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Abstract

Despite their di�erent perspectives, arti�cial intelligence (AI) and the disciplines of decision

science have common roots and strive for similar goals. This paper surveys the potential for

addressing problems in representation, inference, knowledge engineering, and explanation within

the decision-theoretic framework. Recent analyses of the restrictions of several traditional AI

reasoning techniques, coupled with the development of more tractable and expressive decision-

theoretic representation and inference strategies, have stimulated renewed interest in decision

theory and decision analysis. We describe early experience with simple probabilistic schemes

for automated reasoning, review the dominant expert-system paradigm, and survey some recent

research at the crossroads of AI and decision science. In particular, we present the belief network

and in
uence diagram representations. Finally, we discuss issues that have not been studied in

detail within the expert-systems setting, yet are crucial for developing theoretical methods and

computational architectures for automated reasoners.
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1 INTRODUCTION 1

1 Introduction

Reasoning about action under incomplete information and scarce resources is central to solving

di�cult problems in arti�cial intelligence (AI). The time is ripe for AI to apply and extend tech-

niques developed in decision science for addressing resource allocation and decision making under

uncertainty. By decision science, we mean Bayesian probability and decision theory, the study of

the psychology of judgment, and their practical application in operations research and decision

analysis. In particular, decision theory can provide a valuable framework for addressing some of

the foundational problems in AI, and forms the basis for a range of practical tools.

Arti�cial intelligence and the decision sciences emerged from research on systematic methods

for problem solving and decision making that blossomed in the 1940s. These disciplines were stim-

ulated by new possibilities for automated reasoning unleashed by the development of the computer.

Although the �elds had common roots, AI soon distinguished itself from the others in its concern

with autonomous problem solving, its emphasis on symbolic rather than numeric information, its

use of declarative representations, and its interest in analogies between computer programs and

human thinking.

Some of the earliest AI research centered on an analysis of the su�ciency of alternative approx-

imation strategies and heuristic methods to accomplish the task of more complex decision-theoretic

representation and inference [137]. However, many AI researchers soon lost interest in decision the-

ory. This disenchantment seems to have arisen, in part, from a perception that decision-theoretic

approaches were hopelessly intractable and were inadequate for expressing the rich structure of

human knowledge [51, 144]. This view is re
ected in a statement by Szolovits, a researcher who

had investigated the application of decision theory in early medical reasoning systems: \The typical

language of probability and utility theory is not rich enough to discuss such complex medical issues,

and its extension within the original spirit leads to untenably large decision problems" (Szolovits

[144], p. 7).

Although similar views are still widespread among AI researchers, there has been a recent

resurgence of interest in the application of probability theory, decision theory, and decision anal-

ysis to AI. In this paper, we examine some of the reasons for this renewed interest, including an

increasing recognition of the shortcomings of some traditional AI methods for inference and deci-

sion making under uncertainty, and the recent development of more expressive decision-theoretic

representations and more practical knowledge-engineering techniques.

The potential contributions of decision science for tackling AI problems derive from decision

science's explicit theoretical framework and practical methodologies for reasoning about decisions

under uncertainty. Decisions underlie any action that a problem solver may take in structuring

problems, in reasoning, in allocating computational resources, in displaying information, or in con-

trolling some physical activity. As AI has moved beyond toy problems to grapple with complex,

real-world decisions, adequate treatment of uncertainty has become increasingly important. At-

tempts to build systems in such areas as medicine, investment, aerospace, and military planning

have uncovered the ubiquity of uncertainty associated with incomplete models. The discovery of

useful heuristic procedures can be quite di�cult in these complex domains.
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Work in real-world domains has also uncovered the importance of reasoning about actions

and human values. Traditional AI research has paid little attention to the modeling of complex

preferences and attitudes toward risk. These issues are central in decision science. We believe that

the correspondence of concerns with AI and decision theory will become increasingly obvious as

investigators begin to enter complex real-world domains that are dominated by uncertainty and

high stakes.

We discuss research that applies concepts and techniques from probability, decision theory, and

decision analysis to problems in AI. After outlining key ideas in decision science, we explore advances

in the use of decision-theoretic ideas in diagnostic expert systems. We examine initial probabilistic

approaches to expert systems and the heuristic approaches that achieved prominence in the mid-

1970s. We then review current research on the use of decision-theoretic concepts in expert systems,

including representation, knowledge engineering, tractable inference, and explanation. Finally, we

move beyond expert systems to survey applications of decision theory to a variety of topics in AI

research.

Although some researchers have made noteworthy progress, much of this work is still in its

initial stages. It remains to be seen how e�ective these approaches can be in addressing long-

standing problems in AI. It would be premature to attempt a comprehensive assessment of the

eventual in
uence of this area of research. Our purpose here is simply to present a perspective on

central issues and to provide pointers to promising avenues of research.

2 Foundations

[T]he theory of probability is no more than a calculus of good sense. By this theory,

we learn to appreciate precisely what a sound mind feels through a kind of intuition

often without realizing it. The theory leaves nothing arbitrary in choosing opinions or

in making decisions, and we can always select, with the help of this theory, the most

advantageous choice on our own. It is a refreshing supplement to the ignorance and

feebleness of the human mind. (Laplace,[94], p. 196).

The foundations of probability theory extend at least as far back as the seventeenth century in

the works of Pascal, Bernoulli, and Fermat. Probability provides a language for making statements

about uncertainty and thus makes explicit the notion of partial belief and incomplete information.

Decision theory extends this language to allow us to make statements about what alternative ac-

tions are and how alternative outcomes (the results of actions) are valued relative to one another.

Probability theory and the more encompassing decision theory provide principles for rational infer-

ence and decision making under uncertainty. These theoretical ideas, however, tell us little about

how to apply these principles to real problems in a tractable manner; this is the realm of decision

analysis. In this section, we review central concepts of Bayesian probability theory, decision theory,

and decision analysis. Our intent is not to provide a comprehensive review of these topics. Rather,

we wish to highlight several key ideas.
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2.1 Probability Is a Measure of Personal Belief

A Bayesian or subjectivist views the probability of an event as a measure of a person's degree of

belief in the event, given the information available to that person. A probability of 1 corresponds

to belief in the absolute truth of a proposition, a probability of zero to belief in the proposition's

negation, and intervening values to partial belief or knowledge. According to this perspective,

probabilities are properties of the state of knowledge of an individual rather than properties of a

sequence of events (e.g., tosses of a \fair" coin). This approach generalizes the classical notion

of a probability as a long-run frequency of a \repeatable" event. A subjectivist also is willing to

assign belief to unique events that are not members of any obvious repeatable sequence of events

(e.g., the probability that we will �nish the manuscript this week). The assignment of a subjective

probability should be based on all information available to an individual, including those items that

are known to be true or deducible in a logical sense, as well as empirical frequency information.

A single real number is used to represent the belief that an agent has in the truth of a proposi-

tion. Subjectivists often draw attention to the state of information on which a probability is based,

or conditioned, by specifying it explicitly. The notation for the probability of a proposition or event

X conditioned on a state of information � may be speci�ed as p(X j�). To make it clear that any

belief assignment is based on background knowledge, we explicitly include � in the conditioning

statement. Thus, the revised probability of X given a new piece of evidence E is written p(X jE; �),

where the comma denotes the conjunction of E and �.

Subjective probabilities abide by the same set of axioms as do classical probabilities or fre-

quencies. The axioms are rules for the consistent combination of probabilities for related events. A

classic axiomatization of probability contains the following de�nitions:1

0 <= p(X j�) <= 1

p(X j�) + p(not X j�) = 1

p(Xor Y j�) = p(X j�) + p(Y j�)� p(Xand Y j�)

p(Xand Y j�) = p(X jY; �)p(Y j�)

Sets of belief assignments that are consistent with the axioms of probability theory are said to

be coherent. In this sense, the theory provides a consistency test for uncertain beliefs. Persuasive

examples suggest that a rational person would wish to avoid making decisions based on incoherent

beliefs. For example, someone willing to bet according to incoherent beliefs would be willing to

accept a \Dutch book"{that is, a combination of bets leading to guaranteed loss under any outcome

[96, 134].

2.2 Probability Is Su�cient for Representing Uncertainty

A number of researchers have provided lists of fundamental properties that they consider intuitively

desirable for continuous measures of belief in the truth of a proposition [25, 149, 100]. A recent

reformulation of desirable properties of belief is [75]:

1Several axiomatizations of probability theory have been proposed.
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1. Clarity: Propositions should be well de�ned.

2. Scalar continuity: A single real number is both necessary and su�cient for representing a

degree of belief in a proposition.

3. Completeness: A degree of belief can be assigned to any well-de�ned proposition.

4. Context dependency: The belief assigned to a proposition can depend on the belief in other

propositions.

5. Hypothetical conditioning : There exists some function that allows the belief in a conjunction

of propositions, B(X and Y), to be calculated from the belief in one proposition and the belief

in the other proposition given that the �rst proposition is true. That is,

B(Xand Y ) = f [B(X jY ); B(Y )]

6. Complementarity : The belief in the negation of a proposition is a monotonically decreasing

function of the belief in the proposition itself.

7. Consistency : There will be equal belief in propositions that are logically equivalent.

Cox and other researchers have demonstrated that, taken together, these properties logically

imply that the measure of belief must satisfy the axioms of probability theory [25]. The proof of

the necessary relationship between the intuitive properties and the axioms of probability theory is

based on an analysis of solutions to the functional forms implied by the intuitive properties. Thus,

according to Cox's proof, if one accepts these intuitive properties as desirable, one must accept

probabilities as a desirable measure of belief.

These principles provide a useful framework for comparing alternative formalisms for repre-

senting uncertainty, in terms of which of the principles the formalisms reject [75]. For example,

fuzzy-set theory [160] rejects the property of clarity, allowing linguistic imprecision in the de�-

nition of propositions. Some AI researchers have also rejected scalar continuity, arguing that a

single number is insu�ciently rich to represent belief [19]. Dempster-Shafer theory [133] rejects

completeness, denying that it is possible to assign a belief to every well-de�ned proposition. Most

heuristic quantitative approaches to representing uncertainty used in AI, even when they use the

term probability as in Prospector [36], implicitly violate consistency.

2.3 The Direction of Probabilistic Inference Can Be Reversed

Probability theory, and in particular Bayes' theorem, allows us to reverse the direction of inference.

That is, given the in
uence of hypothesis H on observable evidence E, expressed as p(EjH; �),

Bayes' theorem allows us to compute the in
uence of E on H , expressed as p(H jE; �). Commonly,

the hypothesis H is perceived as causing the evidence E. If H is a disease and E is an observ-

able symptom, we can express the evidential relationship in the causal direction (i.e., p(EjH; �)),

and then use Bayes' theorem to reverse the inference and reason in the diagnostic direction (i.e.,

p(H jE; �)) [132]. This bidirectionality is a consequence of Bayes' theorem.
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Bayes' theorem follows from the last axiom of probability, relating the probability of a joint

event (i.e., a conjunction) to conditional probabilities [4]. The theorem written in its standard form

for relating a hypothesis H to evidence E is

p(H jE; �) =
p(EjH; �)p(H j�)

p(Ej�)

We can expand this equation, in terms of the negation of H , :H , to

=
p(EjH; �)p(H j�)

p(EjH; �)p(H j�)+ p(Ej:H; �)p(:H�)

The theorem simply states that the belief in the hypothesis in light of the evidence, p(H jE; �)

(the posterior probability), depends on how likely it is that we observe a particular piece of evidence

given the hypothesis and its negation, p(EjH; �) and p(Ej:H; �), and the prior probability of the

hypothesis, p(H j�).

The inferential symmetry of probabilistic reasoning can be useful when probabilities are avail-

able in one direction but are required in the reverse direction. For example, domain experts may be

more comfortable with specifying probabilities in the causal direction, through assessing p(EjH; �),

but may wish to calculate beliefs in the diagnostic direction, reasoning about the belief in hy-

potheses given evidence, p(H jE; �). Representing belief in the causal direction frequently is a more

parsimonious and invariant representation of the uncertain relationships than is the diagnostic

relationship, which will vary with prior probabilities (e.g., for di�erent populations). Moreover,

in causal form, complex relationships among multiple hypotheses and multiple e�ects can be fre-

quently decomposed into simpler relationships from each hypothesis to its individual e�ects, which

can be assessed separately.

