geometry, at a
speed independent of the scene complexity.

Most existing IBR approaches are for static scenes. These
approaches involve moving a camera around the scene and
capturing many images. Novel views can then be synthe-
sized from the captured images, with or without the scene
geometry. In contrast, when the scene is dynamic, an array
of cameras is needed. Recently there has been increasing in-
terest in building such camera arrays for IBR. For instance,
Matusik et al. [MBR∗00] used 4 cameras for rendering using
image-based visual hull (IBVH). Yang et al. [YWB02] had
a 5-camera system for real-time rendering with the help of
modern graphics hardware; Schirmacher et al. [SLS01] built
a 6-camera system for on-the-fly processing of generalized
Lumigraphs; Naemura et al. [NTH02] constructed a system
of 16 cameras for real-time rendering. Several large arrays
consisting of tens of cameras have also been built, such as
the Stanford multi-camera array [WSLH02], the MIT dis-

tributed light field camera [YEBM02] and the CMU 3D
room [KSV98]. These three systems have 128, 64 and 49
cameras, respectively.

In the above camera arrays, those with a small num-
ber of cameras can usually achieve real-time render-
ing [MBR∗00, YWB02]. On-the-fly geometry reconstruc-
tion is widely adopted to compensate for the lack of cam-
eras, and the viewpoint is often limited. Large camera ar-
rays, despite their increased viewpoint ranges, often have
difficulty in achieving satisfactory rendering speed due to the
large amount of data to be handled. The Stanford system fo-
cused on grabbing synchronized video sequences onto hard
drives. It certainly can be used for real-time rendering but no
such results have been reported in literature. The CMU 3D
room was able to generate good-quality novel views both
spatially and temporarily [Ved01]. It utilized the scene ge-
ometry reconstructed from a scene flow algorithm that took
several minutes to run. While this is affordable for off-line
processing, it cannot be used to render scenes on-the-fly. The
MIT system did render live views at a high frame rate. Their
method assumed constant depth of the scene, however, and
suffered from severe ghosting artifacts due to the lack of
scene geometry. Such artifacts are unavoidable according to
plenoptic sampling analysis [CCST00, ZC03b].

In this paper, we present a large self-reconfigurable cam-

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

Figure 1: Our self-reconfigurable camera array system with
48 cameras.

era array consisting of 48 cameras, as shown in Figure
1. We first propose an efficient rendering algorithm that
generates high-quality virtual views by reconstructing the
scene geometry on-the-fly. Differing from previous work
[YWB02, SLS01], the geometric representation we adopted
is a view-dependent multi-resolution 2D mesh with depth in-
formation on its vertices. This representation greatly reduces
the computational cost of geometry reconstruction, making
it possible to be performed on-the-fly during rendering.

Compared with existing camera arrays, our system has a
unique characteristic—the cameras are reconfigurable. They
can both sidestep and pan during the capturing and rendering
process. This capability makes it possible to reconfigure the
arrangement of the cameras in order to achieve better render-
ing results. This paper also presents an algorithm that auto-
matically moves the cameras based on the rendering quality
of the synthesized virtual view. Such camera reconfigura-
tion leads to a nonuniform arrangement of the cameras on
the camera plane, which is both view-dependent and scene-
dependent.

The paper is organized as follows. Related work is re-
viewed in Section 2. Section 3 presents an overview of our
camera array system. The calibration issue is discussed in
Section 4. The real-time rendering algorithm is presented in
detail in Section 5. The self-reconfiguration of the camera
positions is discussed in Section 6. We present our conclu-
sions in Section 7.

2. Related Work

In IBR, when the number of captured images for a scene
is limited, adding geometric information can significantly
improve the rendering quality. In fact, there is a geometry-
image continuum which covers a wide range of IBR tech-
niques, as is surveyed in [SKC03]. In practice, an accurate
geometric model is often difficult to attain, because it re-
quires much human labor. Many approaches in literature as-
sume a known geometry, or acquire the geometry via manual
assistance or a 3D scanner. Recently, there has been increas-

ing interest in on-the-fly geometry reconstruction for IBR
[SLS01, MBR∗00, YWB02] .

Depth from stereo is an attractive candidate for geometry
reconstruction in real-time. Schirmacher et al. [SLS01] built
a 6-camera system which was composed of 3 stereo pairs and
claimed that the depth could be recovered on-the-fly. How-
ever, each stereo pair needed a dedicated computer for the
depth reconstruction, which is expensive to scale when the
number of input cameras increases. Naemura et al. [NTH02]
constructed a camera array system consisting of 16 cam-
eras. A single depth map was reconstructed from 9 of the
16 images using a stereo matching PCI board. Such a depth
map is computed with respect to a fixed viewpoint; thus the
synthesized view is sensitive to geometry reconstruction er-
rors. Another constraint of stereo based algorithms is that
the input images need to be pair-wise positioned or rectified,
which is not convenient in practice.

Matusik et al. [MBR∗00] proposed image-based visual
hull (IBVH), which rendered dynamic scenes in real-time
from 4 cameras. IBVH is a clever algorithm which com-
putes and shades the visual hull of the scene without having
an explicit visual hull model. The computational cost is low
thanks to an efficient pixel traversing scheme, which can be
implemented with software only. Another similar work is the
polyhedral visual hull [MBM01], which computes an ex-
act polyhedral representation of the visual hull directly from
the silhouettes. Lok [Lok01] and Li et al. [LMS03] recon-
structed the visual hull on modern graphics hardware with
volumetric and image-based representations. One common
issue of visual hull based rendering algorithms is that they
cannot handle concave objects, which makes some close-up
views of concave objects unsatisfactory.

