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Abstract. Recently, there has been an increasing number of depth cam-
eras available at commodity prices. These cameras can usually capture
both color and depth images in real-time, with limited resolution and
accuracy. In this paper, we study the problem of 3D deformable face
tracking with such commodity depth cameras. A regularized maximum
likelihood deformable model fitting (DMF) algorithm is developed, with
special emphasis on handling the noisy input depth data. In particular,
we present a maximum likelihood solution that can accommodate sensor
noise represented by an arbitrary covariance matrix, which allows more
elaborate modeling of the sensor’s accuracy. Furthermore, an `1 regu-
larization scheme is proposed based on the semantics of the deformable
face model, which is shown to be very effective in improving the tracking
results. To track facial movement in subsequent frames, feature points
in the texture images are matched across frames and integrated into the
DMF framework seamlessly. The effectiveness of the proposed method is
demonstrated with multiple sequences with ground truth information.

1 Introduction

Tracking non-rigid objects, in particular human faces, is an active research area
for many applications in human computer interaction, performance-driven facial
animation, and face recognition. The problem is still largely unsolved, as usually
for 3D deformable face models there are dozens of parameters that need to be
estimated from the limited input data.

A number of works in the literature have focused on 3D deformable face
tracking based only on videos. There are mainly two categories of algorithms:
(1) appearance based, which uses generative linear face appearance models such
as active appearance models (AAMs) [1] and 3D morphable models [2] to capture
the shape and texture variations of faces, and (2) feature based, which uses active
shape models [3] or other features [4] for tracking. Appearance based algorithms
may suffer from insufficient generalizability of AAMs due to lighting and texture
variations, while feature based algorithms may lose tracking due to the lack of
semantic features, the occlusions of profile poses, etc.

Another large body of works considered fitting morphable models to 3D scans
of faces [5–9]. These 3D scans are usually obtained by laser scanners or structured
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(a) (b) (c) 

Fig. 1. Data captured by a commodity depth camera. (a) Texture image; (b) depth
image; (c) enlarged face region rendered from another viewpoint.

light systems, which have very high quality. Fitting these high quality range data
with a morphable face model usually involves the well-known iterative closest
point (ICP) algorithm [10] and its variants [11], and the results are generally
very good. The downside, however, is that these capturing systems are usually
very expensive to acquire or operate.

Recently, depth cameras based on time-of-flight or other principles became
available at commodity prices, such as 3DV systems and Canesta. Fig. 1 shows
some captured data from our test depth camera, which derives depth information
from infrared light patterns and triangulation. The camera is capable of recording
both texture and depth images with 640×480 pixels resolution at 30 frames per
second (fps). In general the depth information is very accurate, though a closer
look at the face region (Fig. 1(c)) shows that it is still much noisier than laser
scanned results.

In this paper, we propose a regularized maximum likelihood deformable
model fitting (DMF) algorithm for 3D face tracking with a commodity depth
camera. Compared with existing approaches, this paper has two major contribu-
tions. First, unlike most previous works on DMF, we do not assume an identity
covariance matrix for the depth sensor noise. This leads to a more general maxi-
mum likelihood solution with arbitrary noise covariance matrices, which is shown
to be effective for our noisy depth data. Second, the noisy depth data also re-
quire regularization in the ICP framework. We propose a novel `1 regularization
scheme inspired by the semantics of our deformable face model, which improves
the tracking performance significantly.

2 Related Work

There is a large amount of literature in facial modeling and tracking. We refer
the reader to the survey by Murphy-Chutorian and Trivedi [12] for an overview.

Many models have been explored for face animation and tracking. Parametric
models use a set of parameters to describe the articulation of the jaw, eyebrow
position, opening of the mouth, and other features that comprise the state of
the face [13]. Physics-based models seek to simulate the facial muscle and tis-
sue [14]. Blanz and Vetter [2] discovered that the manifold of facial expression
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and appearance can be effectively modeled as a linear combination of exemplar
faces. This morphable model is computed from a large database of registered
laser scans, and this approach has proven useful for face synthesis [2], expression
transfer [8], recognition [5], and tracking [15]. For tracking, a subject-specific
morphable model can be constructed [9], which requires each subject to un-
dergo an extensive training phase before tracking can be performed. In contrast,
we use a generic morphable model constructed by an artist, which is first fit
to the subject during initialization. Only a few frames with neutral faces are
required to automatically compute the subject-specific appearance parameters
before tracking.

