
Dynamic Restart Policies

Henry Kautz
University of Washington
kautz@cs.washington.edu

Eric Horvitz
Microsoft Research

horvitz@microsoft.com

Yongshao Ruan
University of Washington

ruan@cs.washington.edu

Carla Gomes
Cornell University

gomes@cs.cornell.edu

Bart Selman
Cornell University

selman@cs.cornell.edu

Abstract

We describe theoretical results and empirical study of
context-sensitive restart policies for randomized search pro-
cedures. The methods generalize previous results on opti-
mal restart policies by exploiting dynamically updated beliefs
about the probability distribution for run time. Rather than
assuming complete knowledge or zero knowledge about the
run-time distribution, we formulate restart policies that con-
sider real-time observations about properties of instances and
the solver’s activity. We describe background work on the ap-
plication of Bayesian methods to build predictive models for
run time, introduce an optimal policy for dynamic restarts that
considers predictions about run time, and perform a compara-
tive study of traditional fixed versus dynamic restart policies.

Introduction
The possibility of developing tractable approaches to combi-
natorial search has been a long-held goal in AI. We describe
theoretical results on dynamic restarts, restart policies for
randomized search procedures that take real-time observa-
tions about attributes of instances and about solver behavior
into consideration. The results show promise for speeding
up backtracking search—and thus, move us one step closer
to tractable methods for solving combinatorial search prob-
lems.

Researchers have noted that combinatorial search algo-
rithms in many domains exhibit a high degree of unpre-
dictability in running time over any given set of prob-
lems (Selman, Kautz, & Cohen 1993; Gent & Walsh 1993;
Kirkpatrick & Selman 1994; Hogg, Huberman, & Williams
1996; Gomes & Selman 1997; Walsh 1999). In the most
extreme case, the running time of a search algorithm over a
problem set is best modeled by a heavy-tailed (powerlaw)
distribution, having infinite mean and/or variance (Gomes,
Selman, & Crato 1997; Gomes, Selman, & Kautz 1998a;
Gomes et al. 2000).1 Investigators have sought to under-
stand the basis for such great variation by modeling search as
a process that generates self-similar or fractal trees (Smythe
& Mahmound 1995). Research on algorithm portfolios and

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Technically, because real-world search spaces are large but fi-
nite, there must always be some upper bound on the running time.
However, it is common practice to refer to such truncated heavy-
tailed distributions simply as “heavy tailed,” in the case where a
heavy-tailed distribution fits the data over several orders of magni-
tude.

on randomized restarts has shown that it is possible to de-
velop more predictable and efficient procedures (Gomes &
Hoos 2000) by minimizing the risk associated with com-
mitting large amounts of computation to instances that are
likely to have long run times. In the first approach, a port-
folio of search algorithms is executed in parallel. Experi-
ments have shown that such portfolios may exhibit a low
mean and low variance in run time, even if each member
of the portfolio has high mean and variance (Gomes & Sel-
man 2001). In the second method, randomness is added to
the branching heuristic of a systematic search algorithm. If
the search algorithm does not find a solution within a given
number of backtracks, known as the cutoff, the run is ter-
minated and the algorithm is restarted with a new random
seed. Randomized restarts have been demonstrated to be
effective for reducing total execution time on a wide vari-
ety of problems in scheduling, theorem proving, circuit syn-
thesis, planning, and hardware verification (Luby, Sinclair,
& Zuckerman 1993; Huberman, Lukose, & Hogg 1997;
Gomes, Selman, & Kautz 1998b; Moskewicz et al. 2001).

In this paper, we extend prior results on fixed restart poli-
cies to more efficient dynamic restarts by harnessing predic-
tive models to provide solvers with a real-time ability to up-
date beliefs about run time. We first review previous work on
restart policies. Then we review recent work on construct-
ing Bayesian models that can be used to infer probability
distributions over the run time of backtracking search pro-
cedures based on observational evidence. We introduce new
results on optimal restart policies that consider observations
about solver behavior. Finally, we demonstrate the efficacy
of the restart policies with empirical studies of backtracking
search for solving quasigroup, graph-coloring, and logistics-
planning problems.

Research on Restart Policies
The basis for the value of randomized restarts is straight-
forward: the longer a backtracking search algorithm runs
without finding a solution, the more likely it is that the al-
gorithm is exploring a barren part of the search space, rather
than branching early on states of critical variables necessary
for a solution. But when should the algorithm give up on a
particular run and restart the execution after some random-
ization? The designers of restart policies must grapple with
minimization of total run time given a tradeoff: As the cutoff
time is reduced, the probability that any particular run will
reach a solution is diminished, so runs become shorter but
more numerous.