An improvement over the IBVH approach is the image-
based photo hull (IBPH) [SSH02]. IBPH utilizes the color
information of the images to identify scene geometry, which
results in more accurately reconstructed geometry. Visibil-
ity was considered in IBPH by intersecting the visual hull
geometry with the projected line segment of the considered
light ray in a view. Similar to IBVH, IBPH requires the scene
objects’ silhouettes to provide the initial geometric informa-
tion; thus, it is not applicable to general scenes (where ex-
tracting the silhouettes could be difficult) or mobile cameras.

Recently, Yang et al. [YWB02] proposed a real-time
consensus-based scene reconstruction method using com-
modity graphics hardware. Their algorithm utilized the Reg-
ister Combiner for color consistency verification (CCV) with
a sum-of-square-difference (SSD) measure, and obtained a
per-pixel depth map in real-time. Both concave and convex
objects of general scenes could be rendered with their al-
gorithm. However, their recovered depth map could be very
noisy due to the absence of a convolution filter in commodity
graphics hardware.

As modern computer graphics hardware becomes more
and more programmable and powerful, the migration to

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

hardware geometry reconstruction (HGR) algorithms is
foreseeable. However, at the current stage, HGR still has
many limitations. For example, the hardware specification
may limit the maximum number of input images during the
rendering [LMS03, YWB02]. Algorithms that can be used
on hardware are constrained. For instance, it is not easy to
change the CCV in [YWB02] from SSD to some more ro-
bust ones such as pixel correlations. When the input im-
ages have severe lens distortions, the distortions must be cor-
rected using dedicated computers before the images are sent
to the graphics hardware.

Self-reconfiguration of the cameras is a form of non-
uniform sampling (or adaptive capturing) of IBR scenes.
In [ZC03a], Zhang and Chen proposed a general non-
uniform sampling framework called the Position-Interval-
Error (PIE) function. The PIE function led to two practi-
cal algorithms for capturing IBR scenes: progressive captur-
ing (PCAP) and rearranged capturing (RCAP). PCAP cap-
tures the scene by progressively adding cameras at the places
where the PIE values are maximal. RCAP, on the other hand,
assumes that the overall number of cameras is fixed and tries
to rearrange the cameras such that rendering quality esti-
mated through the PIE function is the worst. A small scale
system was developed in [ZC03c] to demonstrate the PCAP
approach. The work by Schirmacher et al. [SHS99] shared
similar ideas with PCAP, but they only showed results on
synthetic scenes.

One limitation about the above mentioned work is that
the adaptive capturing process tries to minimize the render-
ing error everywhere as a whole. Therefore for a specific vir-
tual viewpoint, the above work does not guarantee better ren-
dering quality. Furthermore, since different viewpoints may
require different camera configurations to achieve the best
rendering quality, the final arrangement of the cameras is a
tradeoff of all the possible virtual viewpoints, and the im-
provement over uniform sampling was not easy to show.

We recently proposed the view-dependent non-uniform
sampling of IBR scenes [ZC04b]. Given a set of virtual
views, the positions of the capturing cameras are rearranged
in order to obtain the optimal rendering quality. The prob-
lem is formulated as a recursive weighted vector quantiza-
tion problem, which can be solved efficiently. In that work
we assume that all the capturing cameras can move freely
on the camera plane. Such assumption is very difficult to
implement in practical systems. This paper proposes a new
algorithm for the self-reconfiguration of the cameras, given
that they are constrained on the linear guides.

3. Overview of the Camera Array System

3.1. Hardware

Our camera array system (as shown in Figure 1) is com-
posed of inexpensive off-the-shelf components. There are
48 (8×6) Axis 205 network cameras placed on 6 linear

Figure 2: The mobile camera unit.

guides. The linear guides are 1600 mm in length, thus the
average distance between cameras is about 200 mm. Verti-
cally the cameras are 150 mm apart. They can capture at
a rate of up to 640× 480× 30fps. The cameras have built-
in HTTP servers, which respond to HTTP requests and send
out motion JPEG sequences. The JPEG image quality is con-
trollable. The cameras are connected to a central computer
through 100Mbps Ethernet cables.

The cameras are mounted on a mobile platform, as shown
in Figure 2. Each camera is attached to a pan servo, which
is a standard servo capable of rotating 90 degrees. They
are mounted on a platform, which is equipped with another
sidestep servo. The sidestep servo is hacked so that it can
rotate continuously. A gear wheel is attached to the sidestep
servo, which allows the platform to move horizontally with
respect to the linear guide. The gear rack is added to avoid
slipping. The two servos on each camera unit allow the cam-
era to have two degrees of freedom – pan and sidestep. How-
ever, the 12 cameras at the leftmost and rightmost columns
have fixed positions and can only pan.

The servos are controlled by the Mini SSC II servo con-
troller [MI]. Each controller is in charge of no more than
8 servos (either standard servos or hacked ones). Multiple
controllers can be chained; thus, up to 255 servos can be
controlled simultaneously through a single serial connection
to a computer. In the current system, we use altogether 11
Mini SSC II controllers to control 84 servos (48 pan servos,
36 sidestep servos).

Unlike any of the existing camera array systems described
in Section 1, our system uses only one computer. The com-
puter is an Intel Xeon 2.4 GHz dual processor machine with
1GB of memory and a 32 MB NVIDIA Quadro2 EX graph-
ics card. As will be detailed in Section 5, our rendering algo-
rithm is so efficient that the ROI identification, JPEG image
decompression and camera lens distortion correction, which
were usually performed with dedicated computers in previ-
ous systems, can all be conducted during the rendering pro-
cess for a camera array at our scale. On the other hand, it is
not difficult to modify our system and attribute ROI identi-
fication and image decoding to dedicated computers, as was
done in the MIT distributed light field camera [YEBM02].