2.4 Decision Theory Provides a Framework for Reasoning About Preferences

Decision theory is based on the axioms of probability and utility. Where probability theory pro-

vides a framework for coherent assignment of beliefs with incomplete information, utility theory

introduces a set of principles for consistency among preferences and decisions. A decision is an

irrevocable allocation of resources under control of the decision maker. Preferences describe a de-

cision maker's relative valuations for possible states of the world, or outcomes. The valuation of

an outcome may be based on the traditional attributes of money and time, as well as on other

dimensions of value including pleasure, pain, life-years, and computational e�ort.

Utility theory is based on a set of simple axioms or rules concerning choices under uncertainty.

Like the axioms of probability theory, these rules are fairly intuitive. The reader is referred elsewhere

for a detailed presentation of di�erent versions of the axioms, their rationale, and implications

[151, 129, 32, 41]. Here, we only try to give the axioms' 
avor.

The �rst set of axioms concerns preferences for outcomes under certainty. The axiom of or-

derability asserts that all outcomes are comparable, even if described by many attributes. Thus,

for any two possible outcomes x and y, either one prefers x to y or one prefers y to x, or one is

indi�erent between them. The axiom of transitivity asserts that these orderings are consistent; that
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is, if one prefers x to y and y to z, then one prefers x to z. These axioms, together with two auxiliary

axioms, ensure a weak preference ordering of all outcomes. This result implies the existence of a

scalar value function V(x), which maps from all outcomes x into a scalar \value" such that one will

always prefer outcomes with a higher \value."

The second set of axioms describes preferences under uncertainty. They involve the notion

of a lottery, an uncertain situation with more than one possible outcome. Each outcome has an

assignable probability of occurrence. The monotonicity axiom says that, when comparing two lot-

teries, each with the same two alternative outcomes but di�erent probabilities, a decision maker

should prefer the lottery that has the higher probability of the preferred outcome. The decom-

posability axiom says that a decision maker should be indi�erent between lotteries that have the

same set of eventual outcomes and probabilities, even if they are reached by di�erent means. For

example, a lottery whose outcomes are other lotteries can be decomposed into an equivalent one-

stage lottery using the standard rules of probability. The substitutability axiom asserts that, if a

decision maker is indi�erent between a lottery and some certain outcome (the certainty equivalent

of the lottery), then substituting one for the other as a possible outcome in some more complex

lottery should not a�ect her preference for that lottery. Finally, the continuity axiom says that, if

one prefers outcome x to y, and y to z, then there is some probability p such that one is indi�erent

between getting the intermediate outcome y for sure and a lottery with a p chance of x (the best

outcome) and (1 - p) chance of z (the worst outcome).

It follows from accepting the axioms of utility that there exists a scalar utility function U(x,d),

which assigns a number on a cardinal scale to each outcome x and decision d, indicating its relative

desirability. Further, it follows that when there is uncertainty about x, preferred decisions d are

those that maximize the expected utility E[U(x; d)j�] over the probability distribution for x.

The consistency criteria embodied in classical decision theory can be stated as follows: Given a

set of preferences expressed as a utility function, beliefs expressed as probability distributions, and

a set of decision alternatives, a decision maker should choose that course of action that maximizes

expected utility. The power of this result is that it allows preferences for complex and uncertain

combinations of outcomes with multiple attributes to be computed from preferences expressed for

simple components. Thus, it may be used as a tool to help people think about complex choices by

decomposing them into simpler choices.

A utility function for uncertain situations also allows one to express attitudes toward risk, such

as risk aversion, when contemplating lotteries involving quantitative attributes such as money. Risk

aversion is exhibited by many people, when they prefer to receive a monetary prize for certain over

a lottery with an identical expected value. Decision theory provides various techniques for eliciting

and encoding di�erent attitudes toward risk for supporting decision making under uncertainty [80].

Although the valuation of alternative states and choices about the allocation of resources often

is central for computational agents, the crucial notions of decision and preference have not been

addressed in a well-de�ned manner in AI.
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2.5 Decision Theory Is Normative

If one �nds the axioms of decision theory compelling as principles for rational choice, then the theory

is normative. In other words, the axioms provide a set of criteria for consistency among beliefs,

preferences and choices that \should" be adhered to by a rational decision maker. Alternatively,

given a set of beliefs and preferences, the theory prescribes as rational only those decisions that

maximize expected utility. A system that makes decisions or recommendations consistent with the

axioms may also be termed normative.2

It is important to understand that decision theory is not generally proposed as a descriptive

theory; it does not purport to provide a description of how people actually behave when reasoning

under uncertainty. Indeed, studies have demonstrated that people frequently do not behave in

accordance with decision theory [85]. In fact, characteristic (and often costly) biases exhibited in

intuitive judgment are part of the justi�cation for applying decision sciences to assist people with

decision making.

2.6 Good Decisions Must Be Distinguished from Good Outcomes

A decision-theoretic perspective distinguishes between a good decision (a choice made consistent

with preferences and beliefs) and a good outcome (the result of a choice that turns out to be desir-

able). We can labor mightily to elicit probabilities, to structure values, and to assess alternatives

and still make a choice that leads to a bad outcome. Alternatively, a random or poor selection may

well turn out fortuitously. Such is the nature of acting under incomplete information. Decision

theory strives for good decisions that lead to better outcomes on average.

2.7 Incompleteness and Uncertainty Are Unavoidable

Systems that reason about real-world problems can represent only a portion of reality. It is clear

that any computational representation must be a dramatic simpli�cation of the objects and relations

in the universe that may have relevance to a decision problem. The inescapable incompleteness in

representation leads to unavoidable uncertainties about the state of the world and about the con-

sequences of our actions. In practice, uncertainty is particularly acute when dealing with multiple

actors, complex preferences, high stakes, and long-term consequences.

2.8 Decision Analysis Is Applied Decision Theory

Decision analysis is an engineering discipline that addresses the pragmatics of applying decision

theory to real-world problems. Decision theory only dictates a set of formal consistency constraints;

it says nothing about how we elicit or represent a utility function or probability distribution,

or about the manner in which we represent or reason about a decision problem (e.g., the level

of granularity and detail). It also does not address search procedures for a utility-maximizing

2Logic-based reasoning methods also may be considered normative in that they prescribe a set of rules for correct

inference under certainty; that is, a system that reasons or makes recommendations using these rules may be viewed

as normative with respect to deterministic knowledge.
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decision. Decision analysis, in contrast, addresses these issues directly in terms of decision making

and tractability.

The discipline of decision analysis emerged in the 1960s; it grew out of a recognition that

probability and decision theory, hitherto applied primarily to problems of statistical estimation

[129, 122], also could be applied to real-world decision problems [78, 120]. Since its inception,

decision analysis has grown into an established academic and professional discipline [83, 152, 88].

There are a number of commercial consulting and research �rms that perform decision analyses

for government and private clients. Some large corporations routinely apply decision analysis to

scheduling, capital expansion, and research and development decisions. The emphasis has been on

assisting people and organizations faced with high stakes and complex resource-allocation problems.

Decision analysis can be thought of as a set of techniques for focusing attention. It provides

methods that help a decision maker to clarify the problem by explicating decision alternatives,

values, and information. It provides a variety of techniques for sensitivity analysis, to help a person

identify those uncertainties and assumptions that could have a signi�cant e�ect on the decision

recommendations. The decision maker can then focus attention on those factors that make a

di�erence in decisions, and can ignore aspects of the problem that turn out to have relatively minor

relevance. Resources therefore can be directed to the most important or sensitive aspects of the

problem.

3 Early Research on Expert Systems

The area of AI in which decision theory has had the most obvious in
uence is that of diagnostic

expert systems. This emphasis has occurred, in large part, because expert systems are often

concerned with inference and decision making under uncertainty. In this section, we review the

early application of probabilistic methods in expert systems. We then discuss the more popular

heuristic approaches that were developed later, partly as a reaction to the perceived limitations of

the early schemes.

By expert system, we mean a reasoning system that performs at a level comparable to or better

than a human expert does within a speci�ed domain. We have found it useful to divide tasks

for which expert systems have been constructed into analytic and synthetic categories. In systems

dedicated to analytic tasks, a set of alternatives such as possible diagnoses or decisions either are

explicitly enumerated or are relatively easy to enumerate; the central task is the valuation of the

alternatives. With synthetic tasks, the space of alternatives (e.g., the set of possible con�gurations

or plans) may be extremely large, and the main problem is constructing one or more feasible

options. Analytic tasks include prediction, classi�cation, diagnosis, and decision making about a

limited set of options. Synthetic tasks include the generation of alternatives, design, con�guration,

and planning. Many of the best-known expert systems address analytic tasks, such as medical

diagnosis. However, some of the most successful systems are applied to synthetic problems, such

as R1 for computer-hardware con�guration [103].

Decision theory provides an appealing approach to analytic tasks, particularly to those involving

inference and decision making under uncertainty. Consequently, we focus on expert systems for
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analytic tasks. Decision theory also can be relevant to synthetic tasks, because useful alternatives

often must be selected from large numbers of options.

Much of the pioneering work in analytic expert systems has been done on medical applications,

although, more recently, fault diagnosis in electronic components and mechanical devices has been

examined [33, 45]. In general, three kinds of task are involved. The �rst task is diagnosis : How

can we infer the most probable causes of observed problems (e.g., diseases or machine-component

failures) given a set of evidence (e.g., symptoms, patient characteristics, operating conditions, or

test results)? The second task is making information-acquisition decisions : Which additional

information should we request or which additional tests should we conduct? This choice involves

weighing the costs of obtaining the information verses its bene�ts in more accurate diagnosis. The

third task is making isions: What can we do to ameliorate or cure the problem?

3.1 The Problem of Diagnosis

First we formulate the problem of diagnostic inference. Suppose we are considering a set H of n

possible hypotheses,

H = fH1; H2; : : : ; Hng

and a set E of m pieces of evidence,

E = fE1; E2; : : : ; Emg

Assume that all hypotheses and pieces of evidence are two-valued, logical variables, each either

true or false. In a deterministic world, we could assume a relation C(H;E) between hypotheses

and evidence, such that c(Hi; Ej) means that hypothesis Hi implies (or causes) evidence Ej . A

diagnosis or explanation is a set of hypotheses believed to be present (with all others absent). Given

a set of evidence E0, the deterministic diagnostic problem is to discover one or more diagnoses D

� H, that can explain the observed evidence. In particular, D should contain, for all Ej in E0,

a hypothesis Hi such that c(Hi; Ej). Reggia [123] proposed this formulation of the problem of

diagnosis and developed set-covering algorithms for �nding the minimum set of causes that could

explain a set of observations.

In the real world, the relationships among hypotheses and evidence generally are uncertain. The

probabilistic approach is to represent these relationships as the conditional probability distribution

p(E
0

jD; �) for the evidence, given each possible diagnosis D in H. If, in addition, we have the prior

probability p(Dj�) for each subsetD inH representing the believed prevalence rates of combinations

of hypotheses, we can apply Bayes' theorem to compute the posterior probability of each diagnosis,

after observing evidence, E
0

:

p(DjE0; �) =
p(E0jD; �)p(Dj�)

p(E0j�)

The problem of diagnosis is computationally complex. Because a patient may have more than

one disease out of n possible diseases, the number of possible diagnoses (i.e., disease combinations)

is 2n. So the number of independent parameters necessary to specify the complete prior distribution
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is 2n � 1. For m pieces of evidence, the general conditional distribution has 2m � 1 independent

parameters given each hypothesis, requiring the speci�cation of 2n(2m�1) independent parameters

in total for all diagnoses. Clearly, this approach is quite impractical for more than two or three

hypotheses and pieces of evidence without some kind of simpli�cation.