Previous theoretical work on the problem of determining
an ideal cutoff has made two assumptions: first, that the only
feasible observation is the length of a run; and second, that
the system has either complete knowledge or no knowledge
of the run-time distribution of the solver on the given in-
stance. Under these conditions Luby et al. (1993) described
provably optimal restart policies. In the case of complete
knowledge, the optimal policy is the fixed cutoff that min-
imizes E(Tc), the expected time to solution restarting ev-
ery c backtracks. In the case of no knowledge, Luby further
showed that a universal schedule of cutoff values of the form

1, 1, 2, 1, 1, 2, 4, ...

gives an expected time to solution that is within a log fac-
tor of that given by the best fixed cutoff, and that no other
universal schedule is better by more than a constant factor.

Although these results were taken by many in the research
community to have settled all open issues on restart strate-
gies, real-life scenarios typically violate both assumptions.
For one, we often have partial knowledge of the run-time
distribution of a problem solver. For example, consider the
case of a satisfiability (SAT) solver running on a mix of
satisfiable and unsatisfiable problem instances. In general,
run-time distributions over satisfiable and unsatisfiable in-
stances are quite different (Frost, Rish, & Vila 1997). We
might know that a new given instance was drawn from one
of several different distributions of satisfiable and unsatisfi-
able problems, but not know which distribution. We cannot
calculate a fixed optimal cutoff value, but still wish to take
advantage of the knowledge that we do have; the “log factor”
of the simple universal schedule can be quite large in prac-
tice (two or more orders of magnitude including the constant
factors).

The assumption that only the running time of the solver
can be observed may also be violated. Beyond run time,
other evidence about the behavior of a solver may be valu-
able for updating beliefs about the run-time distribution. In-
deed, watching a trace or visualization of a backtracking
search engine in action can be quite enlightening. Observers
can watch the algorithm make a few bad variable assign-
ments and then thrash for millions of steps in the “wrong”
area of the search space. A person watching the system of-
ten has intuitions about when it might be best to restart the
search.2 Can a program also make such judgments? Can
it recognize dynamically changing patterns of activity that
indicate that the search is lost and would best be restarted?

Recently Horvitz et al. (2001), motivated by such
questions—and the associated promise of developing sound
dynamic restart policies—introduced a framework for con-
structing Bayesian models that can predict the run time of
problem solvers. They showed that observations of various
features over time capturing the trajectory of states of the
solver during the first few seconds of a run could be fused to
predict the length of a run with a useful degree of accuracy.
They also sketched an approach to using learned predictive
models to control the restart policy of the solver.

Our paper builds upon the framework of Horvitz et
al. (2001) and presents theoretical and empirical results on
optimal restart policies in the presence of observations about
the state of a solver and partial knowledge of the run-time
distribution. Our specific contributions include:

2Research in AI on restart strategies began with just such infor-
mal observations.

• Characterization of the knowledge conditions under
which the runs of a solver are dependent or independent,
and the impact this has on the nature of optimal restart
policies;

• Specification of a class of provably optimal dynamic
restart policies in the presence of solver-state observa-
tions;

• Empirical evaluation of these dynamic policies against the
best fixed-cutoff policies; and

• An empirical study of the sensitivity of the predictive
models to diminishing periods of observation, that shows
that a surprisingly short period of observation is necessary
to create accurate models.

Dependent and Independent Runs
Most work on restart strategies for backtracking search as-
sume explicitly or implicitly that runs are probabilistically
independent from one another; in the analyses, no informa-
tion is considered to be carried over from one run to the
next.3 However, a careful analysis of informational rela-
tionships among multiple runs reveals that runs may be de-
pendent in some scenarios: observing run i influences the
probability distribution we assign to run i + 1.

Knowledge conditions under which the runs are indepen-
dent include: (i) a new instance is drawn from a static en-
semble of instances for each run, and the full run-time dis-
tribution for the ensemble is known; or (ii) some feature of
each run can be observed that classifies the particular run as
a random sample from a known run-time distribution Di, re-
gardless of whether the problem instance is fixed or changes
with each run. By contrast, an example of dependent runs is
when we know the run-time distributions of several different
problem ensembles, a problem instance is drawn randomly
from one of the ensembles, and each run is performed on
that same instance. In this case, the failure of each run to
find a solution within some cutoff changes our beliefs about
which ensemble was selected.