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

(a)

(b) (c)

(d) (e)

Figure 3: Images captured by our camera array. (a) All the
images. (b)(c)(d)(e) Sample images from selected cameras.

Figure 3 (a) shows a set of images for a static scene
captured by our camera array. The images are acquired at
320×240 pixel. The JPEG compression quality factor is set
to be 30 (0 being the best quality and 100 being the worst
quality, according to the Axis camera’s specification). Each
compressed image is about 12-18 Kbytes. In a 100 Mbps
Ethernet connection, 48 cameras can send such JPEG im-
age sequences to the computer simultaneously at 15-20 fps,
which is satisfactory. Several problems can be spotted from
these images. First, the cameras have severe lens distortions,
which has to be corrected during the rendering. Second, the
colors of the captured images have large variations. The Axis
205 camera does not have flexible lighting control settings.
We use the "fixed indoor" white balance and "automatic" ex-
posure control in our system. Third, the disparity between
cameras is large. As will be shown later, using a constant
depth assumption to render the scene will generate images
with severe ghosting artifacts. Finally, the captured images
are noisy (Figure 3 (b)–(e)). This noise comes from both the
CCD sensors of the cameras and the JPEG image compres-
sion. This noise brings an additional challenge to the scene
geometry reconstruction.

Figure 4: Locate the features of the calibration pattern.

The Axis 205 cameras cannot be easily synchronized. We
make sure that the rendering process will always use the
most recently arrived images at the computer for synthesis.
Currently we ignore the synchronization problem during the
geometry reconstruction and rendering, though it does cause
problems when rendering fast moving objects, as might have
been observed in the submitted companion video files.

3.2. Software architecture

The system software runs as two processes, one for captur-
ing and the other for rendering. The capturing process is re-
sponsible for sending requests to and receiving data from
the cameras. The received images (in JPEG compressed for-
mat) are directly copied to some shared memory that both
processes can access. The capturing process is very light-
weight, consuming about 20% of the CPU time of one of
the processors in the computer. When the cameras start to
move, their external calibration parameters need to be cal-
culated in real-time. Camera calibration is also performed
by the capturing process. As will be described in the next
section, calibration of the external parameters generally runs
fast (150–180 fps).

The rendering process runs on the other processor. It is
responsible for ROI identification, JPEG decoding, lens dis-
tortion correction, scene geometry reconstruction and novel
view synthesis. Details about the rendering process will be
described in Section 5.

4. Camera calibration

Since our cameras are designed to be mobile, calibration
must be performed in real-time. Fortunately, the internal pa-
rameters of the cameras do not change during their motion,
and can be calibrated offline. We use a large planar calibra-
tion pattern for the calibration process (Figure 3). Bouguet’s
calibration toolbox [Bou99] is used to obtain the internal
camera parameters.

To calibrate the external parameters, we first extract the
feature positions on the checkerboard using two simple lin-
ear filters. The positions are then refined to sub-pixel accu-
racy by finding the saddle points, as in [Bou99]. The results

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

Virtual
viewpoint

2D mesh on the
imaging plane 2D mesh with depth

= a restricted 3D mesh

Figure 5: The multi-resolution 2D mesh with depth informa-
tion on its vertices.

of feature extraction is shown in Figure 4. Notice that due
to occlusions, not all the corners on the checkerboard can be
extracted. However, calibration can still be performed using
the extracted corners.

To obtain the 6 external parameters (3 for rotation and
3 for translation) of the cameras, we use the algorithm
proposed by Zhang [Zha98]. The Levenberg-Marquardt
method implemented in MinPack [Mor77] is used for the
nonlinear optimization. The above calibration process runs
very fast on our processor (150–180 fps at full speed). As
long as there are not too many cameras moving around si-
multaneously, we can perform calibration on-the-fly during
the camera movement. In the current implementation, we
impose the constraint that at any instance at most one camera
on each row can sidestep. After a camera has sidestepped, it
will pan if necessary in order to keep the calibration board
in the middle of the captured image.

5. Real Time Rendering

5.1. Flow of the rendering algorithm

In this paper, we propose to reconstruct the geometry of
the scene as a 2D multi-resolution mesh (MRM) with
depths on its vertices, as shown in Figure 5. The 2D mesh
is positioned on the imaging plane of the virtual view;
thus, the geometry is view-dependent (similar to that in
[YWB02, SSH02, MBR∗00]). The MRM solution signifi-
cantly reduces the amount of computation spent on depth
reconstruction, making it possible to be implemented effi-
ciently in software.

The flow chart of the rendering algorithm is shown in Fig-
ure 6. A novel view is rendered when there is an idle callback
or the user moves the viewpoint. We first construct an initial
sparse and regular 2D mesh on the imaging plane of the vir-
tual view, as shown in Figure 7. This sparse mesh is used
to obtain an initial estimate of the scene geometry. For each
vertex of the 2D mesh, we first look for a subset of images
that will be used to interpolate its intensity during the ren-
dering. This step has two purposes. First, we may use such
information to identify the ROIs of the captured images and
decode them when necessary, as is done in the next step. Sec-
ond, only the neighboring images will be used for color con-

Idle callback
or viewpoint move

Yes

No

Find neighboring images
for the 2D mesh vertices

Find ROI of the captured
images and JPEG decode

2D mesh depth recon., mesh
subdivision if necessary

Novel view synthesis

Exit

Rendering
process

Capturing
process

Shared
memory

Figure 6: The flow chart of the rendering algorithm.

sistency verification during the depth reconstruction, which
is termed local color consistency verification (detailed in
Section 5.4). We then obtain the depths of the vertices in
the initial 2D mesh through a plane-sweeping algorithm. At
this stage, the 2D mesh can be used for rendering already;
however, it may not have enough resolution along the ob-
ject boundaries. We next perform a subdivision of the mesh
in order to avoid the resolution problem at object bound-
aries. If a certain triangle in the mesh bears large depth vari-
ation, which implies a possible depth error or object bound-
ary, subdivision is performed to obtain more detailed depth
information. Afterwards, the novel view can be synthesized
through multi-texture blending, similar to the unstructured
Lumigraph rendering (ULR) [BBM∗01]. Lens distortion is
corrected in the last stage, although we also compensate the
distortion during the depth reconstruction stage. Details of
the proposed algorithm will be presented next.

