
Dueling algorithms ∗

Nicole Immorlica
Northwestern University

Adam Tauman Kalai
MSR New England

Brendan Lucier
University of Toronto

Ankur Moitra
†

MIT
Andrew Postlewaite

University of Pennsylvania
Moshe Tennenholtz

Microsoft R&D Israel and the
Technion, Israel

ABSTRACT
We revisit classic algorithmic search and optimization prob-
lems from the perspective of competition. Rather than a
single optimizer minimizing expected cost, we consider a
zero-sum game in which a search problem is presented to two
players, whose only goal is to outperform the opponent. Such
games are typically exponentially large zero-sum games, but
they often have a rich structure. We provide general tech-
niques by which such structure can be leveraged to find
minmax-optimal and approximate minmax-optimal strate-
gies. We give examples of ranking, hiring, compression, and
binary search duels, among others. We give bounds on how
often one can beat the classic optimization algorithms in
such duels.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: [economics]

General Terms
Theory

Keywords
algorithms, competition, equilibrium

1. INTRODUCTION
∗Part of this work was performed while the authors were
visiting Microsoft Research, New England.

Nicole Immorlica (nickle@eecs.northwestern.edu)
Adam Tauman Kalai (adum@microsoft.com)
Brendan Lucier (blucier@cs.toronto.edu)
Ankur Moitra (moitra@mit.edu)
Andrew Postlewaite (apostlew@econ.upenn.edu)
Moshe Tennenholtz (moshet@microsoft.com)
†This work was supported in part by a Fannie and John
Hertz Foundation Fellowship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

Many natural optimization problems have two-player com-
petitive analogs. For example, consider the optimization
problem facing a search engine: for a given query, there
are n potential search results, or webpages, which must be
presented in a list. The cost of searching for a particular
webpage is its rank in the list. Given a fixed probability
distribution over which webpage is the desired target for the
query, this problem can be construed as a one-player game,
or optimization problem, in which the search engine wishes
to minimize the expected search cost. The trivial greedy
algorithm, which orders webpages in decreasing probability,
is an optimal strategy for this one-player game.

The two-player variant of this problem models a user choos-
ing between two search engines. The user thinks of a desired
webpage and a query and executes the query on both search
engines. The engine that ranks the desired page higher is
chosen by the user as the “winner.” If the greedy algorithm
has the ranking of pages ω1, ω2, . . . , ωn, then the ranking
ω2, ω3, . . . , ωn, ω1 beats the greedy ranking on every item
except ω1. We say the greedy algorithm is 1 − 1/n beat-
able because there is a probability distribution over pages
for which the greedy algorithm loses 1 − 1/n of the time.
Thus, in a competitive setting, an “optimal” search engine
can perform poorly against a clever opponent.

This ranking duel can be modeled as a symmetric constant-
sum game, with n! strategies, in which the player with the
higher ranking of the target page receives a payoff of 1 and
the other receives a payoff of 0 (in the case of a tie, say
they both receive a payoff of 1/2). As in all symmetric one-
sum games, there must be (mixed) strategies that guarantee
expected payoff of at least 1/2 against any opponent. Put
another way, there must be a (randomized) algorithm that
takes as input the probability distribution and outputs a
ranking, which is guaranteed to achieve a payoff of at least
1/2 in expectation against any opposing algorithm.

This conversion can be applied to any optimization prob-
lem with an element of uncertainty. Such problems are of the
form minx∈X Eω∼p[c(x, ω)], where p is a probability distri-
bution over the state of nature ω ∈ Ω, X is a feasible set, and
c : X ×Ω→ R is an objective function. The dueling analog
has two players simultaneously choose x, x′; player 1 receives
payoff 1 if c(x, ω) < c(x′, ω), payoff 0 if c(x, ω) > c(x′, ω),
payoff 1/2 otherwise, and similarly for player 2.1

There are many natural examples of this setting beyond
the ranking duel mentioned above. For example, for the
shortest-path routing under a distribution over edge times,

1Our techniques will also apply to asymmetric payoff func-
tions; see Section 7.



the corresponding racing duel is simply a race, and the state
of nature encodes uncertain edge delays.2 For the classic
secretary problem, in the corresponding hiring duel two em-
ployers must each select a candidate from a pool of n can-
didates (though, as standard, they must decide whether or
not to choose a candidate before interviewing the next one),
and the winner is the one that hires the better candidate.
This could model, for example, two competing companies
attempting to hire CEOs or two opposing political parties
selecting politicians to run in an election; the absolute qual-
ity of the candidate may be less important than being better
than the other’s selection. In a compression duel, a user with
a (randomly chosen) sample string ω chooses between two
compression schemes based on which one compresses that
string better. This setting can also model a user searching
for a file in two competing, hierarchical storage systems and
choosing the system that finds the file first. In a binary
search duel, a user searches for a random element in a list
using two different search trees, and chooses whichever tree
finds the element faster.

Our contribution.
For each of these problems, we consider a number of ques-

tions related to how vulnerable a classic algorithm is to com-
petition, what algorithms will be selected at equilibrium,
and how well these strategies at equilibrium solve the origi-
nal optimization problem.

Question 1. Will players use the classic optimization so-
lution in the dueling setting?

Optimization Problem Upper Bound Lower Bound
Ranking 1− 1/n 1− 1/n
Racing 1 1
Hiring 0.82 0.51
Compression 3/4 2/3
Search 5/8 5/8

Intuitively, the answer to this question should depend on
how much an opponent can game the classic optimization
solution. For example, in the ranking duel an opponent can
beat the greedy algorithm on almost all pages – and even
the most oblivious player would quickly realize the need to
change strategies. In contrast, we demonstrate that many
classic optimization solutions – such as the secretary algo-
rithm for hiring, Huffman coding for compression, and stan-
dard binary search – are substantially less vulnerable. We
say an algorithm is β-beatable (over distribution p) if there
exists a response which achieves payoff β against that al-
gorithm (over distribution p). We summarize our results
on the beatability of the standard optimization algorithm
in each of our example optimization problems in the table
above.

Question 2. What strategies do players play at equilib-
rium?

We say an algorithm efficiently solves the duel if it takes
as input a representation of the game and probability distri-
bution p, and outputs an action x ∈ X distributed according

2 We also refer to this as the primal duel because any other
duel can be represented as a race with an appropriate graph
and probability distribution p, though there may be an ex-
ponential blowup in representation size.

to some minmax optimal (i.e., Nash equilibrium) strategy.
As our main result, we give a general method for solving
duels that can be represented in a certain bilinear form.
We also show how to convert an approximate best-response
oracle for a dueling game into an approximate minmax op-
timal algorithm, using techniques from low-regret learning.
We demonstrate the generality of these methods by show-
ing how to apply them to the numerous examples described
above.