Several approaches have used range data for face modeling and tracking. Zhu
and Fujimura [6] used range data as an additional image channel in optical flow-
based tracking. Methods that rely solely on visual appearance will be sensitive
to lighting conditions and changes, whereas many ranging techniques are unaf-
fected by lighting conditions. Many methods, such as that of Zhang et al. [7],
used structured light or other active ranging techniques. The structured light
systems in [7–9] required a camera, a projector, and in some cases synchroniza-
tion circuitry. This hardware is not uncommon, but still expensive to acquire
and operate. This paper will study deformable face tracking with a commod-
ity depth camera, which is projected to cost under $100 in the next few years,
and has lower resolution and less accuracy than structured light systems. A key
part of our method is thus to model the sensor noise and add regularization to
improve the tracking performance. Note uncertainty on measurements has been
considered in other contexts such as motion analysis for mobile robot naviga-
tion [16], though we are not aware of similar work in the context of deformable
face tracking.

Iterative closest point (ICP) is a common approach for aligning shapes, such
as range images of faces. Besl et al. [10] proposed the ICP algorithm for rigid
shape alignment, and variants have been proposed for nonrigid alignment [11].
Lu and Jian [17] used ICP for face matching, and applied ICP in deformable
model fitting as an intermediate step assuming the deformation is fixed. ICP
has also been used in face recognition [18] and real-time tracking [9]. Note in
model fitting and tracking applications, regularization is a common technique
to stabilize the final results [11, 9]. However, the `1 regularization that will be
introduced in Section 4.5 has not be used in previous works, and its performance
improvement is rather significant.

3 Linear Deformable Model

We use a linear deformable model constructed by an artist to represent pos-
sible variations of a human face [19], which could also be constructed semi-
automatically [2]. The head model is defined as a set of K vertices P and a set
of facets F . Each vertex pk ∈ P is a point in R3, and each facet f ∈ F is a
set of three or more vertices from the set P. In our head model, all facets have
exactly 3 vertices. In addition, the head model is augmented with two artist-
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(a) (b) (c) (d) (e) 

Fig. 2. Example deformations of our 3D face model. (a)(b) Static deformations;
(c)(d)(e) action deformations.

defined deformation matrices: the static deformation matrix B and the action
deformation matrix A. According to weighting vectors s and r, they transform
the mesh linearly into a target head model Q as follows:




q1

...
qK


 =




p1

...
pK


 + A




r1

...
rN


 + B




s1

...
sM


 , (1)

where M and N are the number of deformations in B and A, αm ≤ sm ≤
βm,m = 1, · · · ,M , and θn ≤ rn ≤ φn, n = 1, · · · , N are ranges specified by
the artist. The static deformations in B are characteristic to a particular face,
such as enlarging the distance between eyes, or extending the chin. The action
deformations include opening the mouth, raising eyebrows, etc. Some example
deformations of our model are shown in Fig. 2.

4 Regularized Maximum Likelihood DMF

4.1 Problem Formulation

Let P represent the vertices of our head model, and G represent the 3D points
acquired from the depth camera. We want to compute the rotation R and trans-
lation t between the head model and the depth camera, as well as the deformation
parameters r and s. We formulate the problem as below.