3.2 Early Probabilistic Approaches

A set of research projects on automated probabilistic reasoning for diagnosis was undertaken during

the 1960s. Two simplifying assumptions often were made. First (A1), that the hypotheses in H are

mutually exclusive and collectively exhaustive. Second (A2), that there is conditional independence

of evidence given any hypothesis. That is, given any hypothesis H , the occurrence of any piece of

evidence Ei of the component hypotheses is independent of the occurrence of any other piece of

evidence Ej :

p(EijH; �) = p(EijEj ; H; �):

With assumption A1, the only diagnoses we need to consider are the n singleton hypotheses

Hi. With assumption A2, the conditional probability distribution of the evidence E0 given a disease

Hi, (as required for Bayes' theorem) can be decomposed into the product of the conditionals for

individual pieces of evidence as follows:

p(E0jHi; �) = p(E1; E2; : : : ; EjjHi; �) = p(E1jHi; �)p(E2jHi; �) : : :p(Ej jHi; �)

Under the assumptions A1 and A2, only mn conditional probabilities and n � 1 prior proba-

bilities are required. The simplicity of probabilistic systems based on these two assumptions made

the approach popular. Several medical diagnostic systems have been constructed based on the

simpli�ed probabilistic scheme [145], including systems for the diagnosis of heart disease [154, 52],

and of acute abdominal pain [31]. The popularity of the simpli�ed probabilistic inference has led

some people to believe that the assumptions are absolute requirements of probabilistic inference. It

is a misconception, however, to regard this simpli�ed Bayesian scheme as de�ning practical proba-

bilistic inference. In the section on current research we describe the development of more expressive

representations of probabilistic dependencies.

3.3 Performance of the Early Probabilistic Systems

How well did these early systems perform in terms of diagnostic accuracy? We note that the early

probabilistic systems performed within their limited domains at a level comparable to experts, and

sometimes at a considerably higher level [51, 30, 29]. For example, the system of de Dombal and his

colleagues averaged over 90% correct diagnoses of acute abdominal pain, where expert physicians

were averaging 65%� 80% correct [30]. Patrick's diagnostic aid for chest pain reportedly averaged

80% accuracy, whereas clinicians averaged 51% [113]. These systems certainly qualify as expert

systems according to our de�nition.

It is interesting to ask why these systems performed better than experts given that they made

simplifying assumptions (A1 and A2) and frequently considered only a fraction of the information
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available to physicians. One answer is that some of the computer programs were based on statistical

analysis of empirical data rather than purely on expert judgment. However, the use of more reliable

data does not explain the performance of several of the systems in which probabilities were based

partly or entirely on expert judgment.

In fact, such good performance of simple models based on subjective parameters relative to

unaided expert judgment is consistent with well-established experimental results from numerous

studies [29]. Studies in a wide variety of domains of clinical and other expert judgment have found

that simple linear models with subjectively assessed weights do as well as or better than experts.

One reason for these results seems to be that the simple formal models are more consistent and reli-

able than human experts, being less subject to whims, carelessness, or misguided inspiration. There

also are fundamental mathematical reasons why simple linear models can be robust approximations

to more complex, nonlinear relationships [29].

The relevance of these surprising results to research in expert systems and arti�cial intelligence

has only recently been pointed out [54, 16]. Several preconditions for the applicability of the �ndings

have been elucidated. For the results to apply, tasks must ful�ll at least two conditions: (1) the

behavioral criterion must be some monotonic function of each input, and (2) there must be some

noise in the inputs or the model, so that even optimal performance is limited. These conditions

appear to apply to many diagnostic tasks in complex areas like medicine. Nevertheless, it is unclear

just how well simple linear models can do relative to human experts and expert systems for di�erent

kinds of diagnostic tasks. Further theoretical and empirical research is needed on the usefulness of

simple models. Of particular interest is identifying and characterizing task attributes that would

be useful in predicting the relative performance of di�erent approaches.

3.4 Problems Attributed to the Early Expert Systems

Enthusiasm for probabilistic and decision-theoretic methods faded in the early 1970s. Given the

encouraging performance of these systems, why have they not seen wider application? The an-

swer seems to involve a complex tangle of factors, including both technical and sociological ones.

One often-cited reason is the restricted problem domains to which the probabilistic approach has

been applied. A second reason is the unwarranted simplifying assumptions of mutual exclusivity

and conditional independence{and the immediate intractability associated with attempts to move

beyond the assumptions. More generally, critics of the approach have pointed out the limited

expressiveness of the simpli�ed Bayesian formulation, citing the apparent mismatch between the

rigorous, formal, quantitative approach of probabilistic inference and the informal, qualitative ap-

proach characteristic of human reasoning. They suggest that the mismatch leads to problems both

in encoding expertise and in explaining the results of probabilistic inference, so that users could

understand and trust them [144, 27, 51].

One interesting lesson from the early research on probabilistic reasoning is the distinction be-

tween the performance and acceptability of diagnostic systems. In principle, it might seem that

none of the objections we have listed should be insuperable in the face of superior diagnostic perfor-

mance. However, it is clear that factors other than performance perform a key role in determining
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acceptance. Such factors may include the poor user interface of many early systems [140] and the

general lack of attention paid to how the use of such systems might be integrated with the habits

and environment of the diagnostic practitioner.

3.5 AI Approaches to Expert Systems

Concern about the restrictive assumptions of the simpli�ed probabilistic scheme coupled with the

perception that a combinatoric explosion would threaten any attempt to move beyond these as-

sumptions or to larger domains led to disenchantment with the approach. At the same time, the

new AI techniques being developed in the early 1970s appeared to provide a promising alternative

to the design of expert systems. With the development of heuristic inference methods came reduced

concern with normative optimality and methods for decision and inference under uncertainty. The

attention of mainstream AI researchers became focused on the crucial role of representing and

reasoning with large amounts of expert knowledge. Of particular interest was the potential of ap-

plying these AI reasoning techniques for building larger systems that could make use of richer and

more varied expert knowledge than seemed possible for Bayesian schemes. Many of the researchers

who became involved in the development of this new generation of systems came from other back-

grounds and had little exposure to or interest in the earlier decision-theoretic schemes, which fell

into relative neglect.

A key feature of the new expert-system paradigm was the application of the production-rule

architecture to real-world diagnosis. Production rules had appeal as providing a general and 
exible

scheme for representing expert knowledge in a declarative and modular form [12]. The production

rule has the form of logical implication. To apply production rules in real-world diagnosis, investi-

gators found it desirable to extend the representation to represent uncertainty, both about the truth

of propositions and about the applicability of each production rule. The two best-known attempts

to develop representations of uncertainty as an extension of deterministic rule-based expert systems

were the Mycin [12] and Prospector [36] projects.

Mycin was designed to assist physicians in the diagnosis and treatment of bacterial infections.

Mycin introduced the certainty-factor model. The certainty factor (CF) is a number representing

the degree of con�rmation (between 0 and 1) or discon�rmation (between 0 and -1) of each propo-

sition or rule. Mycin's basic knowledge representation and uncertain inference scheme have been

made available for other applications as Emycin and are employed in several commercially available

expert-system shells. Prospector was constructed as an aid in the identi�cation of mineral deposits

of commercial interest. Prospector uses probabilistic quantities to represent degrees of belief in

propositions, although its updating rules are not exactly consistent with a coherent probabilistic

interpretation. The developers of both systems have implied in their writings that they intended

the systems' behaviors as approximations to the probabilistic ideal, which they saw as unattainable

for the reasons we have discussed.
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3.6 Problems with the Representation of Prior Belief

A common objection to probabilistic approaches is the di�culty of assessing prior probabilities{the

initial measures of belief assigned to hypotheses before new evidence is considered. Empirical data

often are hard to obtain and subjective estimates are deemed to be unreliable. Many heuristic

schemes{including Prospector, Casnet and PIP{also require prior beliefs, and so do not evade this

problem either. But some, including the Mycin certainty factor model and Internist-1 (and its

descendant QMR), appear to reason without prior belief.

The Mycin certainty factor (CF) model represents, combines, and propagates the e�ects of

multiple sources of evidence in terms of their joint degree of con�rmation or discon�rmation of

each hypothesis of interest. Thus, contrary to most popular interpretations, the CF originally was

intended to represent an update or change in belief induced by the evidence, not an absolute degree

of belief (such as a probability) [74]. It therefore does not explicitly represent the prior or posterior

degree of belief in each hypothesis. By representing only updates rather than absolute degrees of

belief, it appears to avoid the need for priors.

When a CF-based system recommends a decision (for example, when Mycin suggests treatment

for a suspected infection), it makes use of the CFs assigned to the competing diseases to assess the

amount of evidence for each. Because it makes decisions without any explicit reference to priors

or prevalence rates, it is, in e�ect, treating all infections as having equal prior probabilities.3 The

Internist-1 and QMR systems make similar assumptions [58]. The equal-priors assumption is valid

in contexts where diagnoses are believed to be equally likely and in contexts where no information

is available about the prior probabilities.

Prior beliefs, at some level of precision, frequently are available. For example, experienced

physicians have signi�cant knowledge about the prevalence rates of di�erent diseases, even though

they may �nd these rates di�cult to quantify precisely. In fact, diseases often di�er in prevalence

rates by many orders of magnitude. Assuming equal priors could lead to a serious error in a

treatment recommendation in a case where two diseases with widely di�ering prevalence rates were

assigned comparable CFs. For example, the fairly prevalent mononucleosis and relatively rare

Hodgkin's disease can present with a similar set of evidence (microscopic features within a lymph

node biopsy); the di�erences in the prior probabilities can be essential in diagnosis and treatment.

The errors that accrue from assuming equal prior probabilities may be less serious in domains

where the quantity and quality of evidence typically overwhelms the priors. A knowledge engineer

might be warranted in making simplifying assumptions about priors, given a demonstrated insensi-

tivity of system performance to the assumption coupled with an analysis of the costs of representing

prior information. However, in general, even approximate information about prior probabilities may

be valuable knowledge that is important to represent explicitly in a knowledge-based system, and

discarding this information can lead to signi�cant errors.

Other heuristic systems that explicitly incorporate prior probabilities have di�culties due to

incoherence among the probabilities. For example, Prospector uses probabilities to represent prior

3The handling of priors in the CF model is consistent with studies of how people reason under uncertainty [85]

that show people tend to ignore priors.
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degrees of belief in its hypotheses and in its evidential variables. The system makes use of two

probabilistic quantities that overspecify the joint probability distribution.4

Since these measures are assessed independently by the domain expert, and their relationship

is not intuitively obvious, they generally will be inconsistent with one another. To cope with this

problem, Prospector employs a heuristic scheme for diagnostic inference that employs an interpo-

lation between the con
icting quantities. However, the underlying incoherence of the probability

distributions limits the scope of the inference. For example, the incoherence destroys the bidi-

rectionality of probabilistic inference, obstructing the graceful integration of causal and diagnostic

inference.

3.7 Problems with Modularity

An often-cited advantage of the rule-based representation scheme is the ability to add or remove

rules from a knowledge base without modifying other rules [28]. This property has been referred

to as modularity. The modularity of rules in a logical production system is a consequence of the

monotonicity of logic: Once asserted, the truth of a proposition cannot be changed by other facts.

This notion of rules as a modular representation of knowledge in deterministic production systems

was carried over to rule-based methods for uncertain reasoning. However, analysis of modularity

has demonstrated that uncertain beliefs are intrinsically less modular than beliefs held with cer-

tainty, frequently making the rule-based calculi ine�cient for reasoning with uncertainty [59]. It

has become apparent that the traditional assumption of modularity in rule-based approaches for

reasoning under uncertainty has restrictive implications that had not been previously appreciated.

To explain this, we must de�ne modularity more precisely in terms of procedures for updating

belief in hypotheses [74, 57]. First we de�ne the notion of a belief update. Suppose B(H; �) denotes

a scalar degree of belief in hypothesis H given some speci�c background evidence �. Let the scalar

function U(H;E1; �) denote a belief update or a change in some measure of belief for a single

hypothesis H , given some new evidence E1, in the presence of previously acquired background

evidence. These arguments should be su�cient to determine how we combine new evidence with

previous evidence to establish the posterior degree of belief in H given E1 in the context of the

background state of information. Thus, there should be some scalar function f such that

B(H;E1 and �) = f [U(H;E1; �); B(H; �)]

In general, the update U(H;E1; �) may depend on other evidence in the background information �.