The families of restart policies that are appropriate for the
independent and dependent situations are distinct. Consider
the simple case of identifying the best fixed cutoff policies
where D1 and D2 are point probabilities. Suppose in the
independent case a run always ends in 10 or 100 steps with
equal probability: the optimal policy is to always restart after
10 steps if the problem is not solved. On the other hand,
consider the dependent case where in D1 all runs take 10
steps and in D2 all runs take 100 steps, and an instance is
chosen from one of the distributions. Then the best fixed-
cutoff policy is to run with no cutoff, because a fixed cutoff
of less than 100 gives a finite probability of never solving
the problem.4

Independent Runs in Mixed Distributions
The restart policy for the case of independent runs in light
of a single known probability distribution over run time is
covered by Luby et al. (1993)’s results, as described above.

3An exception to this is recent work by di Silva on combining
clause learning with restarts, where clauses learned in one run are
carried over to the next run (Baptista & Marques-Silva 2000).

4In the general dependent case, optimal policies actually use a
series of different cutoffs, as discussed in Ruan et al. (2002).



We consider, therefore, the case where each run is a ran-
dom sample from one of a number of known run-time dis-
tributions, D1, D2, · · · , Dn, where the choice of Di is an
independent event made according to some prior probability
distribution.

If the system has no knowledge of which Di is selected
and makes no observations other than the length of the run,
then this case also collapses to that handled by Luby et
al. (1993):

Proposition 1 The optimal restart policy for a mixed run-
time distribution with independent runs and no additional
observations is the optimal fixed cutoff restart policy for the
combined distribution.

It is more interesting, therefore, to consider situations
where the system can make observations that update beliefs
about the current Di. Horvitz et al. (2001) segment obser-
vations into static and dynamic classes of evidence. Static
observations are directly measurable features of a problem
instance. As an example, one could measure the clause
to variable ratio in a SAT instance, as has been long con-
sidered in work on random k-SAT (Mitchell et al. 1992;
Selman & Kirkpatrick 1996). Dynamic features are mea-
surements obtained via the process of problem solving; they
are observations of a search algorithm’s state while it is in
the process of trying to solve a particular instance. Both
kinds of evidence are useful for identifying the source dis-
tribution of an instance.

We shall simplify our analysis without loss of general-
ity by considering a single evidential feature F that sum-
marizes all observations made of the current instance/run
pair. In the experiments described below F is a function
of a decision tree over a set of variables that summarize the
trace of the solver for the initial 1,000 steps of a run. The
variables include the initial, final, average, and first deriva-
tives of such quantities as the number of unassigned vari-
ables in the current subproblem, the number of unsatisfied
constraints, the depth of the backtracking stack, and so on
(see Horvitz et al. (2001) for a more detailed discussion for
features and their use in probabilistic models of run time).
The decision trees are created by labeling a set of test run
traces as “long” or “short” relative to the median time to
solution, and then employing a Bayesian learning procedure
(Chickering, Heckerman, & Meek 1997) to build probabilis-
tic dependency models that link observations to probability
distributions over run time. Note that because the summary
variables include some quantities that refer to the initial,
unreduced problem (such as the initial number of unbound
variables), the feature F combines static and dynamic ob-
servations.

The feature F may be binary-valued, such as whether the
decision tree predicts that the current run will be longer than
the median run time. In other experiments, described be-
low, we define a multivalued F , where its value indicates
the particular leaf of the decision tree that is reached when
trace of a partial run is classified. In an ideal situation, F
would indicate the Di for which the current run is a random
sample with perfect accuracy. Such an ideal F simplifies
the analysis of optimal restart strategies, because we do not
have to consider error terms. We can in fact achieve such
perfect accuracy by a resampling technique, described be-
low, whereby the F is used to define a set of distributions Di

(which in general are different from the distributions used to

create the original decision tree). Therefore, without loss of
generality, we will assume that F always indicates the actual
Di for the run.

Let us assume first that F is binary valued, so there are
two distributions D1 and D2, and we wish to find the op-
timal restart policy. First we must decide what we mean
by “optimal:” do we wish to minimize expected run time,
minimize variance in run time, or some combination of
both? In this paper, we pursue the minimization of ex-
pected run time, although in some applications one may be
willing to trade off an increase in expected run time for a
decrease in variance; such tradeoffs are discussed in work
on algorithm portfolios (Huberman, Lukose, & Hogg 1997;
Gomes, Selman, & Kautz 1998b).