Following the procedure of ICP [10], let us assume that in a certain iter-
ation, a set of point correspondences between the deformable model and the
depth image is available. For each correspondence (pk,gk), gk ∈ G, we have the
equation:

R(pk + Akr + Bks) + t = gk + xk (2)

where Ak and Bk represent the three rows of A and B that correspond to
vertex k. xk is the depth sensor noise, which can be assumed to follow a zero
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mean Gaussian distribution N (0,Σxk
). The maximum likelihood solution of the

unknowns R, t, r and s can be derived by minimizing:

J1(R, t, r, s) =
1
K

K∑

k=1

xT
k Σ−1

xk
xk, (3)

where xk = R(pk + Akr + Bks) + t − gk. r and s are subject to inequality
constraints, namely, αm ≤ sm ≤ βm,m = 1, · · · ,M , and θn ≤ rn ≤ φn, n =
1, · · · , N . Additional regularization terms may be added to the above optimiza-
tion problem, which will be discussed further in Section 4.5.

A useful variation is to substitute the point-to-point distance with point-
to-plane distance [20]. The point-to-plane distance allows the model to slide
tangentially to the surface, which speeds up convergence and makes it less likely
to get stuck in local minima. Distance to the plane can be computed using
the surface normal, which can be computed from the head model based on the
current iteration’s head pose. Let the surface normal of point pk in the head
model coordinate be nk. The point-to-plane distance can be computed as:

yk = (Rnk)T xk, (4)

The maximum likelihood solution is thus obtained by minimizing:

J2(R, t, r, s) =
1
K

K∑

k=1

y2
k

σ2
yk

, (5)

where σ2
yk

= (Rnk)T Σxk
(Rnk), and αm ≤ sm ≤ βm,m = 1, · · · ,M , and θn ≤

rn ≤ φn, n = 1, · · · , N .
Given the correspondence pairs (pk,gk), since both the point-to-point and

the point-to-plane distances are nonlinear, we resort to a solution that solves for
r, s and R, t in an iterative fashion. For ease of understanding, we present the
solution for identity noise covariance matrix in Section 4.2 first, and extend it
to arbitrary covariance matrix in Section 4.3.

4.2 Iterative Solution for Identity Noise Covariance Matrix

We first assume the depth sensor noise covariance matrix is a scaled identity
matrix, i.e., Σxk

= σ2I3, where I3 is a 3 × 3 identity matrix. Further, let R̃ =
R−1, t̃ = R̃t, and

yk = R̃xk = pk + Akr + Bks + t̃− R̃gk. (6)

Since xT
k xk = (Ryk)T (Ryk) = yT

k yk, the likelihood function can be written as:

J1(R, t, r, s) =
1

Kσ2

K∑

k=1

xT
k xk =

1
Kσ2

K∑

k=1

yT
k yk. (7)
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Similarly, for point-to-plane distance, since yk = (Rnk)T xk = nT
k RT Ryk =

nT
k yk, and σ2

yk
= (Rnk)T Σxk

(Rnk) = σ2, we have:

J2(R, t, r, s) =
1

Kσ2

K∑

k=1

yT
k Nkyk, (8)

where Nk = nknT
k .

We may decompose the rotation matrix R̃ into an initial rotation matrix R̃0

and an incremental rotation matrix ∆R̃, where the initial rotation matrix can
be the rotation matrix of the head in the previous frame, or an estimation of
R̃ obtained in another algorithm. In other words, let R̃ = ∆R̃R̃0. Since the
rotation angle of the incremental rotation matrix is small, we may linearize it
as:

∆R̃ ≈



1 −ω3 ω2

ω3 1 −ω1

−ω2 ω1 1


 , (9)

where ω = [ω1, ω2, ω3]
T is the corresponding small rotation vector. Further,

let qk = R̃0gk = [qk1, qk2, qk3]T , we can write the variable yk in the form of
unknowns r, s, t̃ and ω as:

yk = pk + Akr + Bks + t̃−∆R̃qk ≈ (pk − qk) + [Ak,Bk, I3, [qk]×]




r
s
t̃
ω


 (10)

where [qk]× is the skew-symmetric matrix of qk:

[qk]× =




0 −qk3 qk2

qk3 0 −qk1

−qk2 qk1 0


 . (11)

Let Hk = [Ak,Bk, I3, [qk]×], uk = pk − qk, and z =
[
rT , sT , t̃T , ωT

]T
, we

have:
yk = uk + Hkz. (12)

Hence,

J1 =
1

Kσ2

K∑

k=1

yT
k yk =

1
Kσ2

K∑

k=1

(uk + Hkz)T (uk + Hkz) (13)

J2 =
1

Kσ2

K∑

k=1

yT
k Nkyk =

1
Kσ2

K∑

k=1

(uk + Hkz)T Nk(uk + Hkz) (14)

Both likelihood functions are quadratic with respect to z. Since there are linear
constraints on the range of values for r and s, the minimization problem can be
solved with quadratic programming [21].

