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Abstract

Ensemble learning algorithms combine the re-
sults of several classifiers to yield an aggregate
classification. We present a normative evaluation
of combination methods, applying and extend-
ing existing axiomatizations from social choice
theory and statistics. For the case of multiple
classes, we show that several seemingly innocu-
ous and desirable properties are mutually satis-
fied only by a dictatorship. A weaker set of
properties admit only the weighted average com-
bination rule. For the case of binary classifi-
cation, we give axiomatic justifications for ma-
jority vote and for weighted majority. We also
show that, even when all component algorithms
report that an attribute is probabilistically inde-
pendent of the classification, common ensemble
algorithms often destroy this independence infor-
mation. We exemplify these theoretical results
with experiments on stock market data, demon-
strating how ensembles of classifiers can exhibit
canonical voting paradoxes.

1. Introduction

A recent trend in machine learning is to aggregate the out-
puts of several learning algorithms together to produce
a composite classification (Dietterich, 1997). Under fa-
vorable conditions, ensemble classifiers provably outper-
form their constituent algorithms, an advantage born out
by much empirical validation. Yet there does not seem to
be a single, obvious way to combine classifiers—many dif-
ferent methods have been proposed and tested, with none
emerging as the clear winner. Most evaluation metrics

center on generalization accuracy, either deriving theoreti-
cal bounds (Schapire, 1990; Freund & Schapire, 1999) or
(more commonly) comparing experimental results (Bauer
& Kohavi, 1999; Breiman, 1996; Dietterich, in press; Fre-
und & Schapire, 1996).

We take instead a normative approach, informed by results
from social choice theory and statistical belief aggregation.
First, we identify several properties that an ensemble al-
gorithm might ideally possess, and then characterize the
implied form of the combination function. Section 4 exam-
ines the case of more than two classes. We show that, under
a set of seemingly mild and reasonable conditions, no true
combination method is possible. The aggregate classifica-
tion is always identical to that of only one of the compo-
nent algorithms. The analysis mirrors Arrow’s celebrated
Impossibility Theorem, which shows that the only voting
mechanism that obeys a similar set of properties is a dicta-
torship (Arrow, 1963). Under slightly weaker demands, we
show that the only possible form for the combination func-
tion is a weighted average of the constituent classifications.

Section 5 considers the special case of binary classification.
Based on May’s (1952) seminal work, we present a set of
axioms that necessitate the use of simple majority vote to
combine classifiers. We then extend this result, deriving an
axiomatic justification for the weighted majority vote. Ma-
jority and weighted majority are two of the most common
methods used for classifier combination (Dietterich, 1997).
One contribution of this paper is to provide formal justifi-
cations for them.

Section 6 explores the independence preservation proper-
ties of common ensemble learning algorithms. Suppose
that, with some attribute values missing, all of the con-
stituent algorithms judge one attribute to be statistically in-



dependent of the classification. We demonstrate that this
independence is generally lost after combination, render-
ing the aggregate classification statistically dependent on
the attribute in question.

Section 7 presents empirical evidence of violations of the
various axioms. We show that an ensemble of neural
networks—trained to predict stock market data—can gen-
erate counterintuitive results, reminiscent of so-called vot-
ing paradoxes in the social choice literature. Section 8
summarizes and discusses future work.

2. Ensemble Learning

We present a very brief overview of ensemble learning;
see (Dietterich, 1997) for an excellent survey. Represen-
tative algorithms include bagging (Breiman, 1996), boost-
ing (e.g., ADABOOST (Freund & Schapire, 1999)), and a
method based on Error-Correcting Output Codes (ECOC)
(Dietterich & Bakiri, 1995). Ensemble algorithms gener-
ally proceed in two phases: (1) generate and train a set of
weak learners, and (2) aggregate their classifications.

The first step is to construct component learners of suffi-
cient diversity (Hansen & Salamon, 1990). One common
technique is to subsample the training examples, either ran-
domly with replacement (Breiman, 1996), by leaving out
random subsets (as in cross-validation), or by an induced
distribution meant to magnify the effect of difficult training
examples (Freund & Schapire, 1999). Another technique
bases each learner’s predictions on different input features
(Tumer & Ghosh, 1996). The method of Error-Correcting
Output Codes (ECOC) generates classifiers by having each
learn whether an example falls within a randomly chosen
subset of the classes. Another approach injects randomness
into the training algorithms themselves. These four tech-
niques apply to arbitrary classifier algorithms—there are
also many algorithm-specific techniques. And, of course, it
is possible to create an ensemble by mixing and matching
different techniques for different classifiers.