Thus, a belief update would have to be speci�ed for every H and relevant Ei for every possible �.

Clearly, this poses an intractable representation and inference problem. The simplifying assumption

of modularity in rule-based systems is that the update associated with a piece of evidence E1 is

4The strength of each rule linking evidence E with hypothesis H is represented by two numbers, representing the

two likelihood ratios:

LS = p(EjH; �)=p(Ej:H;�) and LN = p(:EjH; �)=p(:Ej:H;�)
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independent of all other evidence. We de�ne the modular update property as

U(H;E1; �) = U(H;E1; Ei and �)8Ei; i 6= 1

Now, suppose there are two pieces of evidence, E1 and E2, that bear directly on the hypothesis

H . We say that the combination of updates is modular if a single belief update encompassing the

e�ects of E1 and E2 on H is a simple function of the two separate updates. Thus, we de�ne the

modular combination property as

U(H;E1and E2; �) = g[U(H;E1; �); U(H;E2; �)]

where g is a scalar function that is continuous and monotonically increasing in each argument, given

that the other argument is held constant. The modular combination property follows directly from

the modular update property for each of the two component updates.

Now let us apply these ideas in the probabilistic framework. A well-known form of probabilistic

update is the likelihood ratio. Heckerman has shown that any probabilistic belief update must be

some monotonic transformation of the likelihood ratio [55].

If we divide Bayes' theorem for hypothesis H , evidence E, and background evidence � by Bayes'

theorem for the negation of the hypothesis, :H , we get

p(H jE; �)

p(:H jE; �)
=

p(EjH; �)p(H j�)

p(Ej:H; �)p(:H j�)

This is called the odds-likelihood form of Bayes' theorem. From left to right, the �rst and last ratios

are respectively the posterior and prior ratios of probability, or the odds. We write these ratios

as O(H jE; �) and O(H j�). The second ratio is the likelihood ratio, for which we use the term �

(H;E; �). We can rewrite the odds-likelihood equation as

O(H jE; �) = �(H;E; �)O(Hj�)

This shows that the posterior odds of H given E is the product of the likelihood ratio and the prior

odds of H . In this case, the update function f is simply the product of its arguments.

Suppose we want to combine the updates on H from two pieces of evidence,E1 and E2. For

the combination function to have the modular combination property, we require that E1 and E2

be conditionally independent given H and :H . From the de�nition of �, it then follows that

�(H;E1 and E2; �) = �(H;E2; �)�(H;E1; �)

That is, the modular combination function g for likelihoods is also the product of its arguments, the

two component likelihoods. Thus, for updating schemes based on the multiplication of likelihood

ratios (such as probabilistic interpretations of the popular rule-based schemes), modularity requires

a stronger form of conditional independence than that required for the simpli�ed probabilistic

scheme described earlier.

All modular updating schemes assume that all pieces of evidence bearing on the belief in a

hypothesis H can be combined to determine an overall e�ect on H , through examining the belief in
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each piece of evidence. If the beliefs in the pieces of evidence are each represented by a scalar, they

cannot explicitly express the possible dependence between them. The representation simply is not

rich enough. Capturing the e�ects of arbitrary dependencies in a modular scheme generally requires

information that is unavailable to a local combination function. Attempting to generate behavior

consistent with complex dependency within a modular updating scheme is an unreasonable pursuit

of \something for nothing" behavior [74]. Thus, we cannot capture information about arbitrary

dependencies with simple scalar functions.

Modular evidence combination and belief updating schemes must make some default assump-

tions about dependency among pieces of evidence updating the same hypothesis. Henrion has

demonstrated that any rule-based scheme for uncertain inference with local updating must make

some general assumption about dependence among these convergent lines of evidence [62]. The

assumption of conditional independence by modular schemes based on the likelihood ratio de�nes

only one set of such assumptions. It is possible to have modular combination functions that dic-

tate more complex default assumptions about patterns of dependency. This is a current area of

investigation [56].

In summary, like the early probabilistic systems, the popular rule-based method imposes strong

restrictions on the kinds of dependence that can be represented e�ectively. Unlike the explicit

assumptions of the simpli�ed probabilistic systems, the restrictive assumptions in the heuristic

approaches have been less apparent. One might argue that the implicit nature of the assumptions

in rule-based systems has tended to promote a dangerous \myth of modularity" among uncertain

propositions: Rule-based approaches, like the simple probabilistic approaches, do not have the

expressiveness necessary to represent coherently the relationships among uncertain beliefs.

3.8 Robustness of the Heuristic Approaches

A common response to criticisms of the assumptions embodied in the heuristic approaches to

reasoning under uncertainty is that the choice of uncertainty calculus and assumptions is not

important in the performance of real systems. Indeed, Mycin and Internist-1 perform at the expert

level despite the identi�ed inconsistencies. A formal study by Cooper and Clancey demonstrated

that Mycin's performance was fairly insensitive to the precision of the numbers used for certainty

factors [13]. This view is buttressed by the �ndings we mentioned, that the early probabilistic expert

systems performed well (often better than human experts) despite their simplifying assumptions.

It is dangerous, however, to generalize from these results. The Mycin domain is relatively

forgiving; for example, the use of wide-spectrum antibiotics to \cover" several leading hypotheses

means that misdiagnosis of the infecting organism does not necessarily lead to inadequate treatment.

Careful examination of the results of a comparison of CFs with probabilistic inference presented in

the original paper on CFs [135] shows that, on average, the CF-based system underresponded to the

diagnosticity of the data by a factor of two [159, 62]. In 25% of the cases, it actually responded to

the wrong direction, interpreting evidence that overall supported a conclusion to be discon�rming,

or vice versa.

Investigators have found that inappropriate assumptions of conditional independence in simpli-
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�ed Bayesian systems can lead to noticeable degradation of performance. Norusis found signi�cant

improvement in the performance of a medical diagnostic system as the number of dependencies

explicitly represented was increased [109]. Fryback discovered that problems with assuming con-

ditional independence can grow as the number of variables represented in a diagnostic model are

increased; that is, the potential bene�ts of considering a larger number of variables can be over-

whelmed by the proportional increases in the missing dependencies [43].

Problems with the use of an updating scheme making the strong conditional independence

assumptions of the CF model were noted in early research on the Path�nder expert system [76] for

diagnosing tissue pathology. Moving to a simpli�ed probabilistic combination scheme, assuming

conditional independence of evidence given hypotheses, yielded signi�cant increases in diagnostic

performance. The increased performance has been quanti�ed with an evaluation scheme incorpo-

rating decision-theoretic and ad hoc measures [58].

Wise experimentally compared the performance of six common uncertain inference schemes

for small rule sets and found that di�erences in performance between heuristic and probabilistic

schemes depend heavily on the situation [159]. As we might expect, when there was strong evidence

in one direction, most schemes performed well. But when the evidence was weak or con
icting,

heuristic schemes tended to perform poorly, and in some cases did no better than random.

Thus, we should not conclude from the apparent robustness of the performance in a forgiving

domain that handling of uncertainty makes little di�erence in other applications. For example, in

models where expensive information-acquisition decisions typically are required to reduce uncer-

tainty, the inappropriate handling of uncertainty may lead to costly decisions. The sensitivity of

a system's performance to inconsistency, to assumptions of modularity, or to the use of inaccurate

measures of belief will depend to a great extent on the task. In many cases, the inconsistencies and

assumptions can lead to costly error [74, 62].

Buchanan and Shortli�e, the creators of the certainty-factor model, have warned against un-

critical application of the certainty-factor calculus to other domains [12]. However, there has been

relatively little discussion about the applicability of these warnings in the popularity of expert

systems employing certainty factors (i.e., the widely used derivatives of the Emycin shell) and sim-

ilar heuristic schemes. Further theoretical and experimental studies of the sensitivity of inference

schemes to di�erent assumptions and errors in situations of weak or con
icting evidence in real-

world problem solving are required to understand the costs associated with the use of di�erent

heuristic methods.

3.9 Toward More Expressive Representations

In summary, early schemes using simpli�ed probabilistic representations and inference often have

been successful in terms of performance relative to that of human experts in small domain areas.

The systems, however, have not been widely adopted for a variety of reasons, including their ap-

parently unrealistic assumptions and their inability to represent the range of qualitative knowledge

available to the expert. Originally, AI techniques were applied to the development of expert sys-

tems with the hope that they might avoid such arbitrary assumptions and incorporate a richer



4 CURRENT RESEARCH 18

range of qualitative knowledge with smaller engineering costs. However, recent work has shown

that many well-known AI approaches for representing and reasoning about uncertain knowledge

also have made strong assumptions about prior probabilities and modularity.

4 Current Research on Decision Theory in Expert Systems

As we have seen, there has been justi�ed criticism of the restrictive assumptions of both the

simpli�ed probabilistic schemes and several heuristic approaches to uncertain inference. In recent

work, researchers have attempted to develop richer knowledge representations that are based in

a principled way on probability and decision theory and are capable of expressing, in a 
exible

and tractable manner, a wider range of both qualitative and quantitative knowledge. Much of this

work has centered on the use of graphs or networks to represent uncertain relationships, including

belief networks and in
uence diagrams. These representations can facilitate assessment of coherent

prior distributions, make assumptions explicit, and allow assumptions to be manipulated easily by

knowledge engineers and experts.

In this section, we review the basic ideas on which these knowledge representation schemes are

based and survey current methods for using them in decision-theoretic expert systems. We examine

knowledge engineering, the process of encoding expert knowledge, using these schemes. We present

various classes of inference techniques that use these representations for propagating evidence and

�nding optimal decisions. Finally, we review research on explaining the results of decision-theoretic

inference.

4.1 Knowledge Representation for Decision-Theoretic

Problems

Howard has called the complete model of a decision problem the decision basis [83]. A compre-

hensive decision basis consists of components that represent the alternatives, states, preferences,

and relationships in a decision situation. Decisions are the alternative courses of action available

to the decision maker. The alternative states of the world are those factors or variables that will

be explicitly represented in the model, and the range of values that are considered reasonable or

possible. The preferences of the decision maker are represented as a ranking in terms of the var-

ious possible outcomes. The preference information captures factors in a decision situation that

are important in judging the desirability of alternative outcomes, as well as the manner in which

tradeo�s among dimensions of outcomes are to be made. As we mentioned earlier, AI systems have

not directly addressed explicit representation of knowledge about preferences. The �nal component

of a decision basis is the set of relationships among states of the world, decisions and preferences.

In general, these relationships can be expressed logically, probabilistically, or qualitatively.

A variety of representations for a decision basis have been developed in the decision sciences.

These representations include joint probability distributions over variables coupled with a loss func-

tion (as used in probability and statistics), and decision trees, which evolved with the development

of decision analysis [120]. Although these representations are useful and general, they do not
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Figure 1: An In
uence Diagram Describing the Decisions That a Patient with Heart Disease Might

Face. Dependencies (arcs) link propositions (nodes) that represent states of information (circles),

decisions (squares), and patient values (diamond).

provide a perspicuous means of representing independence in a manner accessible to both human

and machine reasoners. In
uence diagrams and belief networks were designed with precisely these

objectives in mind.

In
uence Diagrams and Belief Networks The in
uence diagram is a graphical knowledge-

representation language that represents the decision basis [82, 111, 110]. The in
uence diagram

is an acyclic directed graph containing nodes representing propositions or quantities of interest

(i.e., alternatives, states) and arcs representing interactions between the nodes. Nodes representing

propositions are associated with a set of mutually exclusive and exhaustive values that represent

alternative possible states. The arcs represent deterministic, probabilistic, or informational rela-

tionships between nodes.

In
uence diagrams formally describe a decision basis, yet have a human-oriented qualitative

structure that facilitates knowledge acquisition and communication. An in
uence diagram for a

medical decision problem is shown in Figure 1. The diagram encodes a decision problem about

whether to undergo coronary artery bypass graft (CABG) surgery. The danger in this situation is

the risk of myocardial infarction (MI) (i.e., heart attack).