The rotation vector ω is an approximation of the actual incremental rotation
matrix. One can simply insert ∆R̃R̃0 to the position of R̃0 and repeat the above
optimization process until it converges.
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4.3 Solution for Arbitrary Noise Covariance Matrix

When the sensor noise covariance matrix is arbitrary, again we resort to an
iterative solution. Note since yk = R̃xk, we have Σyk

= R̃Σxk
R̃T . A feasible

solution can be obtained if we replace R̃ with its estimation R̃0, i.e.,

Σyk
≈ R̃0Σxk

R̃T
0 , (15)

which is known for the current iteration. Subsequently,

J1 =
1
K

K∑

k=1

yT
k Σ−1

yk
yk =

1
K

K∑

k=1

(uk + Hkz)T Σ−1
yk

(uk + Hkz) (16)

J2 =
1
K

K∑

k=1

yT
k Nkyk

nT
k Σyk

nk
=

1
K

K∑

k=1

(uk + Hkz)T Nk(uk + Hkz)
nT

k Σyk
nk

(17)

We still have quadratic likelihood functions with respect to z, which can be
solved via quadratic programming. Again, the minimization will be repeated
until convergence by inserting ∆R̃R̃0 to the position of R̃0 in each iteration.

4.4 Multi-frame DMF for Model Initialization

In our tracking system, the above maximum likelihood DMF framework is ap-
plied differently in two stages. During the initialization stage, the goal is to fit
the generic deformable model to an arbitrary person. We assume that a set of L
(L ≤ 10 in the current implementation) neutral face frames are available. The
action deformation vector r is assumed to be zero. We jointly solve the static
deformation vector s and the face rotations and translations as follows.

Denote the correspondences as (plk,glk), where l = 1, · · · , L represents the
frame index. Assume in the previous iteration, R̃l0 is the rotation matrix for
frame l. Let qlk = R̃l0glk; Hlk = [Bk,0,0, · · · , I3, [qlk]×, · · · ,0,0], where 0
represents a 3 × 3 zero matrix. Let ulk = plk − qlk, and the unknown vector
z =

[
sT , t̃T

1 , ωT
1 , · · · , t̃T

L, ωT
L

]T
. Following Eq. (16) and (17), we may rewrite the

overall likelihood function as:

Jinit1 =
1

KL

L∑

l=1

K∑

k=1

(ulk + Hlkz)T Σ−1
ylk

(ulk + Hlkz) (18)

Jinit2 =
1

KL

L∑

l=1

K∑

k=1

(ulk + Hlkz)T Nlk(ulk + Hlkz)
nT

lkΣylk
nlk

, (19)

where nlk is the surface normal vector for point plk, Nlk = nlknT
lk, and Σylk

≈
R̃l0Σxlk

R̃T
l0. xlk is the sensor noise for depth input glk.

The point-to-point and point-to-plane likelihood functions are used jointly
in our current implementation. A selected set of point correspondences is used
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for Jinit1 and another selected set is used for Jinit2 (see Section 5.1 for more
details). The overall target function is a linear combination:

Jinit = λ1Jinit1 + λ2Jinit2, (20)

where λ1 and λ2 are the weights between the two functions. The optimization
is conducted through quadratic programming.

4.5 Regularization for Tracking

After the static deformation vector s has been initialized, we track the face
frame by frame, estimating the action deformation vector r and face rotation
and translation R and t, while keeping s fixed. Although our maximum likeli-
hood solution above can incorporate arbitrary sensor noise covariance matrices,
we found the expression tracking results are still very unstable. Therefore, we
propose to add additional regularization terms in the target function to further
improve the results.