After generating and training a set of weak learners, the
ensemble algorithm combines the individual learners’ pre-
dictions into a composite prediction. The choice of com-
bination method is the focus of this paper. Common meth-
ods can be categorized loosely into two categories: those
that combine votes, and those that can combine confi-
dence scores. The former type includes plurality vote 1 and
weighted plurality; the latter includes stacking, serial com-
bination, weighted average, and weighted geometric aver-
age.

Bagging and ECOC are examples of algorithms that use
1This is the familiar “one person, one vote” procedure where

the candidate receiving the most votes wins. We reserve majority
vote to refer to the special case of two candidates.

plurality vote. The ensemble’s chosen class is simply that
which is predicted most often by the individual learners.
Weighted plurality is a generalization of plurality vote,
where each algorithm’s vote is discounted (or magnified)
by a multiplicative weight; classes are then ranked accord-
ing to the sum of the weighted votes they receive. Weights
can be chosen to correspond with the observed accuracy of
the individual classifiers, using Bayesian techniques, or us-
ing gating networks (Jordan & Jacobs, 1994), among other
methods. The ADABOOST algorithm computes weights in
an attempt to minimize the error of the final classification.

Stacking turns the problem of finding a good combination
function into a learning problem itself (Breiman, 1996;
Lee & Srihari, 1995; Wolpert, 1992): The constituent al-
gorithms’ outputs are fed to a meta learner’s inputs; the
meta learner’s output is taken as the ensemble classifica-
tion. Serial combination uses one learner’s top � choices
to reduce the space of candidate classes, passing the sim-
plified problem onto the next learner, etc. (Madhvanath &
Govindaraju, 1995). Weighted algebraic (or geometric) av-
erage computes the aggregate confidence in each class as a
weighted algebraic (or geometric) average of the individual
confidences in that class (Jacobs, 1995; Tax et al., 1997).
Some variants of boosting employ weighted average com-
bination (Drucker et al., 1993).

3. Notation

Let � � ���� ��� � � � � ��� denote a vector of � attribute
variables with domain� � �� � � � � ���. Denote a cor-
responding vector of values (i.e., instantiated variables) as
� � ���� ��� � � � � ��� � �. Each vector � is categorized
into one of � classes, ��� ��� � � � � �� . There are 	 clas-
sifiers, or learners, which attempt to learn a functional map-
ping from instantiated attributes to classes. Different types
of classifiers return different amounts of information—
some return a single vote for one predicted class, others
return a ranking of the classes, and still others return confi-
dence scores for all classes.2 Our contention is that confi-
dence information is usually available, whether explicitly
(e.g., from neural net activation values, or Bayesian net
or decision tree likelihoods) or implicitly from observed
performance on the training data. Thus we denote learner

’s classification as an assignment ����� � � � � ��� � of con-
fidence scores to the classes, where ��� � �. Each classi-
fier is a function �� � � � �� . When confidence mag-
nitude information is truly unavailable, we adopt Lee and
Srihari’s (1995) conventions for encoding classifications:
A single vote for class �� is represented as a classification
vector with a 1 in the 
th position and zeros elsewhere; a

2These three output conditions correspond to Lee and Srihari’s
(1995) definitions of Type I, Type II, and Type III classifiers, re-
spectively.



rank list of the classes is represented as a vector with a �
in the top class position, �� ��� in the second place po-
sition, � � ��� in the third place position, etc. Note that,
technically, these two encodings introduce unfounded com-
parative information. For example, a vote for � � conveys
only that all other classes are less preferred than �� , but
are otherwise incomparable among themselves. Variants of
the limitative theorems in this paper are also possible using
more faithful representations of votes and rankings.

An ensemble combination function � accepts an 	 -tuple of
classifications and returns a composite classification; that
is, � � � � �� , where � � ��� �

�
. Thus, assuming

� � ��� �
�

, the aggregate classification of arbitrary clas-
sifiers ��� � � � � �� on an input � is �������� � � � � ������.