5.2. Finding close-by images for the mesh vertices

Each vertex on the 2D mesh corresponds to a light ray that
starts from the virtual viewpoint and passes through the ver-
tex on the imaging plane. During the rendering, it will be in-
terpolated from several light rays from nearby captured im-
ages. We need to identify these nearby images for selective
JPEG decoding and the scene geometry reconstruction. Un-
like the ULR [BBM∗01] and the MIT distributed light field
camera [YEBM02] where the scene depth is known, we do
not have such information at this stage, and cannot locate
the neighboring images by angular differences of the light
rays†. Instead, we adopted the distance from the cameras’

† Although it is possible to find the neighboring images of the light
rays for each hypothesis depth plane, we found such an approach
too time-consuming.

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

The virtual viewpoint

The virtual imaging plane

Considered light ray

Capturing
cameras

C2

C3
C4

Minimum
depth plane

Maximum
depth plane

Testing depth planes
Testing

depth plane #m

.

.

.

the initial sparse and
regular 2D mesh

on the imaging plane

C1

C5d1

d5

d2 d3

d4

Figure 7: Locate the neighboring images for interpolation
and depth reconstruction through plane sweeping.

center of projection to the considered light ray as the crite-
rion. As shown in Figure 7, the capturing cameras C2, C3
and C4 have the smallest distances, and will be selected as
the 3 closest images. As our cameras are roughly arranged
on a plane and all point in roughly the same direction, when
the scene is reasonably far from the capturing cameras, this
distance measure is a good approximation of the angular dif-
ference used in the literature, yet it does not require the scene
depth information.

5.3. ROI Identification and JPEG decoding

On the initial coarsely-spaced regular 2D mesh, if a trian-
gle has a vertex that selects input image #n from one of the
nearby cameras, the rendering of that triangle will need im-
age #n. In other words, once all the vertices have found their
nearby images, we will know which triangles require which
images. This information is used to identify the ROIs of the
images that need to be decoded.

We back-project the triangles that need image #n for ren-
dering from the virtual imaging plane to the minimum depth
plane and the maximum depth plane, and then project the
resulting regions to image #n. The ROI of image #n is the
smallest rectangular region that includes both of the pro-
jected regions. Afterwards, the input images that do not have
an empty ROI will be JPEG decoded (partially).

5.4. Scene depth reconstruction

We reconstruct the scene depth of the light rays passing
through the vertices of the 2D mesh using a plane sweep-
ing method. Similar methods have been used in a number
of previous algorithms [Col96, SD97, YEBM02], although
they all reconstruct a dense depth map of the scene. As il-
lustrated in Figure 7, we divide the world space into multi-
ple testing depth planes. For each light ray, we assume the
scene is on a certain depth plane, and project the scene to the

nearby input images obtained in Section 3.3. If the assumed
depth is correct, we expect to see consistent colors among
the projections. The plane sweeping method sweeps through
all the testing depth planes, and obtains the scene depth as
the one that gives the highest color consistency.

There is an important difference between
our method and previous plane sweeping
schemes [Col96, SD97, YEBM02]. In our method, the
CCV is carried out only among the nearby input images, not
all the input images. We term this local color consistency
verification. As the light ray is interpolated from only the
nearby images, local CCV is a natural approach. In addition,
it has some benefits over the traditional one. First, it is
fast because we perform many fewer projections for each
light ray. Second, it enables us to reconstruct geometry
for non-diffuse scenes to some extent, because within a
certain neighborhood, color consistency may still be valid
even in non-diffuse scenes. Third, when CCV is performed
only locally, problems caused by object occlusions during
geometry reconstruction become less severe.

Care must be taken in applying the above method. First,
the location of the depth planes should be equally spaced
in the disparity space instead of in depth. This is a direct
result from the sampling theory by Chai et al. [CCST00].
In the same paper they also develop a sampling theory on
the relationship between the number of depth planes and the
number of captured images, which is helpful in selecting the
number of depth planes. Second, when projecting the test
depth planes to the neighboring images, lens distortion must
be corrected. Third, to improve the robustness of the color
consistency matching among the noisy input images, a patch
on each nearby image is taken for comparison. The patch
window size relies heavily on the noise level in the input im-
ages. In our current system, the input images are very noisy.
We have to use a large patch window to compensate for the
noise. The patch is first down-sampled horizontally and ver-
tically by a factor of 2 to reduce some of the computational
burden. Different patches in different input images are then
compared to generate an overall CCV score. Fourth, as our
cameras have large color variations, color consistency mea-
sures such as SSD do not perform very well. We applied
mean-removed correlation coefficient for the CCV. The cor-
relation coefficients for all pairs of nearby input images are
first obtained. The overall CCV score of the nearby input
images is one minus the average correlation coefficient of
all the image pairs. The depth plane resulting in the lowest
CCV score is then selected as the scene depth.