A principle challenge in computing a Nash equilibrium
is that the number of strategies can be exponential in the
natural representation of the problem. For example, in the
ranking duel, the number of pure strategies is the number
of orderings of the n webpages. Our approach is based on
concisely summarizing a strategy based on statistical infor-
mation about the assosciated randomized algorithm. This
statistical information is enough to compute head-to-head
payoffs (of one randomized algorithm against another), and
from this representation we can compute equilibrium strate-
gies in the original (exponentially-sized) game.

We leave as an open question:

Question 3. Are these equilibrium strategies still good at
solving the optimization problem?

As an example, consider the ranking duel. How much
more time does a web surfer need to spend browsing to find
the page he is interested in, because more than one search
engine is competing for his attention? In fact, the surfer may
be better off due to competition, depending on the model of
comparison. For example, the cost to the web surfer may
be the minimum of the ranks assigned by each search en-
gine. And we leave open the tantalizing possibility that this
quantity could in general be smaller at equilibrium for two
competing search engines than for just one search engine
playing the greedy algorithm.

Related work.
The work most relevant to ours is the study of ranking

games [4], and more generally the study of social context
games [1]. In these settings, players’ payoffs are translated
into utilities based on social contexts, defined by a graph and
an aggregation function. For example, a player’s utility can
be the sum/max/min of his neighbors’ payoffs. This work
studies the effect of social contexts on the existence and
computation of game-theoretic solution concepts, but does
not re-visit optimization algorithms in competitive settings.

For the hiring problem, several competitive variants and
their algorithmic implications have been considered (see,
e.g., [9] and the references therein). A typical competitive
setting is a (general sum) game where a player achieves pay-
off of 1 if she hires the very best applicant and zero otherwise.
But, to the best of our knowledge, no one has considered
the natural model of a duel where the objective is simply to
hire a better candidate than the opponent. Also related to
our algorithmic results are succinct zero-sum games, where
a game has exponentially many strategies but the payoff
function can be computed by a succinct circuit. This gen-
eral class has been showed to be EXP-hard to solve [6], and
also difficult to approximate [7].

Finally, we note the line of research on competition among
mechanisms, such as the study of competing auctions (see
e.g. [5, 14, 15, 16]) or schedulers [2]. In such settings, each
player selects a mechanism and then bidders select the auc-
tion to participate in and how much to bid there, where both



designers and bidders are strategic. This work is largely con-
cerned with the existence of sub-game perfect equilibrium.

Outline.
In Section 2 we define our model formally and provide a

general framework for solving dueling problems as well as
the warmup example of the ranking duel. We then use these
tools to analyze the more intricate settings of the hiring duel
(Section 3), the compression duel (Section 4), the search duel
(Section 5), We conclude by describing avenues of future
research in Section 8.

2. PRELIMINARIES
A problem of optimization under uncertainty, denoted

(X,Ω, c, p), is specified by a feasible set X, a commonly-
known distribution p over the state of nature, ω, chosen
from set Ω, and an objective function c : X × Ω → R.
For simplicity we assume all these sets are finite. When p
is clear from context, we write the expected cost of x ∈
X as c(x) = Eω∼p[c(x, ω)]. The one-player optimum is
opt = minx∈X c(x). Algorithm A takes as input p and
randomness r ∈ [0, 1], and outputs x ∈ X. We define
c(A) = Er[c(A(p, r))] and an algorithm A is one-player op-
timal if c(A) = opt.

In the two-person constant-sum duel game, denotedD(X,Ω, c, p),
players simultaneously choose x, x′ ∈ X, and player 1’s pay-
off v(x, x′, p) is

Pr
ω∼p

[c(x, ω) < c(x′, ω)] +
1

2
Pr
ω∼p

[c(x, ω) = c(x′, ω)].

When p is understood from context we write v(x, x′). Player
2’s payoff is v(x′, x) = 1 − v(x, x′). This models a tie,
c(x, ω) = c(x′, ω), as a half point for each. We define the
value of a strategy, v(x, p), to be how much that strategy
guarantees, v(x, p) = minx′∈X v(x, x′, p). Again, when p is
understood from context we write simply v(x).

The set of probability distributions over set S is denoted
∆(S). A mixed strategy is σ ∈ ∆(X). As is standard, we
extend the domain of v to mixed strategies bilinearly by ex-
pectation. A best response to mixed strategy σ is a strategy
which yields maximal payoff against σ, i.e., σ′ is a best re-
sponse to σ if it maximizes v(σ′, σ). A minmax strategy is a
(possibly mixed) strategy that guarantees the safety value,
in this case 1/2, against any opponent play. The best re-
sponse to such a strategy yields payoffs of 1/2. The set
of minmax strategies is denoted MM(D(X,Ω, c, p)) = {σ ∈
∆(X) | v(σ) = 1/2}. A basic fact about constant-sum games
is that the set of Nash equilibria is the cross product of the
minmax strategies for player 1 and those of player 2.

2.1 Bilinear duels
In a bilinear duel, the feasible set of strategies are points

in n-dimensional Euclidean space, i.e., X ⊆ Rn, X ′ ⊆ Rn′ ,
and the payoff to player 1 is v(x, x′) = xtMx′ for some

matrix M ∈ Rn×n′ . Let K be the convex hull of X. Any
point in K is achievable (in expectation) as a mixed strategy.
Similarly define K′. In n × n bimatrix games, K and K′

are simplices {x ∈ Rn
≥0 |

P
xi = 1}. As we will point

out in this section, solving a bilinear duel reduces to linear
programming with a number of constraints proportional to
the number of constraints necessary to define the feasible
sets, K and K′. (In typical applications, K and K′ have a

polynomial number of facets but an exponential number of
vertices.)

Let K be a polytope defined by the intersection of m half-
spaces, K = {x ∈ Rn | wi ·x ≥ bi for i = 1, 2, . . . ,m}. Simi-
larly, let K′ be the intersection of m′ halfspaces w′i · x ≥ b′i.
The typical way to reduce to an LP for constant-sum games
is:

max
v∈R,x∈Rn

v s.t. x ∈ K and xTMx′ ≥ v for all x′ ∈ X ′.

The above program has m+ |X ′| constraints (m constraints
guaranteeing that x ∈ K). However, |X ′| (the number of
pure strategies for player 2) is typically exponential. Alter-
natively, the following linear program has O(n′ + m + m′)
constraints, and hence can be found in time polynomial in
n′,m,m′ and the bit-size representation of M and the con-
straints in K and K′.

max
x∈Rn,λ∈Rm′

m′X
i=1

λib
′
i s.t. x ∈ K and xtM =

m′X
i=1

λiw
′
i. (1)

Lemma 1. For any constant-sum game with strategies x ∈
K,x′ ∈ K and payoffs xtMx′, the maximum of the above lin-
ear program is the value of the game to player 1, and any
maximizing x is a minmax optimal strategy.