For a given input vector � � �, we find it convenient to
define � as the 	 �� matrix of all learners’ confidence
scores for all classes. That is, ��� is learner 
’s confidence
that � is in class 
. Let �� be an 	 -dimensional row vec-
tor with a 1 in the 
th position and zeros elsewhere; simi-
larly, let �� be an � -dimensional column vector with a 1
in the 
th position and zeros elsewhere. Then � �� is the

th row of �, and ��� is the 
th column of �. In other
words, ��� � ����� is learner 
’s classification, and ���
is the vector of all confidence scores for class 
. Note that
����� � ��� . We denote the ensemble classification by
�� � ����� ���� � � � � ��� � � ����. We write � � � to
indicate that every component of � is strictly greater than
the corresponding component of �.

4. Multiple Classes

In this section, we propose a normative basis for ensemble
learning when � 	 �. Our treatment is similar in spirit
to Pennock, Horvitz and Giles’s (in press) analysis of the
axiomatic foundations of collaborative filtering.

4.1 An Impossibility Theorem

We present five properties adopted from social choice the-
ory, argue their merits in the context of ensemble learning,
and describe which existing algorithms exhibit which prop-
erties. Each property places a constraint on the allowable
form of �.

Property 1 (UNIV) Universal domain. � � ��� �
�

.

UNIV requires that � be defined for any combination of
classification vectors. Since an arbitrary classifier may re-
turn an arbitrary classification, it seems only reasonable
that � should return some result in all circumstances. All
existing ensemble combination methods, to our knowledge,
are defined for all possible classifier output patterns.

Property 2 (ND) Non-dictatorship. There is no dictator

 such that, for all classification matrices � and all classes


 and �, ��� � ��� 
 ��� � ���.

In words, � is not permitted to completely ignore all but
one of the classifiers, irrespective of �. We consider the de-
sirability of this axiom to be self-evident, since the whole
point of ensemble learning is to improve upon the perfor-
mance of the individual classifiers.

Property 3 (WP) Weak Pareto principle. For all classes

 and �, ��� � ��� 
 ��� � ���.

WP captures the natural ideal that, if all classifiers are
strictly more confident about one class than another, then
this relationship should be reflected in the ensemble clas-
sification. Essentially all voting schemes (e.g., plurality,
pairwise majority, Borda count) satisfy WP. Weighted plu-
rality and weighted averaging methods obey WP when all
weights are nonnegative (and at least one is positive). If
a particular classifier’s predictions are bad enough, some
combination functions (e.g., weighted average with nega-
tive weights, or stacking) may establish a negative depen-
dence between that classifier’s opinion and the ensemble
result, and thus violate WP. However, researchers typically
strive to generate ensembles of algorithms that are as accu-
rate as possible for a given amount of diversity (Dietterich,
1997; Dietterich, in press).

Property 4 (IIA) Independence of irrelevant
alternatives. Consider two classification matrices ����.

If ��� � �
�
�� and ��� � �

�
�� �

then � ��� � ���� � ��� � ����

Under IIA, the final relative ranking between two classes
cannot depend on the confidence scores for any other
classes. For example, suppose that, in classifying a fruit as
either an apple, a banana, or a pear, the ensemble concludes
that “apple” is most likely. Now imagine that we learn one
piece of categorical knowledge (and nothing else): the fruit
is not a pear. Every classifier diminishes its confidence in
“pear”, but leaves its relative confidences between “apple”
and “banana” untouched. Intuitively, the ensemble should
not suddenly conclude that the fruit is a banana; indeed, ad-
mitting such a reversal is contrary to most formal reasoning
procedures, including Bayesian reasoning. Seemingly un-
founded reversals like this are precisely what IIA guards
against. Weighted averaging methods do satisfy IIA, al-
though plurality vote, and most other voting techniques,
can violate it. In Section 7, we illustrate the paradoxical
results than can occur when IIA is not met.

Property 5 (SI) Scale invariance. Consider two classifi-
cation matrices ����. If ���� � ������ �� for all 
 and
for any positive constants �� and any constants ��, then
���� � ���� � ��� � ��� for all classes 
 and �.

Different classifiers (especially those based on different
learning algorithms) may report confidences using differ-
ent scales—one, say, ranging from 0 to 1; another from



-100 to 100. Even if they share a common range, one clas-
sifier may tend to report confidence scores in the high end
of the scale, while another tends to use the low end. SI re-
flects the intuition that all classifiers’ scores should be nor-
malized to a common scale before combining them. One
natural normalization is:

���
� �

�����	
�����

����������	
�����
� (1)

This transforms all confidence scores to the 
�� �� range, fil-
tering out any dependence on multiplicative (� �) or additive
(��) scale factors.3 Lee and Srihari justify a similar normal-
ization simply because “each output [classification] vector
is defined over a different space” (1995, p.42). Ensemble
combination schemes based on votes or rankings are by
definition invariant to scale; weighted averaging methods,
on the other hand, are not.