Next, let us consider the form of the policy. Is the policy
the same for every run, or can it evolve over time; that is, is
the policy stationary? The assumption that the runs are in-
dependent immediately entails that the policy is indeed sta-
tionary as we do not learn anything new about the Di over
time. This is the key distinction between policies for inde-
pendent and dependent restart situations. Therefore we can
conclude that the policy must be a function of F alone:

Theorem 1 In the case of independent runs, where the
(only) observation F is made after T0 steps during each run,
and where F indicates whether a run is a member of D1 or
D2, the optimal restart policy is either of the form:

Set the cutoff to T1 for a fixed T1 < T0.

or of the form:

Observe for T0 steps and measure F ;
If F is true then set the cutoff to T1, else set the cutoff
to T2

for appropriate constants T1, T2.

The first case is the degenerate one where waiting to ob-
serve F is never helpful. In the second situation, we are
able to take advantage of our prediction of how “lucky” the
current run will be. In general, this kind of dynamic policy
outperforms the optimal static policy where the observation
is ignored. In fact, the dynamic policy can outperform the
optimal static policy even if the optimal static cutoff is less
than the time T0 required to make an observation, if predic-
tions are sufficiently accurate.

Optimal Dynamic Policies
What values should be chosen for T1 and T2? They are not,
in general, the same as the optimal static cutoffs for the in-
dividual distributions. The optimal dynamic cutoff values
are found by deriving an expression for the expected time
to solution for any T1 and T2, and then selecting values that
minimize the expression given the data available for D1 and
D2.

Let us begin by reviewing the formula for the expected
time to solution of a fixed cutoff policy for a single distribu-
tion. Let p(t) be the probability distribution over a run stop-
ping exactly at t, and q(t) =

∑
t′≤t p(t′) be the cumulative

probability distribution function of p(t). For a given cutoff
T , the expected number of runs required to find a solution
is the mean of the Bernoulli distribution for independent tri-
als with probability q(T ), 1/q(T ). The expected length of
each run is (1 − q(T ))T +

∑
t≤T tp(t) = T −

∑
t<T q(t)



(Luby, Sinclair, & Zuckerman 1993). Multiplying the ex-
pected time per run and the expected number of runs gives
an expected time to solution of

E(T ) =
T −

∑
t<T q(t)

q(T )
(1)

We can extend this result to the case of multiple distributions
by considering the probability of different distributions and
computing a new expectation. Taking di as the prior proba-
bility of a run being chosen from distribution Di, pi(t) as the
probability that a run selected from Di will stop exactly at
t, and qi(t) as the cumulative function of pi(t), the expected
number of runs to find a solution using cutoff Ti, whenever
a sample comes from Di, is now 1/(

∑
i diqi(Ti)). The ex-

pected length of each run is
∑

i di(Ti −
∑

t<Ti
qi(t)) The

product of these quantities yields the expected run time for
a particular choice of Ti, and thus the optimal cutoff values
are those that minimize this expectation.

Theorem 2 For independent runs where each run is se-
lected with probability di from known distribution Di, the
optimal dynamic restart policy uses cutoffs

(T ∗
1 , ..., T ∗

n) = arg min
T1,...,Tn

E(T1, ...Tn) (2)

= arg min
T1,...,Tn

∑
i di(Ti −

∑
t<Ti

qi(t))
∑

i diqi(Ti)
(3)

If the search algorithm runs for at least T0 steps to iden-
tify the relevant distribution Di, then the optimal cutoffs are
either uniformly some T < T0, or are bounded below by T0:

(T ∗
1 , ..., T ∗

n) = arg min
Ti≥T0

E(T1, ...Tn) (4)

In the most general case, the set of T ∗
i that minimizes

the expected overall time to solution can be determined by
a brute-force search over the empirical data. Beyond brute-
force minimization, there is opportunity to use parameter-
ized probability distributions to model the empirical data
and to derive closed-form expressions for the T ∗

i .

Optimal Pruning of Runs after Observation
An interesting special case of the optimal dynamic policy is
the situation where the best action for one or more of the
distributions is to restart immediately after observation. We
wish to identify conditions where it is best to simply remove
from consideration runs we determine to be “unlucky,” fol-
lowing analysis of static features of the instance or some ini-
tial observation of the solver’s behavior. We shall consider
here the pruning conditions for the case of two distributions,
based on properties of the distributions.