The depth recovery process starts with an initial regular
and sparse 2D mesh, as was shown in Figure 7. The depths of
its vertices are obtained with the mentioned described above.
The sparse mesh with depth can serve well during rendering
if the depth of the scene does not vary much. However, if
the scene depth does change, a dense depth map is needed
around those regions for satisfactory rendering results. We

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

subdivide a triangle in the initial mesh if its three vertices
have large depth variation. For example, let the depths of a
triangle’s three vertices be dm1 , dm2 and dm3 , where m1, m2,
m3 are the indices of the depth planes. We subdivide this
triangle if:

max
p,q∈{1,2,3},p6=q

|mp−mq|> T (1)

where T is a threshold set equal to 1 in the current implemen-
tation. During the subdivision, the midpoint of each edge of
the triangle is selected as a new vertice, and the triangle is
subdivided into 4 smaller ones. The depths of the new ver-
tices are reconstructed under the constraints that they have
to use the neighboring images of the three original vertices,
and their depth search range is limited to the minimum and
maximum depth of the original vertices. Other than Equa-
tion 1, the subdivision may also stop if the subdivision level
reaches a certain preset limit.

Real-time, adaptive conversion from dense depth map or
height field to a mesh representation has been studied in lit-
erature [LKR∗96]. However, these algorithms assumed that
a dense depth map or height field was available before hand.
In contrast, our algorithm computes a multi-resolution mesh
model directly during the rendering. The size of each trian-
gles in the initial regular 2D mesh cannot be too large, since
otherwise we may miss certain depth variations in the scene.
A rule of thumb is that the size of the initial triangles/grids
should match that of the object features in the scene. In the
current system, the initial grid size is about 1/25 of the width
of the input images. Triangle subdivision is limited to no
more 2 levels.

5.5. Novel view synthesis

After the multi-resolution 2D mesh with depth information
on its vertices has been obtained, novel view synthesis is
easy. Our rendering algorithm is very similar to the one in
ULR [BBM∗01], except that our imaging plane has already
been triangulated. Only the ROIs of the input images will
be used to update the texture memory when a novel view
is rendered. As the input images of our system have severe
lens distortions, we cannot use the 3D coordinates of the
mesh vertices and the texture matrix in graphics hardware
to specify the texture coordinates. Instead, we perform the
projection with lens distortion correction ourselves and pro-
vide 2D texture coordinates to the rendering pipeline. For-
tunately, such projections to the nearby images have already
been calculated during the depth reconstruction stage and
can simply be reused.

5.6. Rendering results

We have used our camera array system to capture a variety
of scenes, both static and dynamic. The speed of rendering
process is about 4-10 fps, depending on many factors such as
the number of testing depth planes used for plane sweeping,

the patch window size for CCV, the initial coarse regular
2D mesh grid size, the number of subdivision levels used
during geometry reconstruction and the scene content. For
the scenes we have tested, the above parameters can be set
to fixed values. For instance, our default setting is 12 testing
depth planes for depth sweeping, 15×15 patch window size,
1/25 of the width of the input images as initial grid size, and
maximally 2 level of subdivision.

The time spent on each step of the rendering process under
the above default settings is as follows. Finding neighboring
images and their ROI’s takes less than 10 ms. JPEG decoding
takes 15-40 ms. Geometry reconstruction takes about 80-120
ms. New view synthesis takes about 20 ms.

The rendering results of some static scenes are shown
in Figure 9. In these results the cameras are evenly spaced
on the linear guide. Figure 9(a)(b)(c) are results rendered
with the constant depth assumption. The ghosting artifacts
are very severe, because the spacing between our cameras
is larger than most previous systems [YEBM02, NTH02].
Figure 9(d) is the result from the proposed algorithm. The
improvement is significant. Figure 9(e) shows the recon-
structed 2D mesh with depth information on its vertices. The
grayscale intensity represents the depth – the brighter the
intensity, the closer the vertex. Like many other geometry
reconstruction algorithms, the geometry we obtained con-
tains some errors. For example, in the background region of
the toys scene, the depth should be flat and far, but our re-
sults have many small "bumps". This is because part of the
background region has no texture, and thus is prone to er-
ror for depth recovery. However, the rendered results are not
affected by these errors because we use view-dependent ge-
ometry and the local color consistency always holds at the
viewpoint.

The performance of our camera array system on dynamic
scenes is demonstrated in the companion video sequences.
In general the scenes are rendered at high quality. The user
is free to move the viewpoint and the view-direction when
the scene object is also moving, which brings very rich new
experiences.

5.7. Discussions

Our current system has certain hardware limitations. For ex-
ample, the images captured by the cameras are at 320×240
pixel and the image quality is not very high. This is mainly
constrained by the throughput of the Ethernet cable. Upgrad-
ing the system to Gigabit Ethernet or using more computers
to handle the data could solve this problem. For dynamic
scenes, we notice that our system cannot catch up with very
fast moving objects. This is due to the fact that the cameras
are not synchronized.

We find that when the virtual viewpoint moves out of the
range of the input cameras, the rendering quality degrades
quickly. A similar effect was reported in [YEBM02, Sze99].

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

Camera plane

Y1

Y2

Y3

Y4

Y5

Y6

The virtual viewpoint

(xi , yi)

B31 B32 B3k B37

Capturing cameras

The virtual imaging plane

Figure 8: Self-reconfiguration of the cameras.

The poor extrapolation results are due to the lack of scene
information in the input images during the geometry recon-
struction.