Different researchers favor differing subsets of these five
properties, at least implicitly via their choice of combina-
tion methods. Roberts (1980) proves that no combination
algorithm whatsoever can “have it all”.

Proposition 1 (Impossibility) If � � �, no function � si-
multaneously satisfies UNIV, ND, WP, IIA, and SI.

Proof: Follows from Sen’s (1986) or Roberts’s (1980) ex-
tensions of Arrow’s (1963) original theorem.

4.2 Weighted Average Combination

We might weaken SI, allowing the final classification to
depend on the magnitudes of confidence differences, but
not on additive scale shifts.

Property 6 (TI) Translation invariance. Consider two
classification matrices ����. If ���� � ����� �� for all 

and for any (single) positive constant � and any constants
��, then � ��� � ���� � ��� � ��� for all classes 
 and �.

TI can be enforced by an additive normalization, or align-
ing all classifiers’ scores with a common reference point
(e.g., ���� � �����	
�����).

This weakening is sufficient to allow for a non-dictatorial
combination function �. Moreover, the only such � com-
putes the ensemble confidence in each class as a weighted
average of the component learners’ confidences in that
class.

Proposition 2 (Weighted average) If � � �, then the
only function � satisfying UNIV, WP, IIA, and TI is
such that ���� � ���� 
 ��� � ���, where
� � ���� ��� � � � � �� � is a row vector of 	 nonnegative
weights, at least one of which is positive. If � is also con-
tinuous, then ���� � ���� � ��� � ���.

3If �������� � �������� then set ���� to �.

Proof: Follows from Roberts’s (1980) Theorem 2.

Certainly there may exist classification domains where
some of these properties do not seem appropriate or jus-
tified. However, we believe that, because the properties are
very natural, understanding the limitations that they place
on the space of ensemble learning algorithms helps to clar-
ify what potential algorithms can and cannot do.

5. Binary Classification

Now consider the subset of learning problems where � �

�
 � �. In this case, the impossibility outlined in Propo-
sition 1 disappears; the five properties UNIV, WP, IIA, SI,
and ND are in fact perfectly compatible. For example, all
five are satisfied by the standard majority vote:

���� � ���� �

�����
��
���

���� � ����

����� (2)

where

��� �

��
�

� � if � � �
� � if � � �

�� � if � � �
�

Note that the properties are necessary but not sufficient for
characterizing majority vote. Proposition 3 below provides
one sufficient characterization.

5.1 Majority Vote

The use of majority vote for ensemble learning is typi-
cally motivated by its simplicity, its observed effectiveness,
and its perceived fairness when the constituent algorithms
are essentially “created equal” (Dietterich, 1997). For ex-
ample, the component algorithms employed for bagging,
ECOC, and randomization are generally a priori indistin-
guishable, and (2) is typically used to combine classifica-
tions in these cases.

May (1952) provides an axiomatic justification for major-
ity vote. His treatment is directly applicable when the con-
stituent algorithms return only votes (equivalent to rankings
since � � �), rather than arbitrary confidence scores. We
now generalize his axioms and his characterization theorem
to apply to confidence scores.

Property 7 (NTRL) Neutrality.

If � ������ ����� � � � � ����� ����� � ����� ����

then � ������ ����� � � � � ����� ����� � ����� �����

Under NTRL, the effect of every algorithm reversing its
vote is simply to reverse the aggregate vote. NTRL estab-
lishes a symmetry between the two class names, �� and
��, ruling out any a priori bias for one class name over the
other. Indeed, the subscripts 1 and 2 are assigned to the



two classes arbitrarily; NTRL simply ensures that the final
result does not depend on how the two classes are indexed.
NTRL is a strictly stronger constraint than IIA.

Property 8 (SYM) Symmetry.

� ������ ����� � � � � ����� �����

� � ������� ������ � � � � ������ ������

where �
�� 
�� � � � � 
�� is any permutation of
��� �� � � � � 	�.

SYM is stronger than ND and is sometimes referred to as
anonymity. Whereas NTRL implies an invariance under
class name reversal, SYM enforces an invariance under any
permutation of algorithm names, or subscripts. It simply
insists that our numbering scheme has no effect on the out-
put of the combination rule. Note that SYM does not, by
itself, rule out a posterior bias based on the classifiers’ re-
ported confidence scores.