Proof. First we argue that the value of the above LP is
at least as large as the value of the game to player 1. Let
x, λ maximize the above LP and let the maximum be α. For
any x′ ∈ K′,

xtMx′ =

m′X
1

λiw
′
i · x′ ≥

m′X
1

λib
′
i = α.

Hence, this means that strategy x guarantees player x at
least α against any opponent response, x′ ∈ K. Hence
α ≤ v with equality iff x is minmax optimal. Next, let
x be any minmax optimal strategy, and let v be the value
of the constant-sum game. This means that xtMx′ ≥ v
for all x′ ∈ K′ with equality for some point. In particu-
lar, the minmax theorem (equivalently, duality) means that
the LP minx′∈K′ x

tMx′ has a minimum value of v and that

there is a vector of λ ≥ 0 such that
Pm′

1 λiw
′
i = xtM andPm′

1 λib
′
i = v. Hence α ≥ v.

2.2 Reduction to bilinear duels
The sets X in a duel are typically objects such as paths,

trees, rankings, etc., which are not themselves points in Eu-
clidean space. In order to use the above approach to reduce
a given duel D(X,Ω, c, p) to a bilinear duel in a computa-
tionally efficient manner, one needs the following:

1. An efficiently computable function φ : X → K that
maps each strategy x ∈ X to a feasible point in K ⊆
Rn.

2. A matrix M such that v(x, x′) = φ(x)tMφ(x′), demon-
strating that the problem is indeed bilinear.

3. A set of polynomially many feasible constraints that
defines K.

4. A “randomized rounding algorithm” which takes as in-
put a point in K outputs an object in X.



Parts (1) and (2) are used to construct the bilinear duel
corresponding to the original duel. Part (3) guarantees that
this bilinear duel can be solved efficiently, and part (4) allows
us to map a solution for the bilinear duel to a solution for
the original duel.

In many cases, parts (1) and (2) are straightforward. Parts
(3) and (4) may be more challenging. For example, for the
binary trees used in the compression duel, it is easy to map
a tree to a vector of node depths. However, we do not know
how to efficiently determine whether a given vector of node
depths is indeed a mixture over trees (except for certain
types of trees which are in sorted order, like the binary
search trees in the binary search duel). In the next subsec-
tion, we show how computing approximate best responses
suffices.

2.3 Approximate minmax
In some cases, the polytope K may have exponentially or

infinitely many facets, in which case the above linear pro-
gram is not very useful. In this section, we show that if one
can compute approximate best responses for a bilinear duel,
then one can approximate minmax strategies.

For any ε > 0, an ε-best response to a player 2 strategy
x′ ∈ K′ is any x ∈ K such that

xtMx′ ≥ min
y∈K

yTMx′ − ε.

Similarly for player 1. An ε-minmax strategy x ∈ K for
player 1 is one that guarantees player 1 an expected payoff
not worse than ε minus the value, i.e.,

min
x′∈K

v(x, x′) ≥ max
y∈K

min
x′∈K

v(y, x′)− ε.

Best response oracles are functions from K to K′ and vice
versa. However, for many applications (and in particular the
ones in this paper) where all feasible points are nonnegative,
one can define a best response oracle for all nonnegative
points in the positive orthant. (With additional effort, one
can remove this assumption using Kleinberg and Awerbuch’s
elegant notion of a Barycentric spanner [3]). For scaling
purposes, we assume that for some B > 0, the convex sets

are K ⊆ [0, B]n and K′ ⊆ [0, B]n
′

and the matrix M ∈
[−B,B]n×n

′
is bounded as well.

Fix any ε > 0. We suppose that we are given an ε-
approximate best response oracle in the following sense. For

player 1, this is an oracle O : [0, B]n
′
→ K which has

the property that O(x′)tMx′ ≥ maxx∈K x
tMx′ − ε for any

x′ ∈ [0, B]n
′
. Similarly for O′ for player 2. Hence, one is

able to potentially respond to things which are not feasible
strategies of the opponent. As can be seen in a number of
applications, this does not impose a significant additional
burden.

Lemma 2. For any ε > 0, n, n′ ≥ 1, B > 0, and any

bilinear duel with convex K ⊆ [0, B]n and K′ ⊆ [0, B]n
′

and

M ∈ [−B,B]n×n
′
, and any ε-best response oracles, there is

an algorithm for finding`
24(εmax(m,m′))1/3B2(nn′)2/3´-minmax

strategies x ∈ K,x′ ∈ K′. The algorithm runs in time
poly(β,m,m′, 1/ε) and makes poly(β,m,m′, 1/ε) oracle calls.

The reduction and proof appear in the full version of the

paper. Our approach is to use Hannan-type algorithms, i.e.
“follow the expected leader” [10].

For an example, in Section 4 we reduce the compression
duel, where the base objects are trees, to a bilinear duel and
use the approximate best response oracle. To perform such
a reduction, one needs the following.

1. An efficiently computable function φ : X → K which
maps any strategy x ∈ X to a feasible point in K ⊆
Rn.

2. A bounded payoff matrix M demonstrating such that
v(x, x′) = φ(x)tMφ(x′), demonstrating that the prob-
lem is indeed bilinear.

3. ε-best response oracles for players 1 and 2. Here, the
input to an ε best response oracle for player 1 is x′ ∈
[0, B]n

′
.

2.4 Beatability
One interesting quantity to examine is how well a one-

player optimization algorithm performs in the two-player
game. In other words, if a single player was a monopo-
list solving the one-player optimization problem, how badly
could they be beaten if a second player suddenly entered.
For a particular one-player-optimal algorithm A, we define
its beatability over distribution p to be Er[v(A(p, r), p)], and
we define its beatability to be infp Er[v(A(p, r), p)].

2.5 A warmup: the ranking duel
In the ranking duel, Ω = [n] = {1, 2, . . . , n}, X is the

set of permutations over n items, and c(π, ω) ∈ [n] is the
position of ω in π (rank 1 is the “best” rank). The greedy
algorithm, which outputs permutation (ω1, ω2, . . . , ωn) such
that p(ω1) ≥ p(ω2) ≥ · · · ≥ p(ωn), is optimal in the one-
player version of the problem.3

This game can be represented as a bilinear duel as fol-
lows. Let K and K′ be the set of doubly stochastic matrices,

K = K′ = {x ∈ Rn2

≥0 | ∀j
P
i xij = 1,∀i

P
j xij = 1}. Here

xij indicates the probability that item i is placed in position
j, in some distribution over rankings. The Birkhoff-von Neu-
mann Theorem states that the set K is precisely the set of
probability distributions over rankings (where each ranking

is represented as a permutation matrix x ∈ {0, 1}n
2
), and

moreover any such x ∈ K can be implemented efficiently via
a form of randomized rounding. See, for example, Corollary
1.4.15 of [13]. Note K is a polytope in n2 dimensions with
O(n) facets. In this representation, the expected payoff of x
versus x′ isX

i

p(i)

„
1

2
Pr[Equally rank i] + Pr[P1 ranks i higher]

«

=
X
i

p(i)
X
j

xij

0@1

2
x′ij +

X
k>j

x′ik

1A .