Since our geometry reconstruction algorithm resembles
the traditional window-based stereo algorithms, it shares
some of the same limitations. For instance, when the scene
has a large depth discontinuity, our algorithm does not per-
form very well along the object boundary (especially when
both foreground and background objects have strong tex-
tures). In the current implementation, our correlation win-
dow is very large in order to handle the noisy input images.
Such a big correlation window tends to smooth the depth
map. Figure 10 (i-d) and (iii-d) shows the rendering results
of two scenes with large depth discontinuities. Notice the
artifacts around the boundaries of the objects. To solve this
problem, one may borrow ideas from the stereo literature
[KO94, KSC01], which will be our future work. Alterna-
tively, since we have built a mobile camera array, we may
reconfigure the arrangement of the cameras, as will be de-
scribed in the next section.

6. Self-Reconfiguration of the Camera Positions

6.1. The proposed algorithm

Figure 10 (i-c) and (iii-c) shows the CCV score obtained
while reconstructing the scene depth (Section 5.4). It is ob-
vious that if the consistency is bad (high score), the recon-
structed depth tends to be wrong, and the rendered scene
tends to have low quality. Our camera self-reconfiguration
(CSR) algorithm thus tries to move the cameras to places
where the CCV score is high.

Our CSR algorithm contains the following steps:

1. Locate the camera plane and the linear guides (as line
segments on the camera plane). The camera positions in
world coordinates are obtained through the calibration pro-
cess. Although they are not strictly on the same plane, we use
an approximated one which is parallel to the checkerboard.
The linear guides are located by averaging the vertical posi-
tions of each row of cameras on the camera plane. As shown

in Figure 8, we denote the vertical coordinates of the linear
guides on the camera plane as Y j, j = 1, · · · ,6.

2. Back-project the vertices of the mesh model to the cam-
era plane. Although during depth reconstruction the mesh
can be subdivided, during this process we only make use of
the initial sparse mesh (Figure 7). In Figure 8, one mesh ver-
tex was back-projected as (xi,yi) on the camera plane. No-
tice that such back-projection can be performed even if there
are multiple virtual views to be rendered; thus, the proposed
CSR algorithm is applicable to situations where there exist
multiple virtual viewpoints.

3. Collect the CCV score for each pair of neighboring
cameras on the linear guides. The capturing cameras on each
linear guide naturally divide the guide into 7 segments. Let
them be B jk, where j is the row index of the linear guide and
k is the index of bins on that guide, 1 ≤ j ≤ 6, 1 ≤ k ≤ 7. If
a back-projected vertex (xi,yi) satisfies

Y j−1 < yi < Y j+1 and xi ∈ B jk, (2)

the CCV score of the vertex is added to the bin B jk. After
all the vertices have been back-projected, we obtain a set of
accumulated CCV scores for each linear guide, denoted as
S jk, where j is the row index of the linear guide and k is the
index of bins on that guide.

5. Determine which camera to move on each linear guide.
Given a linear guide j, we look for the largest S jk,1≤ k ≤ 7.
Let it be S jK . If the two cameras forming the corresponding
bin B jK are not too close to each other, one of them will be
moved towards the other (thus reducing their distance). No-
tice each camera is associated with two bins. To determine
which one of the two cameras should move, we check their
other associated bin and move the camera with a smaller ac-
cumulated CCV score in its other associated bin.

6. Move the cameras. Once the moving cameras have
been decided, we issue them commands such as "move left"
or "move right"‡. The positions of the cameras during the
movement are constantly monitored by the calibration pro-
cess. After a fixed time period (400 ms), a "stop" command
will be issued to stop the camera motion.

7. End of epoch. Jump back to step 1.

6.2. Results

We show results of the proposed CSR algorithm in Fig-
ure 10. In Figure 10 (i) and (iii), the capturing cameras
are evenly spaced on the linear guide. Figure 10(i) is ren-
dered behind the camera plane, and Figure 10(iii) is rendered
in front of the camera plane. Due to depth discontinuities,

‡ We can only send such commands to the sidestep servos, because
the servos were hacked for continuous rotation. The positions of the
cameras after movement is unpredictable, and can only be obtained
through the calibration process.

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

some artifacts can be observed in the rendered images (Fig-
ure 10 (i-d) and (iii-d)) along the object boundaries. Figure
10(b) is the reconstructed depth of the scene at the virtual
viewpoint. Figure 10(c) is the CCV score obtained during
the depth reconstruction. It is obvious that along the ob-
ject boundaries, the CCV score is high, which usually means
wrong/uncertain reconstructed depth, or bad rendering qual-
ity. The red dots in Figure 10(c) are the projections of the
capturing camera positions to the virtual imaging plane.

Figure 10 (ii) and (iv) shows the rendering result after
CSR. Figure 10 (ii) is the result after 6 epochs of camera
movement, and Figure 10 (iv) is after 20 epochs. It can be
seen from the CCV score map (Figure 10(c) that after the
camera movement, the consistency generally gets better. The
cameras have been moved, which is reflected as the red dots
in 10(c). The cameras move toward the regions where the
CCV score is high, which effectively increases the sampling
rate for the rendering of those regions. Figure 10 (ii-d) and
(iv-d) shows the rendering results after self-reconfiguration,
which is much better than 10 (i-d) and (iii-d).

6.3. Discussions

One thing to notice is that our view-dependent self-
reconfiguration algorithm is not limited to a single viewer.
When multiple viewers are watching the scene, we may
back-project the vertices of the meshes on all the virtual
imaging planes and perform the same procedure as above.
The final result is an arrangement of the cameras which
optimizes the overall rendering quality for all the virtual
views (though there might be some tradeoff between differ-
ent views).