Property 9 (POSR) Positive responsiveness. Consider
two classification matrices ����. If ���� � ���� � ��� ��,
and ���� � ��� for all 
 �� �, and ���� is such that either

1. � ��� � ��� and � ��� � ���, or

2. � ��� � ��� and � ��� � ���,

then �� ��� � ����� � �.

If the current aggregate vote is tied (���� � ���� � �),
then, under POSR, any change by any algorithm 
 in a pos-
itive direction for �� (i.e., ��� increases or ��� decreases)
breaks this deadlock, yielding ��� � ���. Moreover, any
change of one of the constituent votes that strictly favors� �

cannot swing the ensemble vote in the opposite direction,
from �� to undecided or to ��. Combined with NTRL,
POSR is a stronger version of WP, but is still quite rea-
sonable. Note that, because there are only two classes, if
any learner’s votes are observed to be negatively correlated
with the correct classification (and, for example, a weighted
average method assigns a negative weight), then its votes
can simply be reversed, rendering POSR (and a nonnega-
tive weight) appropriate again.

Proposition 3 (Majority vote) An aggregation function �
is the majority vote (2) if and only if it satisfies UNIV, SI,
NTRL, SYM, and POSR.

Proof: Choose scaling parameters as in Equation 1: � � �
�
��� � ���
�

�� (or if ��� � ���, set �� � �) and �� �
����	
����� ����. Let ���� � ������ �� for all 
. Then

������ �
�
��� �

��
�

��� �� � if ��� � ���
��� �� � if ��� � ���
��� �� � if ��� � ���

�

That is, with only two classes, and two degrees of freedom
in choosing the scaling constants, SI effectively restricts
the domain� of � to votes. May (1952) proves that NTRL,
SYM, and POSR are necessary and sufficient conditions for
majority vote when inputs are votes. We refer the reader to
May’s article for the remainder of the proof.

Notice that, when the component algorithms return only
votes, and no other information is available, SI is a vacuous
requirement; in this setting, Proposition 3 becomes a very
compelling normative argument for the use of majority vote
for classifier combination.

5.2 Weighted Majority Vote

When the component algorithms do return meaningful con-
fidence scores, SI may seem overly severe, as it essentially
strips away magnitude information. Confidence scores may
reflect many sources of information—for example, the acti-
vation levels of a neural network’s output nodes, the poste-
rior probabilities of a Bayesian network’s output variables,
or an algorithm’s observed performance on the training
data (as is used in Boosting). Regardless of its origin we
interpret ��� � ��� as a prediction in favor of class one,
��� � ��� as a prediction in favor of class two, and the
magnitude of the difference in confidence scores 
� ������

as the weight of algorithm 
’s conviction.

Then we define the weighted majority vote as

���� � ���� �

�����
��
���


��� � ���
 � ���� � ����

�����
�

�����
��
���

��� � ���

����� � (3)

Property 10 (SSYM) Separable symmetry.

� ������ ����� � � � � ����� �����

� � ������� ������ � � � � ������ ������

where �
�� 
�� � � � � 
�� and �
�� 
�� � � � � 
�� are any two
permutations of ��� �� � � � � 	�.

SSYM is a stronger constraint than SYM. Under SSYM,
the ensemble classification depends on the set of confi-
dence scores for class one and the set of confidence scores
for class two, but not on the identity of the algorithms that
return those scores.

Proposition 4 (Weighted majority vote) The only aggre-
gation function � that satisfies UNIV, TI, NTRL, SSYM, and
POSR is the weighted majority vote (3).

Proof: Under UNIV and NTRL, � � 	 implies that
��� � ���. Thus, under POSR, if ��� � ��� and



��� � ��� � � for all 
 �� 	 , then ��� � ���. Simi-
larly, because of NTRL, if ��� � ��� and ��� � ��� � �
for all 
 �� 	 , then ��� � ���. Given an arbitrary clas-
sification matrix �, we can make the following invariance
transformations. We invoke TI and SSYM alternately and
repeatedly as follows:

�������� ����� ����� ����� ����� ����� � � ��� �

������� � ���� ��� ��� ��� � ����� ����� ����� � � ��� �

������ ��� ���� � ���� ��� � ����� ����� ����� � � ��� �

������ ��� ���� � ��� � ��� � ���� ���

��� ��� � ����� � � ��� �

� � � �

�

��
��� ��� ��� ��� ��� ��� � � � �

�
��
���

��� � ���� �

���

Thus if
	

� ��� � ��� is greater than (less than, equal to)
zero, then ��� � ��� is greater than (less than, equal to)
zero, precisely the weighted majority vote (3).