The above is clearly bilinear in x and x′ and can be writ-
ten as xtMx′ for some matrix M with bounded coefficients.
Hence, given p, we can solve the bilinear duel by the lin-
ear program (1) and round it to a (randomized) minmax
optimal algorithm for ranking.

3In some cases, such as a model of competing search en-
gines, one could have the agents rank only k items, but the
algorithmic results would be similar.



We next examine the beatability of the greedy algorithm.
Note that for the uniform probability distribution p(1) =
p(2) = . . . = p(n) = 1/n, the greedy algorithm outputting,
say, (1, 2, . . . , n) can be beaten with probability 1− 1/n by
the strategy (2, 3, . . . , n, 1). One can make greedy’s selection
unique by setting p(i) = 1/n+ (i− n/2)ε, and for sufficient
small ε greedy can be beaten a fraction of time arbitrarily
close to 1− 1/n.

3. HIRING DUEL
In a hiring duel, there are two employers A and B and

two corresponding sets of workers UA = {a1, . . . , an} and
UB = {b1, . . . , bn} with n workers each. The i’th worker
of each set has a common value v(i) where v(i) > v(j) for
all i and j > i. Thus there is a total ranking of workers
ai ∈ UA (similarly bi ∈ UB) where a rank of 1 indicates the
best worker, and workers are labeled according to rank. The
goal of the employers is to hire a worker whose value (equiv-
alently rank) beats that of his competitor’s worker. Workers
are interviewed by employers one-by-one in a random order.
The relative ranks of workers are revealed to employers only
at the time of the interview. That is, at time i, each em-
ployer has seen a prefix of the interview order consisting of i
of workers and knows only the projection of the total rank-
ing on this prefix.4 Hiring decisions must be made at the
time of the interview, and only one worker may be hired.
Thus the employers’ pure strategies are mappings from any
prefix and permutation of workers’ ranks in that prefix to
a binary hiring decision. We note that the permutation of
ranks in a prefix does not effect the distribution of the rank
of the just-interviewed worker, and hence without loss of
generality we may assume the strategies are mappings from
the round number and current rank to a hiring decision.

In dueling notation, our game is (X,Ω, c, p) where the ele-
ments of X are functions h : {1, . . . , n}2 → {0, 1} indicating
for any round i and projected rank of current interviewee j ≤
i the hiring decision h(i, j); Ω is the set (σA, σB) of all pairs
of permutations of UA and UB ; c(h, σ) is the value v(σ−1(i∗))
of the first candidate i∗ = argmini{i : h(i, [σ−1(i)]i) = 1}
(where [σ−1(i)]j indicates the projected rank of the i’th can-
didate among the first j candidates according to σ) that
received an offer; and p (as is typical in the secretary prob-
lem) is the uniform distribution over Ω. The mixed strate-
gies π ∈ ∆(X) are simply mappings π : {0, . . . , n}2 → [0, 1]
from rounds and projected ranks to a probability π(i, j) of
a hiring decision.

The values v(·) may be chosen adversarially, and hence
in the one-player setting the optimal algorithm against a
worst-case v(·) is the one that maximizes the probability of
hiring the best worker (the worst-case values set v(1) = 1
and v(i) << 1 for i > 1). In the literature on secretary
problems, the following classical algorithm is known to hire
the best worker with probability approaching 1

e
: Interview

n/e workers and hire next one that beats all the previous.
Furthermore, there is no other algorithm that hires the best
worker with higher probability.

4In some cases, an employer also knows when and whom
his opponent hired, and may condition his strategy on this
information as well. Only one of the settings described be-
low needs this knowledge set; hence we defer our discussion
of this point for now and explicitly mention the necessary
assumptions where appropriate.

3.1 Common pools of workers
In this section, we study the common hiring duel in which

employers see the same candidates in the same order so that
σA = σB and each employer observes when the other hires.
In this case, the following strategy π is a symmetric equilib-
rium: If the opponent has already hired, then hire anyone
who beats his employee; otherwise hire as soon as the cur-
rent candidate has at least a 50% chance of being the best
of the remaining candidates.

Lemma 3. Strategy π is efficiently computable and con-
stitutes a symmetric equilibrium of the common hiring duel.

The computability follows from a derivation of probabili-
ties in terms of binomials, and the equilibrium claim follows
by observing that there can be no profitable deviation. This
strategy also beats the classical algorithm, enabling us to
provide non-trivial lower and upper bounds for its beatabil-
ity.

Proof. For a round i, we compute a threshold ti such
that π hires if and only if the projected rank of the cur-
rent candidate j is at most ti. Note that if i candidates are
observed, the probability that the ti’th best among them
is better than all remaining candidates is precisely

`
i
ti

´
/
`
n
ti

´
.

The numerator is the number of ways to place the 1 through
ti’th best candidates overall among the first i and the de-
nominator is the number of ways to place the 1 through
ti’th best among the whole order. Hence to efficiently com-
pute π we just need to compute ti or, equivalently, estimate
these ratios of binomials and hire whenever on round i and
observing the j’th best so far,

`
i
j

´
/
`
n
j

´
≥ 1/2.

We further note π is a symmetric equilibrium since if an
employer deviates and hires early then by definition the op-
ponent has a better than 50% chance of getting a better
candidate. Similarly, if an employer deviates and hires late
then by definition his candidate has at most a 50% chance
of being a better candidate than that of his opponent.

Lemma 4. The beatability of the classical algorithm is at
least 0.51 and at most 0.82.

The lower bound follows from the fact that π beats the
classical algorithm with probability bounded above 1/2 when
the classical algorithm hires early (i.e., before round n/2),
and the upper bound follows from the fact that the classical
algorithm guarantees a probability of 1/e of hiring the best
candidate, in which case no algorithm can beat it.