A natural assumption is that the expression change between the current
frame and the previous frame is small. In our case, let the previous frame’s face
action vector be rt−1, we can add an `2 regularization term as:

Jtrack = λ1J1 + λ2J2 + λ3||r− rt−1||22, (21)

where J1 and J2 follow Eq. (16) and (17). Similar to the initialization process,
J1 and J2 use different sets of feature points (see Section 5.2 for more details);
||r − rt−1||22 = (r − rt−1)T (r − rt−1) is the squared `2 norm of the difference
between the two vectors.

The `2 regularization term works to some extent, though the effect is in-
significant. Note as shown in Fig. 2, each dimension of the r vector represents
a particular action a face can perform. Since it is hard for a face to perform all
actions simultaneously, we believe in general that the r vector shall be sparse.
This inspires us to impose an additional `1 regularization term as:

Jtrack = λ1J1 + λ2J2 + λ3||r− rt−1||22 + λ4||r||1, (22)

where ||r||1 =
∑N

n=1 |rn| is the `1 norm. This regularized target function is now
in the form of an `1-regularized least squares problem, which can be reformulated
as a convex quadratic program with linear inequality constraints [21], which can
again be solved with quadratic programming methods.

Note for PCA-based deformable face models, the `1 regularization term may
not be applied directly. One can identify a few dominant facial expression modes,
and still assume sparsity when projecting the PCA coefficients to these modes.

5 Implementation Details

5.1 Deformable Model Initialization

As described in Section 4.4, we use multiple neutral face frames for model ini-
tialization, as shown in Fig. 3. Note the likelihood function Jinit contains both
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Fig. 3. The process of multi-frame deformable model initialization. (a) Multiple slightly
rotated frames with neutral faces as input; (b) face detection (top) and alignment
(bottom); (c) define correspondences for edge points around eyebrows, lips etc; (d)
DMF with both point-to-point and point-to-plane terms (top) and DMF with point-
to-plane term only (bottom).

point-to-point and point-to-plane terms (Eq. (20)). For the point-to-plane term
Jinit2, the corresponding point pairs are derived by the standard procedure of
finding the closest point on the depth map from the vertices on the deformable
model [20]. However, the point-to-plane term alone is not sufficient, because our
depth images are very noisy and the vertices of the deformable model can drift
tangentially, leading to unnatural faces (Fig. 3(d)). In the following we discuss
how to define the point-to-point term Jinit1.

For each initialization frame, we first perform face detection and alignment on
the texture image. The results are shown in Fig. 3(b). The alignment algorithm
provides 83 landmark points of the face, which are assumed to be consistent
across all the frames. These landmark points are separated into four categories.
The first category contains the green points in Fig. 3(b), such as eye corners,
mouth corners, etc. These points have clear correspondences plk in the linear
deformable face model. Given the calibration information between the depth
camera and the texture camera, we simply project these landmark points to the
depth image to find the corresponding 3D world coordinate glk.

The second category contains the blue points on eyebrows and upper/lower
lips. The deformable face model has a few vertices that define eyebrows and
lips, but they do not all correspond to the 2D feature points provided by the
alignment algorithm. In order to define correspondences, we use the following
steps illustrated in Fig. 3(c):

1. Use the previous iteration’s head rotation R0 and translation t0 to project
the face model vertices plk of eyebrows/lips to the texture image, vlk;

2. Find the closest point on the curve defined by the alignment results to vlk,
let it be v′lk;

3. Back project v′lk to the depth image to find its 3D world coordinate glk.

The third category contains the red points surrounding the face, which we
refer as silhouette points. The deformable model also has vertices that define
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Texture image at time t 
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Fig. 4. Track feature points to build correspondences for the point-to-point function.

these boundary points, but there is no correspondence between them and the
alignment results. Moreover, when back projecting the silhouette points to the
3D world coordinate, they may easily hit a background pixel in the depth image.
For these points, we follow a similar procedure as the second category points,
but ignore the depth axis when computing the distance between plk and glk.

The fourth category includes all the white points in Fig. 3(b), which are not
used in the current implementation.