The major limitation of our self-reconfigurable camera
array is that the motion of the cameras is generally slow.
When the computer writes a command to the serial port,
the command is buffered in the Mini SSC II controller for
∼15 ms before sending to the servo. After the servo receives
the command, there is also a long delay (hundreds of ms)
before it finishes the movement. Therefore, during the self-
reconfiguration of the cameras, we have to assume that the
scene is either static or moving very slowly. During the mo-
tion of the cameras, since the calibration process and the ren-
dering process run separately, we observe some jittering ar-
tifacts of the rendered images when the moved cameras have
not been fully calibrated.

There is no collision detection in the current system while
moving the cameras. Although the calibration process is
very stable and gives fairly good estimation of the camera
positions, collision could still happen. In Section 6.1, we
have a threshold for verifying whether two cameras are too
close to each other. The current threshold is set as 10 cm,
which is reasonably safe for all of our experiments.

7. Conclusions

We have presented a self-reconfigurable camera array in this
paper. Our system is large scale (48 cameras), and has the
unique characteristic that the cameras are mounted on mo-
bile platforms. A real-time rendering algorithm was pro-
posed, which is highly efficient and can be flexibly im-
plemented in software. We also proposed a novel self-
reconfiguration algorithm to move the cameras, and achieve
better rendering quality than static camera arrays.

A source code package of our highly efficient rendering
algorithm, CAView, is freely available at:

http://amp.ece.cmu.edu/projects/MobileCamArray/.
The readers are welcome to try it on some of the data sets
captured by our camera array system (downloadable from
the same web site).

Acknowledgements

We thank the reviewers for the helpful comments. We also
thank Avinash Baliga for proofreading the paper. This work
is supported in part by NSF Career Award 9984858.

References

[AB91] ADELSON E. H., BERGEN J. R.: The plenoptic func-
tion and the elements of early vision. M. Landy and
J. A. Movshon, (eds) Computational Models of Visual
Processing (1991). 1

[BBM∗01] BUEHLER C., BOSSE M., MCMILLAN L., GORTLER

S. J., COHEN M. F.: Unstructured lumigraph render-
ing. In Proceedings of SIGGRAPH 2001 (2001), Com-
puter Graphics Proceedings, Annual Conference Se-
ries, ACM, ACM Press / ACM SIGGRAPH, pp. 425–
432. 5, 7

[Bou99] BOUGUET J.-Y.: Camera cal-
ibration toolbox for matlab,
http://www.vision.caltech.edu/bouguetj/calib_doc/,
1999. 4

[CCST00] CHAI J.-X., CHAN S.-C., SHUM H.-Y., TONG X.:
Plenoptic sampling. In Proceedings of SIGGRAPH
2000 (2000), Computer Graphics Proceedings, Annual
Conference Series, ACM, ACM Press / ACM SIG-
GRAPH, pp. 307–318. 1, 6

[Col96] COLLINS R. T.: A space-sweep approach to true multi-
image matching. In Proc. of CVPR ’1996 (1996). 6

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., CO-
HEN M. F.: The lumigraph. In Proceedings of SIG-
GRAPH 1996 (1996), Computer Graphics Proceed-
ings, Annual Conference Series, ACM, ACM Press /
ACM SIGGRAPH, pp. 43–54. 1

[KO94] KANADE T., OKUTOMI M.: A stereo matching al-
gorithm with an adaptive window: Theory and experi-
ment. IEEE Transaction on Pattern Analysis and Ma-
chine Intelligence 16, 9 (1994), 920–932. 8

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

[KSC01] KANG S. B., SZELISKI R., CHAI J.: Handling occlu-
sions in dense multi-view stereo. In Proc. CVPR ’2001
(2001). 8

[KSV98] KANADE T., SAITO H., VEDULA S.: The 3d room:
Digitizing time-varying 3d events by synchronized
multiple video streams. Technical Report, CMU-RI-
TR-98-34 (1998). 1

[LH96] LEVOY M., HANRAHAN P.: Light field rendering.
In Proceedings of SIGGRAPH 1996 (1996), Com-
puter Graphics Proceedings, Annual Conference Se-
ries, ACM, ACM Press / ACM SIGGRAPH, pp. 31–42.
1

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N.: Real-time, continuous
level of detail rendering of height fields. In Proceed-
ings of SIGGRAPH 1996 (1996), Computer Graphics
Proceedings, Annual Conference Series, ACM, ACM
Press / ACM SIGGRAPH, pp. 109–118. 7

[LMS03] LI M., MAGNOR M., SEIDEL H.-P.: Hardware-
accelerated visual hull reconstruction and rendering. In
Proc. of Graphics Interface 2003 (2003). 2, 3

[Lok01] LOK B.: Online model reconstruction for interactive
visual environments. In Proc. Symposium on Interac-
tive 3D Graphics 2001 (2001). 2

[MB95] MCMILLAN L., BISHOP G.: Plenoptic modeling:
An image-based rendering system. In Proceedings of
SIGGRAPH 1995 (1995), Computer Graphics Proceed-
ings, Annual Conference Series, ACM, ACM Press /
ACM SIGGRAPH, pp. 39–46. 1

[MBM01] MATUSIK W., BUEHLER C., MCMILLAN L.: Poly-
hedral visual hulls for real-time rendering. In Proceed-
ings of Eurographics Workshop on Rendering 2001
(2001). 2

[MBR∗00] MATUSIK W., BUEHLER C., RASKAR R., GORTLER

S. J., MCMILLAN L.: Image-based visual hulls.
In Proceedings of SIGGRAPH 2000 (2000), Com-
puter Graphics Proceedings, Annual Conference Se-
ries, ACM, ACM Press / ACM SIGGRAPH, pp. 369–
374. 1, 2, 5

[MI] MINISSC-II: Scott edwards electronics inc.,
http://www.seetron.com/ssc.htm. 3