Proof. For the lower bound, note that in any event, π
guarantees a payoff of at least 1/2 against the classical al-
gorithm. We next argue that for a constant fraction of the
probability space, π guarantees a payoff of strictly better
than 1/2. In particular, for some q, 1/e < q < 1/2, consider
the event that the classical algorithm hires in the interval
{n/e, qn}. This event happens whenever the best among
the first qn candidates is not among the first n/e candi-
dates, and hence has a probability of (1−1/qe). Conditioned
on this event, π beats the classical algorithm whenever the
best candidate overall is in the last n(1 − q) candidates,5

5This is a loose lower bound; there are many other instances
where π also wins, e.g., if the second-best candidate is in the
last n(1− q) candidates and the best occurs after the third
best in the first qn candidates.



which happens with probability (1 − q) (the conditioning
does not change this probability since it is only a property
of the permutation projected onto the first qn elements).
Hence the overall payoff of π against the classical algorithm
is (1 − q)(1 − 1/qe) + (1/2)(1/qe). Optimizing for q yields
the result.

For the upper bound, note as mentioned above that the
classical algorithm has a probability approaching 1/e of hir-
ing the best candidate. From here, we see ((1/2e) + (1 −
1/e)) = 1−1/2e < 0.82 is an upper bound on the beatability
of the classical algorithm since the best an opponent can do
is always hire the best worker when the classical algorithm
hires the best worker and always hire a better worker when
the classical algorithm does not hire the best worker.

3.2 Independent pools of workers
In this section, we study the independent hiring duel in

which the employers see different candidates. Thus σA 6= σB
and the employers do not see when the opponent hires. We
use the bilinear duel framework introduced in Section 2.1 to
compute an equilibrium for this setting, yielding the follow-
ing theorem.

Theorem 1. The equilibrium strategies of the indepen-
dent hiring duel are efficiently computable.

The main idea is to represent strategies π by vectors {pij}
where pij is the (total) probability of hiring the j’th best
candidate seen so far on round i. Let qi be the probabil-
ity of reaching round i, and note it can be computed from
the {pij}. Recall π(i, j) is the probability of hiring the j’th
best so far at round i conditional on seeing the j’th best so
far at round i. Thus using Bayes’ Rule we can derive an
efficiently-computable bijective mapping (with an efficiently
computable inverse) φ(π) between π and {pij} which sim-
ply sets π(i, j) = pij/(qi/i). It only remains to show that
one can find a matrix M such that the payoff of a strat-
egy π versus a strategy π′ is φ(π)tMφ(π′). This is done by
calculating the appropriate binomials.

We show how to apply the bilinear duel framework to com-
pute the equilibrium of the independent hiring duel. This
requires the following steps: define a subset K of Euclidean
space to represent strategies, define a bijective mapping be-
tween K and feasible (mixed) strategies ∆(X), and show
how to represent the payoff matrix of strategies in the bilin-
ear duel space. We discuss each step in order.

Defining K.
For each 1 ≤ i ≤ n and j ≤ i we define pij to be the (total)

probability of seeing and hiring the j’th best candidate seen
so far at round i. Our subspace K = [0, 1]n(n+1)/2 consists
of the collection of probabilities {pij}. To derive constraints
on this space, we introduce a new variable qi representing
the probability of reaching round i. We note that the proba-
bility of reaching round (i+1) must equal the probability of
reaching round i and not hiring, so that qi+1 = qi−

Pn
j=1 pij .

Furthermore, the probability pij can not exceed the prob-
ability of reaching round i and interviewing the j’th best
candidate seen so far. The probability of reaching round i is
qi by definition, and the probability that the projected rank
of the i’th candidate is j is 1/i by our choice of a uniformly
random permutation. Thus pij ≤ qi/i. Together with the
initial condition that qi = 1, these constraints completely
characterize K.

Mapping.
Recall a strategy π indicates for each i and j ≤ i the

conditional probability of making an offer given that the
employer is interviewing the i’th candidate and his projected
rank is j whereas pij is the total probability of interviewing
the i’th candidate with a projected rank of j and making
an offer. Thus π(i, j) = pij/(qi/i) and so pij = qiπ(i, j)/i.
Together with the equailities derived above that q1 = 1 and
qi+1 = qi−

Pn
j=1 pij , we can recursively map any strategy π

to K efficiently. To map back we just take the inverse of this
bijection: given a point {pij} in K, we compute the (unique)
qi satisfying the constraints q1 = 1 and qi+1 = qi−

Pn
j=1 pij ,

and define π(i, j) = pij/(qi/i).

Payoff Matrix.
By the above definitions, for any strategy π and corre-

sponding mapping {pij}, the probability that the strategy
hires the j’th best so far on round i is pij . Given that em-
ployer A hires the j’th best so far on round i and employer
B hires the j′’th best so far on round i′, we define Miji′j′

to be the probability that the overall rank of employer A’s
hire beats that of employer B’s hire plus one-half times the
probability that their ranks are equal. We can derive the
entries of the this matrix as follows: Let EXr be the event
that with respect to permutation σX the overall rank of a
fixed candidate is r, and FXij be the event that the projected
rank of the last candidate in a random prefix of size i is j.
Then

Miji′j′ =
X

r,r′:1≤r<r′≤n

Pr[EAr |FAij ] Pr[EBr′ |FBi′j′ ]

+
1

2

X
1≤r≤n

Pr[EAr |FAij ] Pr[EBr |FBi′j′ ].

Furthermore, by Bayes rule,

Pr[EXr |FXij ] = Pr[FXij |EXr ] Pr[EXr ]/Pr[FXij ]

where Pr[EXr ] = 1/n and Pr[FXij ] = 1/i. To compute Pr[FXij |EXr ],
we select the ranks of the other candidates in the prefix of
size i. There are

`
r−1
j−1

´
ways to pick the ranks of the bet-

ter candidates and
`
n−r+1
i−j

´
ways to pick the ranks of the

worse candidates. As there are
`
n−1
i−1

´
ways overall to pick

the ranks of the other candidates, we see:

Pr[FXij |EXr ] =

`
r−1
j−1

´`
n−r+1
i−j

´`
n−1
i−1

´ .

Letting {pij} be the mapping φ(π) of employer A’s strategy
π and {p′ij} be the mapping φ(π) of employer B’s strategy
π′, we see that c(π, π′) = φ(π)tMφ(π′), as required.

By the above arguments, and the machinery from Sec-
tion 2.1, we have proven Theorem 1 which claims that the
equilibrium of the independent hiring duel is computable.

4. COMPRESSION DUEL
In a compression duel, two competitors are given a dis-

tribution p an each chooses a binary tree with leaf set Ω.
An element ω ∈ Ω is then chosen according to distribution
p, and whichever player’s tree has ω closest to the root is
the winner. This game can be thought of as a competi-
tion between prefix-free compression schemes for a base set
of words. The Huffman algorithm, which repeatedly pairs



nodes with lowest probability, is known to be optimal for
single-player compression.

The compression duel is D(X,Ω, c, p), where Ω = [n] and
X is the set of binary trees with leaf set Ω. For T ∈ X
and ω ∈ Ω, c(T, ω) is the depth of ω in T . In Section 4.3
we consider a variant in which not every element of Ω must
appear in the tree.