The example demonstrates the four di�erent kinds of nodes in an in
uence diagram. Decision

nodes represent the possible actions available to a decision maker. They are the variables in an
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in
uence diagram under the direct control of a decision-making agent. These nodes are portrayed

as rectangles in in
uence diagrams. Two decisions are depicted in the example: The Angiogram

Test node refers to an artery-imaging procedure that provides information about the extent of

Coronary-Artery Disease in the patient. Heart Surgery refers to a decision to undergo a CABG

surgical procedure. The decisions are whether to undertake none, one, or both of the procedures.

The arcs into a decision node indicate what information is available (i.e., values of uncertain

variables or previous decisions that have been resolved) at the time the choice is made. The diagram

indicates that, when he makes the surgery decision, the decision maker will know the outcome of

the angiogram test if it was performed.

Chance nodes represent states of the world that are uncertain. We depict chance nodes as

circles or ovals. There are two kinds of chance nodes: stochastic and deterministic (the latter

are portrayed as double-lined circles). The belief associated with a stochastic chance node is

a probabilistic function of the outcomes of its predecessor nodes. For example, the probability

distribution over the values of Life Years (i.e., years of life remaining) depends on whether heart

surgery was performed (because there is a risk of death from the surgery itself) and the reduced

risk of a future fatal heart attack if the operation is successful. The value of a deterministic node is

a deterministic function of the outcomes of its predecessor nodes. In this example, we are assuming

there is a deterministic function yielding costs based on the monetary expense of the angiogram test,

the surgical procedure, and the hospitalization following a heart attack. A deterministic chance

node is a special case of a stochastic chance node: The probability distribution is an impulse on a

particular value, because the values of the predecessors determine the node's value with certainty.

Finally, value nodes capture the preferences of a decision maker. These nodes are depicted

as diamonds. The predecessors to the value node indicate those outcomes or attributes that are

included in the evaluation of a choice or plan. For the heart disease example, the attributes are life

quality, life years, and cost. The graph shows that the quality of life is in
uenced by the chest pain

at a particular level of exertion and the morbidity of surgery. The value function (a real-valued

scalar function) encapsulates tradeo�s among these attributes for an individual patient, as well as

individual preferences about risk and time.

Much of the research on representation and inference with these graphical representations has

focused on specializations of in
uence diagrams that contain only chance nodes [126, 82, 97, 21, 116,

89]. These express probabilistic relationships among states of the world exclusively, without explicit

consideration of decisions and values. Several di�erent terms are used for these representations,

including causal networks, Bayesian nets, and belief networks [114]. We use belief networks, as this

term is the most popular.

Three Levels of Representation The expressiveness and su�ciency of in
uence diagrams is

based in the representation's three levels of speci�cation: relation, function, and number [82]. We

can express relations at one level without explicitly referring to more speci�c levels.

The relation level captures the qualitative structure of the problem as expressed in the topology

of the network. At this level, the arcs and nodes describe dependencies between the values of

propositions or variables (nodes). In
uence diagrams at the level of relation are similar to several
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common representations in modeling and in AI research, such as semantic nets. Each variable in an

in
uence diagram is associated with a set of mutually exclusive and collectively exhaustive values

(values for each node are not pictured in Figure 1.). For example, the node Chest Pain in our

example is characterized by values of none, mild discomfort, and crushing sensation in response

to a particular level of exertion. Coronary Artery Disease is characterized by none, single-vessel,

two-vessel, and three-vessel, describing the number of arteries in the heart that are diseased. It

is important that the outcomes of each node in the diagram be de�ned unambiguously. In the

example, the arc between the Coronary Artery Disease and Chest Pain nodes expresses knowledge

about the existence of a dependency between the values that coronary artery disease and chest pain

may assume.

At the level of function, the functional form of the relationships among nodes is speci�ed. For

instance, the form of the conditional probability relating the outcome (value) of Coronary Artery

Disease to the probability distribution over the values of Chest Pain is speci�ed.

Finally, at the level of number, we specify numerical values that are operated on by the func-

tional forms. This level represents the quantitative details of the dependence of each variable on

its parents (the nodes that in
uence the variable).

An uncertain in
uence is represented by the conditional probability distribution for a variable

given the values of its parents. As an example, at the level of number, we might specify that

p(Chest Pain = mild discomfortjCoronary-Artery Disease = one vessel ) = 0.25. Chance nodes

without predecessors are speci�ed at the level of number with unconditional or prior probability

distributions.

Conditional Independence Independence usually is de�ned as a quantitative relation among

probabilities{for example, as satisfaction of the product rule{expressed here in terms of marginal

distributions.

p(a; bj�) = p(aj�)p(bj�)

However, we also may express independence with the following, more qualitative relationship,

expressing that belief in proposition a is not a�ected by knowledge of the truth of proposition b,

given background information �:

p(ajb; �) = p(aj�)

A belief network expresses independence graphically. The arcs in a belief network, and more

precisely the lack of arcs among variables, are qualitative expressions of probabilistic independence

of various kinds. In particular, source variables (i.e., those variables with no predecessors or directed

pathway between them) are marginally independent. Variables u and w in Figure 2 are marginally

independent of each other. Where two variables have one or more common parents but no arc

between them, they are conditionally independent of each other given their common parent(s). In

Figure 2, variables v and x are conditionally independent of each other given w. Finally, a node

is conditionally independent of its indirect predecessors (i.e., nodes at a minimal directed path of

distance greater than 1) given all of the variable's immediate predecessors (i.e., those nodes from
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Figure 2: A simple belief network demonstrating conditional independence among propositions.

which it receives an arc directly). For example, in Figure 2, variable y is conditionally independent

of u and w, given v and x.

At the numerical level, we assign marginal probability distributions to source variables (w

and u in the example) and conditional probability distributions to all other variables given their

immediate predecessors. We can compute the joint distribution over all the uncertain variables in

a belief network simply as the product of all these marginal and conditional distributions:

p(u; v; w; x; yj�) = p(yjv; x; �)p(vju;w; �)p(xjw; �)p(wj�)p(uj�)

Provided that the in
uence diagram has no directed cycles, the probability distributions assigned in

this way are guaranteed to be complete (that is, to have no unspeci�ed parameters) and consistent

(that is, to contain no con
icts). In this way the belief network provides a simple solution to the

problem that was unsolved in Prospector and related systems{namely, how to assign probabilities

to variables and links without creating incoherence.

The in
uence diagram representation grants knowledge engineers the freedom to de�ne and

manipulate dependencies{or more important, independencies. The representation allows engineers

to explicitly control modularity assumptions. The independencies in an in
uence diagram are a

formal expression of the locality of e�ect among variables. The e�ects of one variable on a distant

one can propagate only along the in
uence arcs. More precisely, a variable is screened from the

e�ects of distant variables (is conditionally independent of them) given its Markov blanket; that

is, given its direct predecessors, direct successors, and the direct predecessors of these successors

(i.e., parents, children, and spouses). The presence of arcs explicitly de�nes possible dependence

relations among the nodes in the graph.5

We can now interpret more carefully the heart surgery in
uence diagram (Figure 1) in terms

of conditional independence. In the diagram, the primary expression of conditional independence

involves Coronary Artery Disease and its e�ects. The diagram asserts that the probabilities over

the values of Chest Pain (both current and future), the values of Angiogram test, and the values of

5An arc at the level of relation indicates only the possibility of dependence; at the detailed number level, it may

turn out that the probability distribution over the values of a node is actually independent of a predecessor.
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MI are all dependent on the value of Coronary-Artery Disease. Furthermore, given knowledge of

Coronary-Artery Disease, these e�ects of the disease are conditionally independent of one another.

Once we know the precise extent of a patient's heart disease, then presence of chest pain does not

change our belief that he might have a heart attack at some time in the future. The knowledge of

coronary artery disease as the causal agent tells us all the information available about the interaction

of its e�ects.

For diagnostic reasoning and decision making, however, we might wish to reason backward;

that is, we may wish to infer the probability of MI, given a speci�ed degree of chest pain. As we

mentioned earlier, the primary mechanism for this type of inference is Bayes' theorem. Later in

this section we describe inference techniques that work with in
uence diagrams and belief networks

to provide this type of reasoning.

4.2 Knowledge Engineering for Decision-Theoretic Systems

Knowledge engineering is the process by which expert knowledge is obtained, represented, re�ned,

codi�ed, and installed in computer-based diagnostic and decision-making systems. Although the

term knowledge engineering has not been used traditionally in the �eld of decision analysis, the

fundamental activities of a decision analyst and a knowledge engineer are similar. Both work with a

decision maker or a domain expert to construct a formal representation of knowledge. The knowl-

edge engineer typically uses rule-based or object-based representations, typically coupling them

with some type of deductive inference method, whereas the decision analyst constructs in
uence

diagrams or decision trees for use with decision-theoretic inference methods.6

The core of decision-analytic knowledge engineering is the construction of an informative,

credible, and computable decision basis [68, 10]. As we have seen, in
uence diagrams reduce the

complexity of assessing in
uences by allowing explicit graphical representation of dependencies and

independencies. The diagram itself, therefore, is an important tool in knowledge engineering, as

well as in computation.

In most current applications of in
uence diagrams and belief networks in expert systems,

the model is constructed as part of the knowledge engineering process and is then is used during

consultation [65, 5, 76]. We expect that, over time, additional components of knowledge engineering

decision-theoretic systems will be automated.

In the remainder of this section, we brie
y review some of the fundamental issues in engineering

decision-theoretic systems. Our primary objective is to provide pointers to literature that addresses

these issues in more detail.

Identifying Decisions and Generating Alternatives The set of decision alternatives has a

tremendous e�ect on the overall value of an expert consultation. A new alternative often is worth

more than extensive reasoning and analysis. The generation of new alternatives is a synthetic

activity focusing on constructing actions or sequences of actions that achieve certain goals. Little

research has been done on the knowledge-based generation of decision alternatives.

6See [65] for an experimental comparison of rule-based and decision-analytic paradigms for knowledge engineering.
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There has been work on the problem of dealing with the explosion of decision sequences that

occurs when a series of decisions is possible and each decision has several alternatives. The technique

of strategy tables, from decision analysis, involves selecting several representative strategies from the

full combinatoric set of possible sequences [105]. Each strategy consists of a sequence of decisions

that are synergistic, or internally consistent. The strategies then are treated as the alternatives

in the decision analysis. Langlotz and colleagues [91] propose a similar method and use heuristic

search to generate a reduced set of possible medical therapy plans for detailed decision analysis.

Value Structuring and Preference Encoding AI investigators, to date, have placed little

emphasis on the preferences or desires of decision makers or reasoning agents. Decision theorists

have been studying preference in a sub�eld of decision analysis that emphasizes multiattribute

decision problems [152, 88]. A decision-theoretic analysis is driven in large part by the attributes

that are important to the decision maker (life duration, life quality, and monetary cost in the

heart surgery example) and by the manner in which these attributes are combined in assigning

value to alternative outcomes. Von Winterfeldt [152] and Keeney [88] present numerous theoretical

results on multiattribute value issues and discuss elicitation procedures for assessing the complex

preference structures in terms of individual attributes.

An additional important component of preference is the encoding of the decision maker's atti-

tude toward risk. Utility theory deals directly with attitudes toward alternatives that have uncertain

outcomes. A substantial literature addresses the theoretical and practical aspects of risk-preference

encoding [152, 88, 80, 128, 87, 14]. Most techniques involve asking the decision maker about her or

his preferences for various hypothetical gambles and then combining the results and checking for

consistency. Several researchers have examined computer aids for value structuring and preference

modeling [155, 67].

Encoding Probabilities One of the central tasks in engineering a decision-theoretic system is

that of assessing probabilities. A frequent concern is the availability of probabilities as well as the

numbers of probabilities that may be required. From a subjectivist viewpoint, it is possible in

principle for anyone to assess a probability for any event, no matter how little he knows about it.

After all, assessing a probability distribution is a way to express how little or much a person knows

about something.

Nonetheless, expressing human knowledge in terms of probabilities is a demanding task. Re-

searchers of human judgment under uncertainty have identi�ed a set of biases and heuristics that

tend to distort human decision making and judgments about uncertain events [85]. Such biases tend

to narrow or skew assessed probability distributions, and interviewing methods emphasize making

implicit assumptions explicit and encouraging the subject to consider a full range of information

and possibilities. Decision analysts have drawn on this research, as well as on professional practice,

to develop methods to mitigate the e�ects of these biases [139].