6. Independence Preservation

Consider the learners’ predictions when asked to evaluate
an example �� with some missing values. Without loss
of generality, let ��� ��� � � � � �� be the attribute variables
with missing values, and let ����� � � � � �� be the vari-
ables with known values. Let ��

�� � ������� � � � � �
�
��

denote the vector of known values. If we define a prior
joint probability distribution ����� over all possible com-
binations of attribute values, then we can compute each
learner’s induced posterior distribution over classifications
given the known values ��

�� :

�������
�
�
��� �

�
��������������

	���
��
��

�����

���

������

Similarly, we can compute the ensemble’s posterior distri-
bution over classifications:

������
�
�
��� �

�
��������������

��	���
��
��

�
���
	���
��
��

�����

���

������

Now we can ascertain whether some attributes are statisti-
cally independent of the classification. Again without loss
of generality, select attribute ���� for this purpose. What
if every constituent algorithm agrees that���� is indepen-
dent of the classification, given the remaining known values
������ � � � � �

�
�? It seems natural and desirable that such a

unanimous judgment of “irrelevance” should be preserved
in the ensemble distribution. The following property for-
mally captures this ideal:

Table 1. Example where plurality vote violates IPP.

�� �� �� ��� ��� ��� ��

0 0 0 ��� �� ��� �� ��� �� ��� ��
0 1 0 ��� �� ��� �� ��� �� ��� ��
1 0 0 ��� �� ��� �� ��� �� ��� ��
1 1 0 ��� �� ��� �� ��� �� ��� ��
������� ��
�� � �� 0.75 0.5 0.5 0.5

�� �� �� ��� ��� ��� ��

0 0 1 ��� �� ��� �� ��� �� ��� ��
0 1 1 ��� �� ��� �� ��� �� ��� ��
1 0 1 ��� �� ��� �� ��� �� ��� ��
1 1 1 ��� �� ��� �� ��� �� ��� ��
������� ��
�� � �� 0.75 0.5 0.5 0.75

Property 11 (IPP) Independence preservation property.

If �������
�
�
��� � �������
�

�
���� � � � � �

�
�� for all 


then ������
�
�
��� � ������
�

�
���� � � � � �

�
���

Table 1 presents a constructive proof that plurality vote
fails to satisfy IPP. Three attributes each have domain
�� � ��� ��, and the prior distribution over attribute val-
ues ����� � ��� is uniform. Variables �� and �� have
missing values (i.e., � � �). Each of three constituent
algorithms agree that the classification is independent of
��. But combination by plurality vote destroys this in-
dependence: According to the ensemble, the classification
does in fact depend on the value of ��. Similar examples
demonstrate that algebraic and geometric averages also vi-
olate IPP. It remains an open question whether any rea-
sonable ensemble combination function can satisfy IPP.
Results from statistics concerning generalized variants of
IPP are mostly negative: No acceptable aggregation func-
tion has been found that preserves independence (Genest &
Zidek, 1986), and several impossibility theorems severely
restrict the space of potential candidates (Genest & Wag-
ner, 1987; Pennock & Wellman, 1999).

7. Experimental Observations

We have shown, in theory, that the class of potential ensem-
ble algorithms is severely limited if we want a small num-
ber of intuitive properties satisfied. One might argue that
situations where these properties come into conflict may
never arise in practice if we use popular aggregation meth-
ods. The purpose of this section is to show by example that,
in fact, such conflicts do occur in practice. Specifically, we
illustrate the paradoxical nature of some ensemble classi-
fication results in a stock market prediction domain, when
the voting rule � fails to satisfy either IIA or transitivity.