4.1 Computing an equilibrium
The compression duel can be represented as a bilinear

game. In this case, K and K′ will be sets of stochastic matri-
ces, where a matrix entry {xij} indicates the probability that
item ωi is placed at depth j. The set K is precisely the set
of probability distributions over node depths that are con-
sistent with probability distributions over binary trees. We
would like to compute minmax optimal algorithms as in Sec-
tion 2.2, but we do not have a randomized rounding scheme
that maps elements of K to binary trees. Instead, following
Section 2.3, we will find approximate minmax strategies by
constructing an ε-best response oracle.

The mapping φ : X → K is straightforward: it maps a
binary tree to its depth profile. Also, the expected payoff of
x ∈ K versus x′ ∈ K′ isX

i

p(i)
X
j

xij

0@1

2
x′ij +

X
k>j

x′ij

1A
which can be written as xtMx′ where matrixM has bounded
entries. To apply Lemma 2, we must now provide an ε best
response oracle, which we implement by reducing to a knap-
sack problem.

Fix p and x′ ∈ K′. We will reduce the problem of find-
ing a best response for x′ to the multiple-choice knapsack
problem (MCKP), for which there is an FPTAS [12]. In the
MCKP, there are n lists of items, say {(αi1, . . . , αiki) | 1 ≤
i ≤ n}, with each item αij having a value vij ≥ 0 and
weight wij ≥ 0. The problem is to choose exactly one
item from each list with total weight at most 1, with the
goal of maximizing total value. Our reduction is as follows.
For each ωi ∈ Ω and 0 ≤ j ≤ n, define wij = 2−j and

vij = p(ωi)
“

1
2
x′ij +

P
d>j x

′
id

”
. This defines a MCKP input

instance. For any given t ∈ X, v(φ(t), x′) =
P
ωi∈Ω vidt(i)

and
P
ωi∈Ω wi,dt(i) ≤ 1 by the Kraft inequality. Thus, any

strategy for the compression duel can be mapped to a solu-
tion to the MCKP. Likewise, a solution to the MCKP can
be mapped in a value-preserving way to a binary tree t with
leaf set Ω, again by the Kraft inequality. This completes the
reduction.

4.2 Beatability
We will obtain a bound of 3/4 on the beatability of the

Huffman algorithm. The high-level idea is to choose an ar-
bitrary tree T and consider the leaves for which T beats H
and vice-versa. We then apply structural properties of trees
to limit the relative sizes of these sets of leaves, then use
properties of Huffman trees to bound the relative probabil-
ity that a sampled leaf falls in one set or the other. The
details appear in the full version of the paper.

Proposition 2. The beatability of the Huffman algorithm
is at most 3

4
.

We now give an example to demonstrate that the Huffman
algorithm is at least (2/3− ε)-beatable for every ε > 0. For

any n ≥ 3, consider the probability distribution given by
p(ω1) = 1

3
, p(ωi) = 1

3·2i−2 for all 1 < i < n, and p(ωn) =
1

3·2n−3 . For this distribution, the Huffman tree t satisfies
dt(ωi) = i for each i < n and dt(ωn) = n− 1. Consider the
alternative tree t′ in which d(ω1) = n− 1 and d(ωi) = i− 1
for all i > 1. Then t′ will win if any of ω2, ω3, . . . , ωn−1 are
chosen, and will tie on ωn. Thus

v(t′, t) =
X
i>1

1

3 · 2i−2
+

1

2
· 1

3 · 2n−3
=

2

3
− 1

3 · 2n−2
,

and hence the Huffman algorithm is ( 2
3
− 1

3·2n−2 )-beatable.
We note that if all probabilities are inverse powers of 2,

the Huffman algorithm is minmax optimal.

Proposition 3. Suppose that p(ωi) = 2−ai for some in-
teger ai, for each i ≤ n. Then the value of the Huffman tree
H is v(H) = 1/2.

4.3 Variant: allowed failures
We consider a variant of the compression duel in which an

algorithm can fail to encode certain elements. If we write
L(T ) to be the set of leaves of binary tree T , then in the
(original) model of compression we require that L(T ) = Ω
for all T ∈ X, whereas in the “Fail” model we require only
that L(T ) ⊆ Ω. If ω 6∈ L(T ), we will take c(T, ω) =∞. The
Huffman algorithm is optimal for single-player compression
in the Fail model.

We note that our method of computing approximate min-
max algorithms carries over to this variant; we need only
change our best-response reduction to use a Multiple-Choice
Knapsack Problem in which at most one element is chosen
from each list. What is different, however, is that the Huff-
man algorithm is completely beatable in the Fail model. If
we take Ω = {ω1, ω2} with p(ω1) = 1 and p(ω2) = 0, the
Huffman tree H places each of the elements of Ω at depth
2. If T is the singleton tree that consists of ω1 as the root,
then v(T,H) = 1.

5. BINARY SEARCH DUEL
In a binary search duel, Ω = [n] and X is the set of bi-

nary search trees on Ω (i.e. binary trees in which nodes are
labeled with elements of Ω in such a way that an in-order
traversal visits the elements of Ω in sorted order). Let p be
a distribution on Ω. Then for T ∈ X and ω ∈ Ω, c(T, ω)
is the depth of the node labeled by “ω” in the tree T . In
single-player binary search and uniform p, selecting the me-
dian m element in Ω as the root node and recursing on the
left {ω|ω < m} and right {ω|ω > m} subsets to construct
sub-trees is known to be optimal.

The binary search game can be represented as a bilinear
duel. In this case, K and K′ will be sets of stochastic matri-
ces (as in the case of the compression game) and the entry
{xi,j} will represent the probability that item ωj is placed
at depth i. Of course, not every stochastic matrix is realiz-
able as a distribution on binary search trees (i.e. such that
the probability ωj is placed at depth i is {xi,j}). In order
to define linear constraints on K so that any matrix in K
is realizable, we will introduce an auxiliary data structure
in Section 5.1 called the State-Action Structure that
captures the decisions made by a binary search tree. Using
these ideas, we will be able to fit the binary search game
into the bilinear duel framework introduced in Section 2.2



and hence be able to efficiently compute a Nash equilibrium
strategy for each player.

Given a binary search tree T ∈ X, we will write cT (ω) for
the depth of ω in T . We will also refer to cT (ω) as the time
that T finds ω.