Once we have speci�ed a general dependency structure for a set of probabilistic relationships, we

can quantify the in
uences as conditional and marginal probability distributions. The conditional

distribution p(XijY1; Y2; :::; Yn; �) in general requires 2n parameters for binary X and Yi. Figure 3
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Figure 3: The Noisy-OR Prototypical Dependency Structure.

shows the conditional assessment task posed in terms of E, some observable output or evidence,

and a set of inputs or hypotheses, H1; H2; :::; Hn.

We mentioned earlier that there has been recent work on the use of functions that specify

patterns of independence. Recently, investigators have suggested methods for streamlining the

probability assessment task, by specifying such prototypical functions for the probability distri-

butions [56, 64, 114]. One example of a prototypical independence structure is termed the noisy

OR-gate. We review this structure as an example of the assessment savings that may be gained

through identifying and representing analogous patterns of independence.

The noisy-OR structure is a probabilistic generalization of a standard Boolean OR. With a

Boolean OR, any single one of a number of input signals being true is su�cient to induce a true

value for the output. In a noisy-OR, each input signal has some probability of being su�cient to

cause the output; the processes that prevent the signal from being su�cient are independent. This

structure has been found to be representative of many real-world probabilistic relationships as well

as an e�cient representation of probability information.

The noisy-OR relationship allows the full conditional distribution to be derived from the indi-

vidual probabilities of the evidence given each of the hypotheses and so requires only n parameters

[47, 114]. The basis for this savings is straightforward. Suppose that pi is p(Ej only Hi; �){that is,

the probability of E given that only Hi occurs. Then the probability of E given that all the Hi

occur is

p(EjH1; H2; ::; Hn; �) = 1�
nY

i=1

1� pi

Researchers are seeking techniques for explicitly acquiring and representing several forms of inde-

pendence. One means of identifying and assessing conditional probabilities in a perspicuous fashion

is an attention-focusing representation called similarity networks [56]. A similarity network helps a

knowledge engineer to identify sets of evidence that can disambiguate between pairs of hypotheses.

The graphical display of these relationships indicates constraints on the conditional probability
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relationships between hypotheses and evidence.

Decision analysts have developed various techniques for eliciting numerical probabilities [139,

99]. Some of these assessment techniques ask directly for probabilities, whereas others seek speci�c

values of a variable while holding the probability �xed. A popular method uses a probability

wheel, a simple graphical tool consisting of a disk with two adjustable complementary sectors of

di�erent colors. The size of one colored sector can be adjusted to correspond to the probability

to be assessed, as a way of expressing a probability without explicitly mentioning a number. For

extremely low or high probabilities, techniques that use odds or log-odds have been shown to be

useful [152].

This discussion of probabilities brings up the issue of the completeness of probability assess-

ment. There is always a tradeo� between assigning a probability based on a current state of

understanding and expending additional e�ort in modeling and introspection to come up with a

better estimate [49, 101]. And, in practice, the assessor of a probability often is uncertain and

uncomfortable about the distribution he is providing. Of course, the probability distribution that

we would assess given additional time or e�ort is an uncertain quantity, and there is no fundamen-

tal barrier to using a probabilistic representation to represent this uncertainty (i.e., a second-order

probability) [49, 60]. However, uncertainty about probabilities often masks the existence of other

conditioning events for which the distribution is considered stable. It is the task of the knowledge

engineer to draw out those conditioning events and thereby to expand the model (also referred to

as extending the conversation [150]) to account for the uncertainty in assessment.

Model Re�nement and Sensitivity Analysis The scope and detail of a decision model are

central to determining the ultimate usefulness of an analysis. It may seem best to include all

relevant factors in the analysis, in order to make the model as accurate and realistic as possible.

In medicine, for example, variables related to family history, physical activity, diet, and life style

may all be related to a decision regarding whether or not to proceed with a surgical procedure.

However, as we noted, no model is complete, and inclusion of additional relevant variables can

rapidly overwhelm our ability to solve, interpret, and explain the model.

Therefore, there is a tradeo� between the bene�ts of complete, detailed models and those of

simpli�ed, more computable models. In decision-theoretic knowledge engineering, we refer to the

process of alternately expanding or contracting the model as completeness modulation [72, 67]. An

attempt is made to produce a model that includes those variables that are most important to a

particular set of decisions, in terms of having major in
uence on the recommendations developed

by the model.

Sensitivity analysis is used to determine which parameters, uncertainties, and assumptions

have the most in
uence on the behavior and recommendations of a model. It involves exploring

the space of possible models in order to build a model that is simultaneously informative and

tractable. Typically, this information is used to limit e�ort on construction and re�nement of the

model. There are several classes of sensitivity analysis that are appropriate at various junctures

in the process of building a decision model [79, 81]. Sensitivity to risk tolerance, discretization,

and uncertainty are routinely performed as part of a professional decision analysis. Since the
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probabilistic representation of a variable exacts costs in elicitation, representation, and inference,

it is desirable to include only those uncertainties that matter. Henrion introduces the �(expected

value of including uncertainty) (EVIU) as a sensitivity measure of the importance of uncertainty

[61].

To date, few people have investigated the automation of sensitivity analysis for probabilistic

reasoning. A promising area in this regard is error analysis, the notion of determining the extent to

which errors in inputs and assumptions, such as assessed probabilities, a�ect ultimate conclusions in

decision-theoretic models [62]. Note that sensitivity is de�ned with respect to values and decisions

and provides insight about the important components of a model. As AI applications seek to

deal with ever larger knowledge bases, it will become increasingly important to use the individual

decision-making context to develop tractable methods for reasoning.

4.3 Inference with Belief Networks and In
uence Diagrams

Once we have constructed a belief network or in
uence diagram at the level of relation, and have

assessed the details of the probabilistic dependencies at the level of number, we can perform in-

ference about how changes in the belief of one of more propositions will change the belief in other

propositions. There are several categories of inference. We may wish to compute the marginal

probability distribution for a variable. For example, we may want to determine the probability

of MI (heart attack) for a speci�c patient (see Figure 1). We may wish to compute the updated

probability distributions over a variable{for example, the probability of di�erent values of Coronary

Artery Disease given the truth of a value of a related variable (e.g., Chest Pain = none ; Angiogram

= negative ). Finally, we may wish to select the best decision. In the sample in
uence diagram,

we wish to decide whether to perform an angiogram and whether to operate, given the available

information.

Unlike inference with a rule-based inference net, belief networks and in
uence diagrams allow

inference in a direction opposite to the direction in which the in
uence was assessed. Consequently,

it is possible to propagate the e�ect of observing any set of variables on the probability distribution

of any other variable or function of variables.

In the next three sections, we discuss algorithms for probabilistic inference in belief networks.

We consider exact and approximate methods. Finally, we consider decision making with the

in
uence-diagram representation.

Brute-Force Probabilistic Inference As we have shown, a belief network with probabilities

assigned to all source nodes and in
uences speci�es a complete joint probability distribution over

the variables in the network. We can generate this joint distribution simply by taking the product

of all of these assigned distributions. Given a joint distribution, it is straightforward to compute the

marginal probability for any value of a variable or Boolean combination of values, by summing over

the relevant dimensions of the joint distribution. Similarly, the conditional probability p(xje; �) for

any value of x, given evidence e, can be calculated as the ratio p(x; ej�)=p(ej�). Unfortunately, the

size of the joint distribution is exponential in the number of variables. Although this approach is
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conceptually simple, it requires computational e�ort that is exponential in the number of variables

and is thus impractical for problems with more than a handful of variables.

Exact Methods A key to computational e�ciency for inference in belief networks is the ex-

ploitation of speci�ed independence relations to avoid having to calculate explicitly the full joint

probability distribution. A variety of methods have been developed, each focusing on particular

families of belief-network topology.

Kim and Pearl have developed a distributed algorithm for solving singly connected networks, or

polytrees [89]. The algorithm is linear in the number of variables in the network. In this scheme, each

node in the network obtains messages from each of its parent and child nodes, representing all the

evidence available from alternative portions of the network. The single-connectedness guarantees

that the information in each message is independent and that a scalar is su�cient to represent

the total information from each linked node (if nodes are logical). Each time a new observation

is made, messages are propagated throughout the network to update the probabilities associated

with the other variables.

Unfortunately, most real networks are multiply connected, so more complex methods are re-

quired. One approach, developed by Shachter [131], allows computation of the conditional proba-

bility distribution for any function f , of a set of variables X , given evidence E, as p(f(X)jE; �).

This algorithm focuses on a single function of variables rather than on updating the probability of

all nodes given evidence. It applies a sequence of operators to the network to reverse the links, using

Bayes' theorem, and sums over nodes to eliminate them. The process continues until only the node

representing the original probabilistic query remains. Shachter's algorithm will work with multiply

connected networks but requires detailed knowledge of the topology to operate. The Shachter algo-

rithm can be signi�cantly more e�cient than the brute-force approach of computing the complete

joint probability distribution. The extent of the e�ciency gains depend on the topology of the

network.

Other exact approaches rely on manipulating multiply connected networks to reduce them

to singly connected networks [114]. The Kim and Pearl algorithm or similar methods can then

be applied to the network. Instantiation of nodes within a loop can e�ectively break the loop;

thus Pearl [114] has suggested focusing on determining the minimal cutsets of nodes that could be

instantiated to eliminate loops [114]. These nodes must be instantiated with each possible value

(or combination of values). The resulting probabilities are averaged over the results from each

instantiation, weighted by the prior probabilities of the instantiated variables.

Lauritzen and Spiegelhalter suggest a di�erent approach based on a reformulation of the belief

network [95]. First they \moralize" the graph by adding arcs between all pairs of nodes that have

a common successor (i.e., parents with a common child). They then triangulate it, adding arcs

so that there are no undirected cycles of more than three nodes without an internal chord. They

then identify all the cliques {that is, all maximal sets of nodes that are completely interconnected.

They show that, by this transformation, any network can be converted into a corresponding singly

connected network of cliques. They provide an algorithm for propagation of evidence within this

tree of cliques, which is somewhat analogous to the propagation of belief in a singly connected
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network of variables.

The computational complexity of these algorithms has not been completely analyzed in terms

of the topology of the network. However, all of the algorithms are liable to tractability problems

if there are many intersecting loops in the network. For example, in the approach of Lauritzen

and Spiegelhalter, the joint distribution for each clique must be represented explicitly; thus, the

algorithm is exponential in the size of the largest clique. That clique can be very large in a network

with many intersecting loops.

More generally, Cooper [23] has shown recently that the general problem of inference in a belief

network is NP-hard, so we should not expect to �nd an exact method that is computationally

e�cient for arbitrary networks. Nevertheless, exact methods for the tractable solution of speci�c

classes of belief networks may be possible.

Stochastic Methods Researchers have developed various approaches that employ approxima-

tion methods; Cooper's result on the NP-hardness of exact probabilistic inference suggests that

approximate approaches may be more productive than exact approaches for many cases. One

approach, stochastic simulation, is attractive because it represents the probabilistic problem as a

sample of deterministic, logical cases and reduces the probabilistic representation to a simpler, and

perhaps more transparent, logical representation. The accuracy of the representation depends on

the sample size or on the number of simulation cycles. We can use standard statistical techniques to

estimate the error in the approximation from a given sample size, and we can reduce the uncertainty

to an arbitrary degree by increasing the sample size.

Bundy [15] suggested a Monte Carlo sampling approach for computing the probabilities of

Boolean combinations of correlated logical variables, which he calls the incidence calculus. Henrion

[63] developed an extension of this approach for inference in belief networks, termed probabilistic

logic sampling. In this approach, a belief network is approximately represented by a sample of

deterministic cases. For each case or simulation run, each source and entry of conditional probability

arcs is randomly generated as a truth value or as a logical implication rule using the speci�ed

probabilities. Diagnostic inference is performed by estimating the probability of a hypothesis as

the fraction of simulations that give rise to the observed set of evidence. This method is linear

in the number of nodes in the network, regardless of the degree of interconnectedness of cycles.