[Mor77] MORÉ J. J.: The levenberg-marquardt algorithm, im-
plementation and theory. G. A. Watson, editor, Numeri-
cal Analysis, Lecture Notes in Mathematics 630 (1977),
105–116. 5

[NTH02] NAEMURA T., TAGO J., HARASHIMA H.: Real-
time video-based modeling and rendering of 3d scenes.
IEEE Computer Graphics and Applications 22, 2
(2002), 66–73. 1, 2, 7

[SD97] SEITZ S. M., DYER C. R.: Photorealistic scene recon-
struction by voxel coloring. In Proc. of CVPR ’1997
(1997). 6

[SH99] SHUM H.-Y., HE L.-W.: Rendering with concen-
tric mosaics. In Proceedings of SIGGRAPH 1999

(1999), Computer Graphics Proceedings, Annual Con-
ference Series, ACM, ACM Press / ACM SIGGRAPH,
pp. 299–306. 1

[SHS99] SCHIRMACHER H., HEIDRICH W., SEIDEL H.-P.:
Adaptive acquisition of lumigraphs from synthetic
scenes. In EUROGRAPHICS 1999 (1999). 3

[SKC03] SHUM H.-Y., KANG S. B., CHAN S.-C.: Survey
of image-based representations and compression tech-
niques. IEEE Transaction on Circuit, System on Video
Technology 13, 11 (2003), 1020–1037. 1, 2

[SLS01] SCHIRMACHER H., LI M., SEIDEL H.-P.: On-the-
fly processing of generalized lumigraphs. In EURO-
GRAPHICS 2001 (2001). 1, 2

[SSH02] SLABAUGH G. G., SCHAFER R. W., HANS M. C.:
Image-based photo hulls. 2, 5

[Sze99] SZELISKI R.: Prediction error as a quality metric for
motion and stereo. In Proc. ICCV ’1999 (1999). 7

[Ved01] VEDULA S.: Image Based Spatio-Temporal Modeling
and View Interpolation of Dynamic Events. PhD thesis,
Carnegie Mellon University, 2001. 1

[WSLH02] WILBURN B., SMULSKI M., LEE H.-H. K.,
HOROWITZ M.: The light field video camera. In Pro-
ceedings of Media Processors 2002 (2002), SPIE Elec-
tronic Imaging 2002. 1

[YEBM02] YANG J. C., EVERETT M., BUEHLER C., MCMIL-
LAN L.: A real-time distributed light field camera.
In Eurographics Workshop on Rendering 2002 (2002),
pp. 1–10. 1, 3, 5, 6, 7

[YWB02] YANG R., WELCH G., BISHOP G.: Real-time
consensus-based scene reconstruction using commod-
ity graphics hardware. In Proc. of Pacific Graphics
2002 (2002). 1, 2, 3, 5

[ZC03a] ZHANG C., CHEN T.: Non-uniform sampling of
image-based rendering data with the position-interval
error (pie) function. In Visual Communication and Im-
age Processing (VCIP) 2003 (2003). 3

[ZC03b] ZHANG C., CHEN T.: Spectral analysis for sampling
image-based rendering data. IEEE Transaction on Cir-
cuit, System on Video Technology 13, 11 (2003), 1038–
1050. 1

[ZC03c] ZHANG C., CHEN T.: A system for active image-based
rendering. In IEEE Int. Conf. on Multimedia and Expo
(ICME) 2004 (2003). 3

[ZC04a] ZHANG C., CHEN T.: A survey on image-based
rendering - representation, sampling and compression.
EURASIP Signal Processing: Image Communication
19, 1 (2004), 1–28. 1

[ZC04b] ZHANG C., CHEN T.: View-dependent non-uniform
sampling for image-based rendering. In IEEE Int.
Conf. Image Processing (ICIP) 2004 (2004). 3

[Zha98] ZHANG Z.: A flexible new technique for camera cali-
bration. Technical Report, MSR-TR-98-71 (1998). 5

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

(i-a) (ii-a) (iii-a) (iv-a)

(i-b) (ii-b) (iii-b) (iv-b)

(i-c) (ii-c) (iii-c) (iv-c)

(i-d) (ii-d) (iii-d) (iv-d)

(i-e) (ii-e) (iii-e) (iv-e)

Figure 9: Scenes captured and rendered with our camera array (no camera motion). (i) Toys scene. (ii) Train scene. (iii) Girl
and checkerboard scene. (iv) girl and flowers scene. (a) Rendering with a constant depth at the background. (b) Rendering with
a constant depth at the middle object. (c) Rendering with a constant depth at the closest object. (d) Rendering with the proposed
method. (e) Multi-resolution 2D mesh with depth reconstructed on-the-fly. Brighter intensity means smaller depth.

c© The Eurographics Association 2004.

Cha Zhang & Tsuhan Chen / A Self-Reconfigurable Camera Array

(i-a) (ii-a) (iii-a) (iv-a)

(i-b) (ii-b) (iii-b) (iv-b)

(i-c) (ii-c) (iii-c) (iv-c)

(i-d) (ii-d)

(iii-d) (iv-d)

Figure 10: Scenes rendered by reconfiguring our camera array. (i) Flower scene, cameras are evenly spaced. (ii) Flower scene,
cameras are self-reconfigured (6 epochs). (iii) Santa scene, cameras are evenly spaced. (iv) Santa scene, cameras are self-
reconfigured (20 epochs). (a) The camera arrangement. (b) Reconstructed depth map. Brighter intensity means smaller depth.
(c) The CCV score of the mesh vertices and the projection of the camera positions to the virtual imaging plane (red dots).
Darker intensity means better consistency. (d) Rendered image.

c© The Eurographics Association 2004.