5.2 Tracking

During tracking, we again use both point-to-point and point-to-plane likelihood
terms, with additional regularization as in Eq. (22). The point-to-plane term is
computed similarly as during model initialization. To reliably track face expres-
sions, the point-to-point term is still crucial. We rely on feature points detected
and tracked from the texture images to define these point correspondences, as
shown in Fig. 4. Similar schemes have been adopted in deformable surface track-
ing applications such as [22].

The feature points are detected in the texture image of the previous frame
using the Harris corner detector. These points are then tracked to the current
frame by matching patches surrounding the points using cross correlation. One
issue with such detected and tracked feature pairs is that they may not corre-
spond to any vertices in the deformable face model. Given the previous frame’s
tracking result, we first represent the feature points with their barycentric coor-
dinates. Namely, as shown in Fig. 4, for 2D feature point pair υt−1

k and υt
k, we

obtain parameter η1,η2 and η3, such that:

υt−1
k = η1p̂t−1

k1
+ η2p̂t−1

k2
+ η3p̂t−1

k3
, (23)

where η1 + η2 + η3 = 1, and p̂t−1
k1

, p̂t−1
k2

and p̂t−1
k3

are the 2D projections of the
deformable model vertices pk1 , pk2 and pk3 onto the previous frame. Similar to
Eq. (2), we can have the following equation:

R
3∑

i=1

ηi (pki + Akir + Bkis) + t = gk + xk, (24)

where gk is the back projected 3D word coordinate of 2D feature point υt
k. Let

p̄k =
∑3

i=1 ηipki , Āk =
∑3

i=1 ηiAki , and B̄k =
∑3

i=1 ηiBki . Eq. (24) will be in
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identical form as Eq. (2), thus tracking is still solved with Eq. (22). Results on
the tracking algorithm will be reported in Section 6.

5.3 Noise Modeling

Due to the strong noise in the depth sensor, we find it is generally beneficial to
model the actual sensor noise with the correct Σxk

instead of using an identity
matrix for approximation. The uncertainty of 3D point gk has two major sources:
the uncertainty in the depth image intensity, which translates to uncertainty
along the depth axis, and the uncertainty in feature point detection/matching
in the texture image, which translates to uncertainty along the imaging plane.

Assuming a pinhole, no-skew projection model for the depth camera, we have:

zk




uk

vk

1


 = Kgk =




fx 0 u0

0 fy v0

0 0 1







xk

yk

zk


 (25)

where vk = [uk, vk]T is the 2D image coordinate of the feature point k in the
depth image, and gk = [xk, yk, zk]T is the 3D world coordinate of the feature
point. K is the intrinsic matrix, where fx and fy are the focal lengths, and u0

and v0 are the center biases.
For the depth camera, the uncertainty of uk and vk is generally caused by

feature point uncertainties in the texture image, and the uncertainty in zk is due
to the depth derivation scheme. These two uncertainties can be considered as
independent to each other. Let ck = [uk, vk, zk]T , we have:

Σck
=

[
Σvk

0
0T σ2

zk

]
. (26)

It is easy to find that:

Gk , ∂gk

∂ck
=




zk

fx
0 uk−u0

fx

0 zk

fy

vk−v0
fy

0 0 1


 . (27)

Hence as an approximation, the sensor’s noise covariance matrix shall be:

Σxk
≈ GkΣck

GT
k . (28)

In our current implementation, to compute Σck
from Eq. (26), we assume

Σvk
is diagonal, i.e., Σvk

= σ2I2, where I2 is a 2×2 identity matrix, and σ = 1.0
pixels in the current implementation. Knowing that our depth sensor derives
depth based on triangulation, following [23], the depth image noise covariance
σ2

zk
is modeled as:

σ2
zk

=
σ2

0z4
k

f2
dB2

, (29)

where fd = fx+fy

2 is the depth camera’s average focal length, σ0 = 0.059 pixels
and B = 52.3875 millimeters based on calibration. Note since σzk

depends on
zk, its value depends on each pixel’s depth value and cannot be pre-determined.
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Fig. 5. Example tracking results using the proposed algorithm. From top to bottom
are sequence #1 (810 total frames), #2 (681 total frames) and #3 (300 total frames),
respectively.