Unfortunately, it is exponential in the number of pieces of evidence observed.

Chin and Cooper [18] have used the logic-sampling approach to generate samples of medical

cases for simulation purposes. They avoid the exponential complexity of the general problem by

rearranging the direction of the links in the network using Shachter's algorithm, so that all observed

variables are inputs (sources) to the network. Unfortunately, this is not a general solution to the

problem, because the rearrangement is liable to exponential complexity for highly interconnected

networks.

Pearl [115] has developed a stochastic-sampling scheme that involves direct propagation in

both directions along each in
uence, rather than solely through the encoded direction, as in logic

sampling. In this method, the conditional-probability distribution is computed for each node given

all the neighbors in its Markov blanket. First, all the nodes are initialized with random truth
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values. During simulation, the truth value of a node is updated according to the values of that

node's neighbors when the node �res. The node's new truth value is generated at random using

the conditional probability for that node given the state of all its neighbors. The probability of

each node is estimated as the fraction of simulation cycles for which it is true.

A merit of the Pearl approach is that it could be implemented as a network of parallel-

distributed processors, each operating independently, receiving messages from its neighbors and

sending messages to them. Unfortunately, as Chin and Cooper demonstrated, simulation ap-

proaches are liable to convergence problems when the network contains probabilities that are close

to zero or 1. Unlike in the logic-sampling approach, successive cycles are not independent, and the

network can get trapped in a state from which it takes many cycles to escape. It remains to be

seen whether there are techniques for avoiding this problem.

Bounding Methods As we discussed under \The Problem of Diagnosis," when multiple disor-

ders or faults are possible in a diagnostic problem, the total number of diagnoses is exponential in

the number of hypotheses. To compute the exact posterior probability of any diagnosis, p(DjE; �),

we must compute

p(Ej�) =
X

Di22
H

p(EjDi; �)p(Dij�)

in the denominator of Bayes' theorem, which involves the exponential task of summing over all of

the diagnoses. However, computation of the ratio of the probabilities of any two diagnoses is much

simpler, because the p(Ej�) in the denominator of each cancels out and so does not need to be

computed. That is,
p(D1jE; �)

p(D2jE; �)
=

p(D1j�)p(EjD1; �)

p(D2j�)p(EjD2; �)

Cooper [21] and Peng [118] describe branch-and-bound methods for searching through the space of

possible diagnoses, which can identify the most probable diagnoses without examining all possible

ones. These methods are able to prune the search by eliminating all extensions of a diagnosis that

are provably less probable than the current best, and so can be a great deal more e�cient than the

exhaustive methods. Peng's method is more e�cient but works only for two-level belief networks

consisting of a set of faults (level 1) and a set of evidence (level 2), with the only arcs being from

faults or disorders to evidence. In this method, the e�ects of multiple disorders are combined with

noisy-OR gates, described earlier.

Bounding methods can be used to compute bounds on the absolute probability for any di-

agnosis. They sometimes allow us to identify the most probable n diagnoses in a set D without

calculating over the total joint probability space. For example, the partial sum of p(Dij�)p(EjDi; �)

gives a lower bound on p(Ej�). Cooper [21] showed how to use this approach to compute upper

bounds for absolute posterior probabilities as well. He also gave a related method for computing

lower bounds.

Inference Within In
uence Diagrams So far, we have focused on inference in belief networks.

With in
uence diagrams, we also must consider the question of how to �nd the best decision strat-
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egy, or decisions that will maximize our expected utility given the available information. Not all

in
uence diagrams represent a well-de�ned decision problem; those that do are termed decision

networks. A decision network must have at least one value node and a well-ordered path through

all its decision nodes. That is, each decision node must directly precede and directly in
uence suc-

cessor decision nodes. Furthermore, immediate predecessors of a decision node must be immediate

predecessors of all subsequent decisions. This constraint (referred to as the no-forgetting condition)

ensures that all information available for a decision is also available for subsequent decisions.

The most popular representation for �nding an optimal decision strategy is the use of a decision

tree. In a decision tree, each terminal node represents a particular scenario or combination of values

for all the uncertain and decision variables. The standard roll-back method to evaluate a decision

tree is to compute the utility for each terminal node. This method computes the expected utility

over the branches at each outcome variable and the maximum expected utility over the alternatives

at each decision. In the worst case, this algorithm is exponential in the number of outcome and

decision variables. However, there is no need to follow branches with zero probability or decisions

that are unavailable, and so the e�ort may be much smaller in highly asymmetric trees.

A decision network can always be converted into its corresponding decision tree, but this is not

necessarily the best way to analyze it. Olmsted [110] and Shachter [130] have developed techniques

for operating directly on in
uence diagrams. The algorithms apply a sequence of operations to

the diagram, successively eliminating nodes when their e�ects have been accounted for through

expected value calculations. The operations correspond to (1) applying Bayes' theorem (equivalent

to reversing an arc), (2) forming conditional expectations (equivalent to removing a chance node),

and (3) maximizing the expected utility (equivalent to removing a decision node). The algorithm's

results are the optimal decisions conditional on the information available when each decision is

made, and the expected value of the decision strategies. The algorithm will work with multiply

connected networks, although it is liable to the same NP-hardness problem that plagues exact

probabilistic inference.

One of the bene�ts of using the in
uence diagram for representing and solving decision problems

is the ease of estimating the value of information. In an in
uence diagram, value of information

can be calculated by adding an arc from a selected chance node to a decision node and re-solving

for the optimal decisions. The net improvement in expected value measures how much better

decisions could be made given perfect knowledge about the variable. Other value-of-information

calculations{for example, for imperfect or noisy information{can be performed in a similar manner.

State of the Art in Inference As just reviewed, there exist a number of exact techniques that

can be used e�ectively for propagating beliefs and for �nding optimal decisions for problems of

moderate size, even when the latter are multiply connected. The Kim and Pearl algorithm will

work e�ciently for large belief networks as long as they are singly connected. Although the general

inference problem in multiply connected belief networks and in
uence diagrams has been proven

NP-hard, there are a number of promising approximation techniques. There is still considerable

room for further research in re�ning these techniques and in broadening their applicability. Decision

analysts generally deal with inference in complex problems by performing sensitivity analysis and
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eliminating unimportant variables until the model is small enough to be tractable. The development

of automated algorithms employing this approach is an interesting area for research. Also, methods

for decomposing multiply connected networks into a set of belief network subproblems and for

reasoning about the application of combinations of alternative exact and approximate inference

methods are promising areas of current investigation [72].

4.4 Explanation in Decision-Theoretic Expert Systems

A frequent criticism of decision-theoretic reasoning is that it is di�cult to explain [144, 27, 119].

Teach and Shortli�e [147] identi�ed the ability of an expert system to explain its reasoning strate-

gies and results to users as an important factor in its acceptance. Researchers have constructed

systems that give explanations of logical reasoning for applications spanning the range from blocks

world [158] to medicine [136, 12, 143, 153, 112]. Unfortunately, relatively little has been done on

the explanation of decision-theoretic inference. We shall review some of the ongoing research on

techniques for justifying the results of decision-theoretic reasoning strategies.

Evidence Weights One approach to explaining probabilistic inference is to decompose a prob-

abilistic result into a set of evidential subproblems, each focused on the relevance of a particular

piece of evidence on the belief in alternative hypotheses. Within each subproblem, the contribution

of a piece of evidence to the belief assigned to competing hypotheses is presented. The likelihood

ratio and the logarithm of the likelihood ratio, ln �(H;E; �), termed the weight of evidence, have

been used as the quantitative measures that capture the contribution of di�erent pieces of evidence

to belief in competing hypotheses. Under conditions of conditional independence, weights of evi-

dence have the useful property of being additive. That is, the update in belief corresponding to the

combined evidence is just the sum of individual updates. The naturalness of weights of evidence

for acquiring and making inferences with uncertainty was �rst pointed out by Peirce in 1878 [117].

I.J. Good popularized the measure among philosophers of science and statisticians [47]. Several

other researchers, including Turing [47] and Minsky and Selfridge [106], independently found this

measure to be useful.

The additive property of evidence weights is conducive to producing informative graphical

displays that represent the weights as the length of graphical elements to be added or subtracted.

Several expert systems have made use of likelihood ratios and weights of evidence for explaining

the relevance of evidence to hypotheses under consideration. Sequences of likelihood ratios are used

to explain how evidence a�ects belief in competing hypotheses in the Glasgow-Dyspepsia expert

system for assisting in gastroenterology diagnosis [140], in the Path�nder system for reasoning about

tissue pathology [76], in the Neurex system for diagnosis of neurological �ndings [124], and in the

Medas system for assisting physicians in emergency medicine [5]. Likelihood ratios and weights

of evidence also have been optionally converted from graphical to qualitative text descriptions in

the Path�nder and Medas projects. Path�nder developers investigated the explanation of user-

speci�c multiattribute-utility considerations associated with test decisions. Figure 4 portrays a

portion of a consultation with Path�nder, demonstrating the explanation of probability and utility
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considerations examined in the generation of a recommendation.

Modulating Completeness and Abstraction Another approach to creating more natural

decision-theoretic inference and explanation is to control the level of abstraction at which inference

occurs. For example, rather than directly reasoning about the beliefs associated with each disease

in response to a pattern of evidence observed in a tissue section under a microscope, a physician

may prefer to reason about{and review explanations about{classes of disease, such as in
ammatory,

infectious, and malignant. At this higher level of abstraction, the uncertain reasoning problem is

simpli�ed, and thus easier to understand and explain. A component of explanation research within

the Path�nder project studied the simpli�cation of probabilistic inference through using heuristic

abstraction hierarchies to control reasoning. The hierarchies are used to classify diseases into a set

of disease groups that depends on the diagnostic problem at hand [77]. Related research on the

naturalness of alternative grouping schemes has been conducted by Ben-Bassat and Teeni [6].

Researchers also have investigated the application of decision theory at the metalevel to control

the construction of explanations of decision-theoretic inference and of mathematical modeling [70,

104]. The research has studied the explicit metareasoning about the costs, bene�ts, and tradeo�s

associated with alternative explanations and with the understandability of alternative reasoning

methods. The work centers on the use of multiattribute utility models to reason about explanation

tradeo�s, such as the tradeo� between the simplicity and the completeness of an explanation.

Qualititative Explanation Determining the most important rationale for a recommendation

allows a system to present an explanation qualitatively. Researchers have suggested that, as peo-

ple may primarily use qualitative mental representations, it is useful to translate explanations of

quantitative reasoning{for example, of decision-analytic models{into more qualitative descriptions

[65]. Several projects have used this approach.

Langlotz and associates [93] constructed a system called QXQ that explains medical decision

analysis problems qualitatively. The system identi�es the most important factors a�ecting a deci-

sion and applies a set of explanation heuristics. The quantitative probabilistic and utility models

considered by the system are translated into qualitative explanations of why particular decisions

have higher expected value than others. The Path�nder team examined the usefulness of cre-

ating qualitative explanations through mapping linguistic modi�ers onto probability and utility

considerations. A qualitative explanation from Path�nder justifying an evidence-gathering rec-

ommendation is displayed at the bottom of Figure 4. Elsaesser employed a related approach for

the qualitative explanation of Bayesian updating [37]. Recent work by Klein has examined the

qualitative explanation of multiattribute utility models [90].



4 CURRENT RESEARCH 34

_________________________________________________ 
I recommend that the following features be evaluated: 
  Architecture 
  Follicles density 
  Subcapsular sinuses 
  Medullary sinuses 
 
> justify 
 
Which features do you want justified? 
   None 
  Architecture 
  Follicles density 
  Subcapsular sinuses 
  Medullary sinuses 
 
> architecture 
 
The following table elucidates the discriminating power of this  
feature.  The position of the asterisk indicates which of the  
two groups of diseases is favored by each value. 
 