5.1 Computing an equilibrium
In this subsection, we give an algorithm for computing

a Nash equilibrium for the binary search game, based on
the bilinear duel framework introduced in Section 2.2. We
will do this by defining a structure called the State-Action
Structure that we can use to represent the decisions made
by a binary search tree using only polynomially many vari-
ables. The set of valid variable assignments in a State-
Action Structure will also be defined by only polyno-
mially many linear constraints and so these structures will
naturally be closed under taking convex combinations. We
will demonstrate that the value of playing σ ∈ ∆(X) against
any value matrix V is a linear function of the variables in
the State-Action Structure corresponding to σ. Fur-
thermore, all valid State-Action Structures can be effi-
ciently realized as a distribution on binary search trees which
achieves the same expected value.

To apply the bilinear duel framework, we must give a map-
ping φ from the space of binary search trees to a convex set
K defined explicitly by a polynomial number of linear con-
straints (on a polynomial number of variables). We now give
an informal description of K: The idea is to represent a bi-
nary search tree T ∈ X as a layered graph. The nodes (at
each depth) alternate in type. One layer represents the cur-
rent knowledge state of the binary search tree. After making
some number of queries (and not yet finding the token), all
the information that the binary search tree knows is an in-
terval of values to which the token is confined - we refer to
this as the live interval. The next layer of nodes represents
an action - i.e. a query to some item in the live interval.
Correspondingly, there will be three outgoing edges from an
action node representing the possible replies that either the
item is to the left, to the right, or at the query location (in
which case the outgoing edge will exit to a terminal state).

We will define a flow on this layered graph based on T and
the distribution p on Ω. Flow will represent total probability
- i.e. the total flow into a state node will represent the
probability (under a random choice of ω ∈ Ω according to
p) that T reaches this state of knowledge (in exactly the
corresponding number of queries). Then the flow out of a
state node represents a decision of which item to query next.
And lastly, the flow out of an action node splits according
to Bayes’ Rule - if all the information revealed so far is that
the token is confined to some interval, we can express the
probability that (say) our next query to a particular item
finds the token as a conditional probability. We can then
take convex combinations of these ”basic” flows in order to
form flows corresponding to distributions on binary search
trees.

We give a randomized rounding algorithm to select a ran-
dom binary search tree based on a flow - in such a way that
the marginal probabilities of finding a token ωi at time r are
exactly what the flow specifies they should be. The idea is
that if we choose an outgoing edge for each state node (with
probability proportional to the flow), then we have fixed a
binary search tree because we have specified a decision rule
for each possible internal state of knowledge. Suppose we

were to now select an edge out of each action node (again
with probability proportional to the flow) and we were to
follow the unique path from the start node to a terminal
node. This procedure would be equivalent to searching for
a randomly chosen token ωi chosen according to p and us-
ing this token to choose outgoing edges from action nodes.
This procedure generates a random path from the start node
to a terminal node, and is in fact equivalent to sampling a
random path in the path decomposition of the flow pro-
portionally to the flow along the path. Because these two
rounding procedures are equivalent, the marginal distribu-
tion that results from generating a binary search tree (and
choosing a random element to look for) will exactly match
the corresponding values of the flow.

5.2 Beatability
We next consider the beatability of the classical algorithm

when p is the uniform distribution on Ω. For lack of a bet-
ter term, let us call this single-player optimum the median
binary search - or median search.

Here we give matching upper and lower bounds on the
beatability of median search. The idea is that an adversary
attempting to do well against median search can only place
one item at depth 1, two items at depth 2, four items at
depth 3 and so on. We can regard these as budget restric-
tions - the adversary cannot choose too many items to map
to a particular depth. There are additional combinatorial re-
strictions, as well. For example, an adversary cannot place
two labels of depth 2 both to the right of the label of depth
1 - because even though the root node in a binary search
tree can have two children, it cannot have more than one
right child.

But suppose we relax this restriction, and only consider
budget restrictions on the adversary. Then the resulting
best response question becomes a bipartite maximum weight
matching problem. Nodes on the left (in this bipartite graph)
represent items, and nodes on the right represent depths
(there is one node of depth 1, two nodes of depth 2, ...).
And for any choice of a depth to assign to a node, we can
evaluate the value of this decision - if this decision beats
median search when searching for that element, we give the
corresponding edge weight 1. If it ties median search, we
give the edge weight 1

2
and otherwise we give the edge zero

weight.
We give an upper bound on the value of a maximum

weight matching in this graph, hence giving an upper bound
on how well an adversary can do if he is subject to only bud-
get restrictions. If we now add the combinatorial restrictions
too, this only makes the best response problem harder. So
in this way, we are able to bound how much an adversary
can beat median search. In fact, we give a lower bound that
matches this upper bound - so our relaxation did not make
the problem strictly easier (to beat median search).

We focus on the scenario in which |Ω| = 2`−1 for some ` ≥
1 and p is the uniform distribution. Throughout this section
we denote n = |Ω|. The reason we fix n to be of the form
2` − 1 is because the optimal single-player strategy is well-
defined in the sense that the first query will be at precisely
the median element, and if the element ω is not found on
this query, then the problem will break down into one of
two possible 2`−1 − 1 sized sub-problems. For this case, we
give asymptotically matching upper and lower bounds on



the beatability of median search. The details appear in the
full version of the paper.

Lemma 5. The beatability of median search is at least
2`−1−1+2`−3

2`−1
≈ 5

8
.

Lemma 6. The beatability of median search is at most
2`−1−1+2`−3

2`−1
≈ 5

8
.

6. A RACING DUEL
The racing duel illustrates a simple example in which

the beatability is unbounded, the optimization problem is
“easy,” but finding polynomial-time minmax algorithms re-
mains a challenging open problem. The optimization prob-
lem behind the racing duel is routing under uncertainty.
There is an underlying directed multigraph (V,E) contain-
ing designated start and terminal nodes s, t ∈ V , along with
a distribution over bounded weight vectors Ω ⊂ RE

≥0, where
ωe represents the delay in traversing edge e. The feasible
set X is the set of paths from s to t. The probability dis-
tribution p ∈ ∆(Ω) is an arbitrary measure over Ω. Finally,
c(x, ω) =

P
e∈x ωe.

For general graphs, solving the racing duel seems quite
challenging. This is true even when routing between two
nodes with parallel edges, i.e., V = {s, t} and all edges
E = {e1, e2, . . . , en} are from s to t. As mentioned in the
introduction, this problem is in some sense a “primal” duel
in that it can encode any duel and finite strategy set. In
particular, given any optimization problem with |X| = n,
we can create a race where each edge ei ∈ E corresponds to
a strategy xi ∈ X, and the delays on the edges match the
costs of the associated strategies.

6.1 Shortest path routing is 1-beatable
The single-player racing problem is easy: take the shortest

path on the graph with weights we = Eω∼p[ωe]. However,
this algorithm can be beaten almost always. Consider a
graph with two parallel edges, a and b, both from s to t.
Say the cost of a is ε/2 > 0 with probability 1, and the
cost of b is 0 with probability 1 − ε and 1 with probability
ε. The optimization algorithm will choose a, but b beats a
with probability 1− ε, which is arbitrarily close to 1.