6 Experimental Results

We tested the proposed algorithm with three sequences captured by our depth
camera. Both the color and the depth images are at 640× 480 pixels resolution
and 30 fps. In each sequence the user sat about 3 ft from the depth camera, and
moved around with varying expressions. The head sizes in the images are about
100 × 100 pixels. Throughout the experiments, we set the weights of different
terms in Jinit and Jtrack to be λ1 = λ2 = 1, λ3 = 10−6 and λ4 = 10. All
sequences are initialized fully automatically and accurately with the multi-frame
DMF algorithm presented in Section 4.4 and 5.1. Initialization from 10 input
frames takes about 20 iterations and 6.7 seconds on an Intel 2.66 GHz computer,
while tracking usually converges in 2 iterations and can be done at about 10-12
fps without much code optimization.

We first show a few example tracking results using the proposed algorithm
in Fig. 5, which demonstrate the robustness of the proposed algorithm despite
large face pose and expression variations.

To provide some quantitative results, we manually labeled 12 feature points
around the eye and mouth regions of each face in every 3-5 frames of the three
sequences, as shown in Fig. 6(a). We then computed the average Euclidian dis-
tance from the 2D projections of their corresponding deformable model vertices
to the labeled positions. We compared various combinations of algorithms with
and without noise modeling, with and without the `2 regularization, and with
and without the `1 regularization. The results are summarized in Table 1. Note
because some combinations could not track the whole sequence successfully, we
reported the median average error of all the labeled frames in Table 1. It can
be seen that all three components improved the tracking performance. More
specifically, compared with the traditional scheme that adopts an identity co-
variance matrix for sensor noises and `2 regularization (ID+`2), the proposed
scheme (NM+`2+`1) reduced the median average error by 25.3% for sequence
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Table 1. Comparison of median tracking error (in pixels) for various algorithms. The
suffix “L” indicates that the tracking algorithm lost the face and never recovered. “ID”
stands for using the identity covariance matrix for sensor noises, and “NM” stands for
using the proposed noise modeling scheme.

ID+`2 ID+`1 ID+`2+`1 NM+`2 NM+`1 NM+`2+`1
Seq#1 (164 labeled frames) 3.56 2.88 2.78 2.85 2.69 2.66

Seq#2 (164 labeled frames) 4.48 3.78 3.71 4.30 3.64 3.55

Seq#3 (74 labeled frames) 3.98L 3.91 3.91 3.92L 3.91 3.50

(a) (b) (c) 

Fig. 6. (a) Face labeled with 12 ground truth feature points; (b)a few successfully
tracked frames with NM+`2+`1 (top) which were failed using the traditional approach
ID+`2 (bottom); (c) two failure examples for the proposed algorithm.

#1 and by 20.8% for sequence #2. The traditional ID+`2 scheme lost tracking
for sequence #3 after about 100 frames, while the proposed scheme successfully
tracked the whole sequence.

Fig. 6(b) shows a few examples where the proposed algorithm tracked the
face successfully, while the traditional scheme failed. Nonetheless, our algorithm
may also fail, as shown in Fig. 6(c). In the top frame, the head moved very
fast and the color image was blurry. In addition, the proposed algorithm is an
iterative scheme, and fast motion can cause poor initialization of the estimated
parameters. In the bottom frame, the face turned downward, which caused prob-
lems in tracking facial features in the color image. Currently we have not built
any recovery mechanism in the system such as adding key frames or occasional
re-initialization, which will be part of our future work.

7 Conclusions and Future Work

In this paper, we presented a regularized maximum likelihood DMF algorithm
that can be used to track faces with noisy input depth data from commodity
depth cameras. The algorithm modeled the depth sensor noise with an arbitrary
covariance matrix, and applied a new `1 regularization term that is semantically
meaningful and effective. In future work we plan to work on 3D face alignment
that can re-initialize the tracking process at arbitrary face poses, thus further
improving the performance of the overall system.
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