We report results of empirical tests of an ensemble learner



Table 2. Six learned vote patterns, and the number of neural net-
works that learned each. An instance of the Borda paradox.

rank order # rank order #

UP � SAME � DOWN 6 DOWN � SAME � UP 5
UP � DOWN � SAME 1 SAME � UP � DOWN 5
DOWN � UP � SAME 3 SAME � DOWN � UP 1

trained on stock market data. We retrieved daily clos-
ing prices of the Dow between 1/20/97 and 1/18/00 from
MSN Investor.4 From this, we generated an approxi-
mately zero-mean and unit-variance time series of the form
��
 � ����
 �
 � �
 �
����, where �
 is the Dow’s price
on day �. The attributes are � � ��
��� �
��� � � � � �
���.
The classes are discrete intervals of �
 such that �� � UP

� ��
 � �����, �� � DOWN � ��
 � ������, and �� �
SAME � ������ � �
 � �����. The intervals are such that
each class frequency is roughly ���. The component learn-
ing algorithms are backpropagation neural networks built
using Flake’s (1999) NODELIB code library; each consists
of an input layer of five nodes, a hidden layer of from one to
seven nodes, and an output layer of three nodes. Diversity
is due only to differences in the number of hidden nodes
and to randomization in the training algorithm. The time
series �
 was divided into a training set of 562 days and a
test set of 187 days.

Table 2 shows the learned class rankings for twenty one
networks (three each with �� �� � � � � � hidden nodes) on test
day 7/14/99. If we use standard plurality vote to combine
predictions, then DOWN wins with 8 votes, UP places in
second with 7 votes, and SAME comes in last with 6 votes.
By this measure we should short the Dow. But are we
sure? Since SAME is presumably the least likely outcome,
let’s focus on the relative likelihoods between only DOWN

and UP.5 If we ignore SAME and recompute the vote, we
find that UP actually beats DOWN by 12:9! This is a vivid
demonstration that plurality vote violates IIA; the prefer-
ence between UP and DOWN depends on SAME. So should
we invest in the Dow? Well, the other two pairwise ma-
jority votes reveal that SAME beats UP by 11:10 and SAME

beats DOWN by 12:9. Then according to the pairwise ma-
jority, SAME wins against both other classes, UP comes in
second, and DOWN is last, completely reversing the original
order predicted by the three-way plurality vote. This is an
illustration of the so-called Borda voting paradox, named
after the eighteenth century scientist who discovered it.

Table 3 demonstrates another classic voting paradox, due
4http://moneycentral.msn.com/investor
5Or we may have received outside information that discounts

the likelihood of SAME.

Table 3. Confidence scores and corresponding vote patterns for
three neural networks. An instance of the Condorcet paradox.


 ��� ��� ��� rank order

1 -0.33 -0.41 -0.25 SAME � UP � DOWN

2 -0.45 -0.25 -0.27 DOWN � SAME � UP

3 -0.31 -0.35 -0.37 UP � DOWN � SAME

to Condorcet, one of Borda’s peers. The table lists the ac-
tivation values (confidence scores) of three networks (with
one, two, and three hidden nodes) on test day 4/23/99. Plu-
rality vote is tied, since each algorithm ranks a different
class highest. What about pairwise majority vote? In this
case, SAME beats UP by 2:1, and UP beats DOWN by 2:1. So
is SAME our predicted outcome? Not necessarily—DOWN

beats SAME, also by 2:1. We see that pairwise majority
vote (which actually satisfies all five properties from Propo-
sition 1) can return cyclical predictions, a violation of our
generic definition of a classification �� , which assumes
that aggregation returns a transitive ordering of classes.

These two “paradoxes” illustrate the undesirable conse-
quences of violating some of the basic properties of � de-
fined earlier. The examples also constitute an existence
proof that some of the same counterintuitive outcomes that
have perplexed social scientists for centuries can and do
occur in the context of ensemble learning.

8. Conclusion

We identified several properties of combination functions
that social choice theorists and statisticians have found
compelling, and argued their applicability in the context of
ensemble learning. We cataloged common ensemble meth-
ods according to the properties they do and do not satisfy,
and showed that no combination function can possess them
all. We provided axiomatic justifications for weighted av-
erage combination, majority vote, and weighted majority
vote. We described how common aggregation methods fail
to respect unanimous judgments of independence. Finally,
we exemplified the fundamental and unavoidable tradeoffs
among the various properties using an ensemble learner
trained on stock market data.

Drucker et al. (1993) present empirical evidence that
weighted average outperforms plurality vote in some cir-
cumstances. Future work will examine whether the ax-
iomatic framework developed in this paper can aid in de-
riving theoretical bounds on the performance of weighted
average and other combination rules. We also plan to ex-
plore normative justifications for individual classifiers, and
investigate whether, in some cases, a complex individual



classifier might reasonably be interpreted as an ensemble
of simpler constituent classifiers.
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