6.2 Price of anarchy
Take social welfare to be the average performance, W (x, x′) =

(c(x) + c(x′))/2. Then the price of anarchy for racing is un-
bounded. Consider a graph with two parallel edges, a and b,
both from s to t. The cost of a is ε > 0 with probability 1,
and the cost of b is 0 with probability 3/4 and 1 with proba-
bility 1/4. Then b a dominant strategy for both players, but
its expected cost is 1/4, so the price of anarchy is 1/(4ε),
which can be arbitrarily large.

7. ASYMMETRIC GAMES
We note that all of the examples we considered have been

symmetric with respect to the players, but our results can
be extended to asymmetric games. Our analysis of bilinear
duels in Section 2.1 does not assume symmetry when dis-
cussing bilinear games. For instance, we could consider a
game where player 1 wins in the case of ties, so player 1’s
payoff is Pr[c(x, ω) ≤ c(x′, ω)]. One natural example would
be a ranking duel in which there is an “incumbent” search

engine that appeared first, so a user prefers to continue us-
ing it rather than switching to a new one. This game can be
represented in the same bilinear form as in Section 2.5, the
only change being a small modification of the payoff matrix
M . Other types of asymmetry, such as players having differ-
ent objective functions, can be handled in the same way. For
example, in a hiring duel, our analysis techniques apply even
if the two players may have different pools of candidates, of
possibly different sizes and qualities.

8. CONCLUSION
The dueling framework is a way to look at classic op-

timization problems through the lens of competition. As
we have demonstrated, standard algorithms for many opti-
mization problems do not, in general, perform well in these
competitive settings. This leads us to suspect that alter-
native algorithms, tailored to competition, may find use in
practice. We adapted linear programming and learning tech-
niques into methods for constructing such algorithms.

There are many open questions yet to consider. For in-
stance, one avenue of future work is to compare the compu-
tational difficulty of solving an optimization problem with
that of solving the associated duel. We know that one is
not consistently more difficult than the other: in Section 6
we provide an example in which the optimization problem
is computationally easy but the competitive variant appears
difficult; an example of the opposite situation is given in the
full version of the paper, where a computationally hard op-
timization problem has a duel which can be solved easily.
Is there some structure underlying the relationship between
the computational hardness of an optimization problem and
its competitive analog?

Perhaps more importantly, one could ask about perfor-
mance loss inherent when players choose their algorithms
competitively instead of using the (single-player) optimal al-
gorithm. In other words, what is the price of anarchy [11] of
a given duel? Such a question requires a suitable definition
of the social welfare for multiple algorithms, and in particu-
lar it may be that two competing algorithms perform better
than a single optimal algorithm. Our main open question
is:

Open Question 1. Does competition between algorithms
improve or degrade expected performance?

9. REFERENCES
[1] Itai Ashlagi, Piotr Krysta, and Moshe Tennenholtz.

Social context games. In WINE, pages 675–683, 2008.

[2] Itai Ashlagi, Moshe Tennenholtz, and Aviv Zohar.
Competing schedulers. In AAAI, 2010.

[3] Baruch Awerbuch and Robert D. Kleinberg. Adaptive
routing with end-to-end feedback: distributed learning
and geometric approaches. In STOC ’04: Proceedings
of the thirty-sixth annual ACM symposium on Theory
of computing, pages 45–53, New York, NY, USA, 2004.
ACM.

[4] Felix Brandt, Felix A. Fischer, Paul Harrenstein, and
Yoav Shoham. Ranking games. Artif. Intell.,
173(2):221–239, 2009.

[5] R. Burguet and J. Sakovics. Imperfect Competition in
Auction Designs. International Economic Review,
40(1):231–247, 1999.



[6] J. Feigenbaum, D. Koller, and P. Shor. A
game-theoretic classification of interactive complexity
classes. In SCT ’95: Proceedings of the 10th Annual
Structure in Complexity Theory Conference (SCT’95),
page 227, Washington, DC, USA, 1995. IEEE
Computer Society.

[7] Lance Fortnow, Russell Impagliazzo, Valentine
Kabanets, and Christopher Umans. On the complexity
of succinct zero-sum games. In CCC ’05: Proceedings
of the 20th Annual IEEE Conference on
Computational Complexity, pages 323–332,
Washington, DC, USA, 2005. IEEE Computer Society.

[8] Yoav Freund and Robert E. Schapire. Game theory,
on-line prediction and boosting. In COLT ’96:
Proceedings of the ninth annual conference on
Computational learning theory, pages 325–332, New
York, NY, USA, 1996. ACM.

[9] Nicole Immorlica, Robert Kleinberg, and Mohammad
Mahdian. Secretary problems with competing
employers. In Paul Spirakis, Marios Mavronicolas, and
Spyros Kontogiannis, editors, Internet and Network
Economics, volume 4286 of Lecture Notes in Computer
Science, pages 389–400. Springer Berlin / Heidelberg,
2006.

[10] Adam Kalai and Santosh Vempala. Efficient
algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291 – 307, 2005.
Learning Theory 2003.

[11] Elias Koutsoupias and Christos Papadimitriou.
Worst-case equilibria. In Proceedings of the 16th
annual conference on Theoretical aspects of computer
science, STACS’99, pages 404–413, Berlin, Heidelberg,
1999. Springer-Verlag.

[12] E. L. Lawler. Fast approximation algorithms for
knapsack problems. Mathematics of Operations
Research, 4(4):339–356, 1979.

[13] L. Lovász and M. D. Plummer. Matching theory. Ann.
Discrete Math., 29, 1986.

[14] P. McAfee. Mechanism Design by Competing Sellers.
Econometrica, 61:1281–̈ı£¡1312, 1993.

[15] D. Monderer and M. Tennenholtz. K-price auctions:
Revenue Inequalities, Utility Equivalence, and
Competition in Auction Design. Economic Theory,
24(2):255–270, 2004.

[16] M. Peters and S. Severinov. Competition Among
Sellers Who Offer Auctions Instead of Prices. Journal
of Economic Theory, 75:141̈ı£¡–179, 1997.


	Introduction
	Preliminaries
	Bilinear duels
	Reduction to bilinear duels
	Approximate minmax
	Beatability
	A warmup: the ranking duel

	Hiring Duel
	Common pools of workers
	Independent pools of workers

	Compression Duel
	Computing an equilibrium
	Beatability
	Variant: allowed failures

	Binary Search Duel
	Computing an equilibrium
	Beatability

	A Racing Duel
	Shortest path routing is 1-beatable
	Price of anarchy

	Asymmetric Games
	Conclusion
	References
	Proofs from Section 2
	When Competing is Easier than Playing Alone