Malignant 
               Benign 
 |              | 
v             v 
. . . . . . . *   preserved 
. . . . . . . *   partially obliterated 
. . . *. . . .    greatly obliterated 
*. . . . . . .    completely obliterated 
 
Pragmatic considerations in the evaluation of the feature, 
 
. . . . . ! . .   tedium 
$. . . . . . .   cost 
 
_________________________________________________ 
 
While it is somewhat tedious to answer,  in part because 
it entails a shift in attention from high-power to 
low-power, the question Architecture has been recommended 
because it is very good for discriminating between two  
disease groups and entails no monetary cost. 
_________________________________________________ 

Figure 4: Graphical and Qualitative Explanation Customized for a Nonexpert Pathologist. The

explanation includes probability and utility considerations associated with additional information

acquisition in the Path�nder system.
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5 Decision-Theoretic Techniques In AI

5.1 Overview

In previous sections, we discussed applications of decision theory to AI problems with obvious

relationships to expert-systems research; most research on applying decision theory has had this

focus. However, the capabilities of decision-theoretic techniques for reasoning under uncertainty,

considering complex preferences, and reasoning about decisions are applicable to other areas of

AI. A major component of automated reasoning is decision making about the value of alternative

representation and inference strategies for solving a problem. For example, search problems can

be recast as decision problems at each node in the search tree. This is not to suggest that decision

theory should necessarily be chosen as a reasoning methodology. In many cases, it may be coun-

terproductive to apply decision-theoretic inference and representation techniques explicitly. Even

in these cases, decision theory can provide a perspective useful for developing an approach and for

reasoning about the usefulness of alternative problem-solving techniques.

In recent years, decision-theory has been applied to a number of problems in AI, including

planning, control of inference, perception, learning, problem formulation, temporal reasoning, and

nonmonotonic reasoning. We review brie
y aspects of these research topics. More comprehensive

discussions are found in [86, 98].

5.2 Recent Research

The earliest and most prominent applications of decision theory in AI were in planning research,

much of which centers on the construction of sequences of actions that will achieve a set of goals.

Goal sets and operators are typically Boolean: If a plan does not successfully lead to a goal, it

fails. Research on the application of decision theory to planning has focused on the evaluation

of alternative plans, considering complex preferences based on several attributes. The decision-

theoretic paradigm has been used to de�ne the valuation function and the important uncertainties

in a problem, as well as to select the best sequence of actions. Feldman and Sproull [40] showed

how decision theory could be applied to control the application of planning operators in solving

the monkey-and-bananas problem. Coles et al. [20] and Jacobs [84] used utility theory to evaluate

alternative plans for robots immersed in an uncertain world. Langlotz et al. applied decision

theory to ranking alternative cancer therapy plans within the Oncocin project [92]. Wellman [156]

has applied logical theorem-proving techniques to prove the dominance of a set of plans within

a qualitative in
uence-diagram formalism. The qualitative in
uence-diagram research centers on

representing probabilistic dependencies qualitatively based on stochastic dominance.

Decision theory also has been used for the control of inference. Most AI work on the control

of inference has been based on heuristic control techniques [26, 38, 2]. Recent research has focused

on the potential for decision theory to be useful in planning a problem-solving approach, in evalu-

ating the costs and bene�ts of alternative inference methods, and in combining the e�ort of several

strategies [48, 71]. Smith [138] and Treitel and Genesereth [148] have applied decision theory to

reasoning about the control of logical reasoning. Smith uses expected value notions to select among
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search paths in database queries. Treitel has explored the costs associated with alternative sequen-

tialization strategies in logical theorem proving. Horvitz [73] has investigated issues surrounding

the use of decision theory to control several computational tasks including decision-theoretic in-

ference itself. In this work, alternative reasoning strategies are evaluated through weighing their

expected informational bene�ts with inference-related costs, such as the expense associated with

delay. Russell and Wefald [127] have examined the application of decision theory in search for

game playing, building upon earlier work by Good [50]. Other recent research on decision-theoretic

control, by Fehling and Breese, centers on the application of decision theory to a problem with

robot planning [39], considering the costs and bene�ts of alternative reasoning strategies to a robot

decision maker.

Several research projects have examined the representation of the semantics of probabilistic

knowledge within predicate calculus. Nilsson's probabilistic logic [108] extends the idea of logical

entailment to probabilistic domains. Within probabilistic logic, the probability of any sentence in

�rst-order predicate calculus is determined. The probabilities assigned to arbitrary combinations

of propositions are based on a logical analysis of alternative possible worlds. In related work,

Cooper [22] developed an algorithm for calculating the probability of an arbitrary statement in

propositional logic when a belief network is used as the representation of uncertainty.

There also is ongoing work on the logical analysis of belief networks. Pearl [115] has developed

logical techniques for reasoning about the allowable decompositions of belief-network problems.

Such decomposition techniques focus on issues of relevance among portions of a belief network to

reformulate an unwieldy inference problem into a set of smaller independent problems that can be

solved more e�ciently.

Many problems remain in applying automated logical-reasoning techniques developed by AI

investigators to the construction of decision models. At the foundations of any decision model

are decisions about the propositions to include within the decision basis, which often are based

on logical relationships. Several researchers have examined the automated construction of decision

models [67, 11, 156]. There are many unanswered questions regarding the automated assembling,

pruning, and reasoning about decision models. There is potential to develop tools for assisting

engineers with the construction of in
uence diagrams in the spirit of recent work by Heckerman on

the e�cient representation of alternative classes of independence among propositions [56].

There have been several research projects examining probabilistic approaches to temporal rea-

soning. Cooper, et al. [24] developed and implemented a model of probabilistic temporal reasoning

that updates belief in competing hypotheses over time as events are observed. Within this work

a set of temporal-locality and conditional-independence assumptions were studied. Prototypical

functions, representing knowledge about the temporal properties of propositions and about the

temporal relationships among propositions considered in the model, are used for updating belief

in competing hypotheses over time. Related research by de Zegher-Geets [35] has explored the use

of prototypical temporal belief functions among symptoms and diseases for helping physicians to

recognize changes in a patient's condition over time. Dean and Kanazawa [34] de�ne a number of

temporal predicates and show how functions representing the probability of speci�ed states over

time can be used in temporal reasoning. In other work, Tatman< [146] made use of the in
uence
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diagram representation to identify and to solve classes of temporal decision problems amenable to

solution with dynamic programming methods.

It is clear that incompleteness of knowledge and the possibility of changing information are

intrinsic to almost all complex real-world problem solving. Nonmonotonic logics deal with new

information by formalizing the process of defeating beliefs within a logical framework. Probability

theory assigns a continuous measure of belief and provides mechanisms for updating in light of

new information. Several researchers are integrating these perspectives as a means of dealing with

incomplete and changing information [102, 107, 53].

Decision theory also can be applied to problems involving modal reasoning. Analogous to

extensions of �rst-order predicate calculus to modal reasoning, probabilities can be used to describe

the uncertain beliefs that one agent holds about another agent's beliefs [44, 42]. Decision analysis

can be applied to communication and cooperation issues. Recent research has examined how an

autonomous agent might be endowed with the ability to apply utility theory and probability theory

to reason about the knowledge and potential behaviors of another agent [125]. Related work within

decision science has investigated the application of decision theory to reasoning about the actions

of competing decision makers [121, 157, 142].

Decision theory can provide a framework for considering the relationships among alternative

inference strategies. Langlotz et al. [91] describe an attempt to justify heuristic default strategies

with decision theory. Other work has described how a \suboptimal" default or approximate strategy

could be preferred to a complete decision-theoretic analysis given the cost of reasoning, and the

importance of techniques for gracefully degrading the value of a system's performance from a

complete analysis to an approximate one as the costs of representation or reasoning resources

increase [69]. As we mentioned in the second section of this article, analyses have been carried

out in attempts to understand how alternative formalisms for reasoning under uncertainty{such

as nonmonotonic reasoning [46], fuzzy set theory [160], and Dempster-Shafer theory [133]{relate

to probabilistic reasoning. See Kanal and Lemmer [86, 98] for some detailed analyses of these

approaches.

The application of in
uence diagrams in new areas is facilitated by their relatively uncon-

strained dependency structure at the level of relation. As an example, machine-vision researchers

have applied probabilistic inference to perceptual tasks. In recent research, Binford and Levitt [7]

have used a belief network to assign probabilities to alternative plausible three-dimensional objects,

given a two-dimensional projection.

Other researchers have examined learning within the decision-theoretic framework. Machine-

learning researchers have dwelled almost exclusively on deterministic relationships. Concepts de-

veloped in learning research, such as bias and explanation-based generalization, might be extended

to learning examples of greater complexity through the integration of decision-theoretic notions.

Star [141] described how explanation-based generalization models for learning might be extended

to reason about preferences under uncertainty through the application of decision theory.

Decision-theoretic approaches also hold promise for extending AI discovery research. Several

research projects have been undertaken to apply probabilistic reasoning to discovery. Within the

Radix project [8], probabilistic and logical reasoning were used to control the generation and con�r-
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mation of hypotheses about interesting relationships within a large medical database. Cheeseman

and associates have studied the automatic induction of a useful set of categories from data acquired

by sensors on a wandering robot [17]. Pearl and Verma [116] described logical methods for refor-

mulating belief networks to suggest plausible causal relationships to explain a set of probabilistic

relationships.

6 Conclusions

We have reviewed the application of concepts from decision science to AI research. Despite their

di�erent perspectives, decision science and AI have common roots and strive for similar goals.

We have concentrated on current expert-systems research at the crossroads of AI and decision

science. Historically, the development of heuristic reasoning methods arose partly in response to

the complexity and poor expressiveness of the early probabilistic expert systems. Popular heuristic

schemes, such as the rule-based approach to reasoning under uncertainty, were intended to be

more tractable and expressive than probabilistic inference. However, recent work has uncovered

inconsistencies in and limitations of these heuristic schemes, and has shown that they can lead

to unreliable conclusions. From the decision-theoretic perspective, it is clear that no scheme for

reasoning about complex decisions under uncertainty can avoid making assumptions about prior

belief and independence, whether these assumptions are implicit or explicit.

Recognition of the di�culties of the heuristic approaches, coupled with the promise of more

tractable and expressive decision-theoretic representation and inference strategies seems to be stim-

ulating renewed interest in the decision-theoretic approaches to automated problem solving. In

particular, belief networks and in
uence diagrams are appealing knowledge-representation schemes.

They can express knowledge about uncertain beliefs and relationships in both qualitative and more

quantitative forms in a 
exible, yet principled, fashion. These representations are being used in sev-

eral areas of expert-systems research, including the development of graphical knowledge-acquisition

tools; the search for e�cient algorithms for inference and decision in complex, multiply connected

belief networks and in
uence diagrams; and the development of techniques for explaining decision-

theoretic reasoning.

Although recent research on the application of decision-science ideas in expert systems seems

promising [1, 3, 9, 21, 56, 65, 66, 67, 76], for the most part, only prototype systems have been

demonstrated to date. There is urgent need for further research on the sensitivity of various infer-

ence schemes to seemingly unrealistic assumptions. Such research could determine the conditions

under which the assumptions lead to serious errors. Continuing investigation on the successes

and failures of heuristic methods also might lead to the discovery of useful and well-characterized

approximation techniques for speci�c problem-solving contexts.

Moving beyond expert systems, we see substantial opportunities for application of ideas from

decision science and AI to planning and problem solving, control of reasoning, speech recognition,

vision, temporal reasoning, and learning. However, substantial barriers remain in applying these

ideas in automated reasoners. Problems still unresolved include the construction and maintenance

of large, coherent knowledge bases; inference in large, arbitrary belief networks and in
uence dia-
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grams; automation of sensitivity analysis for knowledge engineering and computation; generation

and screening of alternatives; qualitative abstraction of decision models and conclusions; and auto-

mated construction of decision models. Many of these problems have not been addressed in detail

within the expert-systems research program yet are crucial for developing theoretical methods and

computational architectures for automated reasoners.

In summary, we believe that the investigation of central problems in representation and infer-

ence can be facilitated within the decision-theoretic framework. Conversely, there are indications

that AI can make contributions to problems and assist in developing relatively unexplored fron-

tiers in the decision sciences. We anticipate major advances in both AI and decision science based

on increased interaction between the disciplines. We hope that this paper will help to promote

such collaboration. For now, we temper our enthusiasm about early developments and await the

results of ongoing theoretical work as well as the accumulation of experience with the application

of decision-science techniques in automated reasoning systems.
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