For a given cutoff T1, we seek to identify the conditions
under which E(T1, T0+∆) is never less than E(T1, T0). By
substituting in the formula for the expected time to solution
(Equation 3) and performing some simplification, one can
show that runs from D2 should be pruned if, for all ∆ > 0,
it is the case that:

∆ −
∑

T0≤t<T0+∆ q2(t)
q2(T0 + ∆) − q2(T0)

> E(T1, T0) (5)

The left-hand side of the inequality is the cost–benefit ra-
tio for extending runs in D2 following observation, and the

right-hand side, representing the expected run time of the
pruned policy, can be computed from the empirical data. An
interesting feature of this formula is that d1 and d2 disap-
pear from the left-hand side: the prior probabilities assigned
to the two distributions are irrelevant.

Empirical Studies
We performed a set of empirical studies to explore the dy-
namic restart policies given evidence gathered about solver
behavior. Our first benchmark domain was a version of
the Quasigroup Completion Problem (QCP) (Gomes & Sel-
man 1997). The basic QCP problem is to complete a
partially-filled Latin square, where the “order” of the in-
stance is the length of a side of the square. We used a
version called Quasigroup with Holes (QWH), where prob-
lem instances are generated by erasing values from a com-
pleted Latin square. QWH problems are “balanced” if the
same number of missing values appear in each row and col-
umn. QWH is NP-complete, and balanced QWH is the
hardest known subset of QWH (Achlioptas et al. 2000;
Kautz et al. 2001). Note that QWH problems are satisfi-
able by definition.

For the QWH domain, we experimented with both CSP
and SAT (Boolean) problem encodings. The CSP solver was
designed specifically for QWH and built using the ILOG
constraint programming library. The CSP problems were
(non-balanced) random QWH problems of order 34 with
380 unassigned holes (the hardest hole/order ratio for ran-
dom problems). The SAT-encoded problems were solved
with Satz-Rand (Gomes, Selman, & Kautz 1998b), a ran-
domized version of the Satz system of Li and Anbulagan (Li
& Anbulagan 1997). Satz implements the Davis-Putnam-
Longemann-Loveland (DPLL) procedure with look-ahead
and a powerful variable-choice heuristic. The SAT-encoded
problems were balanced QWH problems of order 34 with
410 unassigned holes (the hardest hole/order ratio for bal-
anced problems).

Following the cycle of experiments with QCP, we applied
the methods to the propositional satisfiability (SAT) encod-
ings of the Graph Coloring Problem (GCP) and Logistics
Planning (LPlan) problems.

For the GCP domain, we experimented with the random-
ized SAT algorithm running on Boolean encodings. The
instances used in our studies are generated using Culber-
son’s flat graph generator (Culberson & Luo 1996). Each
instance contains 450 vertices and 1,045 randomly gener-
ated edges. The challenge is to decide whether the instances
are 3-colorable. The instances are generated in such a way
that all 3-colorable instances are 2-uncolorable and all 3-
uncolorable instances are 4-colorable. Half of the problems
were 3-colorable (satisfiable in the Boolean encoding) and
half were not (unsatisfiable).

For the LPlan domain, we again experimented with Satz-
Rand algorithm running on Boolean encodings. Kautz and
Selman (Kautz & Selman 1996) showed that propositional
SAT encodings of STRIPS-style planning problems could be
efficiently solved by SAT engines. The logistics domain in-
volves moving packages on trucks and airplanes between
different locations in different cities. In the logistics domain,
a state is a particular configuration of packages and vehicles.
We generated instances with 5 cities, 15 packages, 2 planes,
and 1 truck per city, where the initial and goal placements



of packages was randomly determined. The parallel-plan
length was fixed at 12 steps. To decrease the variance among
instances, we filtered the output of the problem generator so
that the satisfiable instances could be solved with 12 parallel
steps but not 11 steps, and the unsatisfiable instances could
not be solved with 12 steps but could be solved in 13 steps.
As before, we selected half satisfiable and half unsatisfiable
instances.

We implemented the methods described by Horvitz et
al. (2001) to learn predictive models for run time for a prob-
lem solving scenario Horvitz et al. (2001) refer to as the
multiple-instance problem. In multiple-instance problems,
we draw instances from a distribution of instances and seek
to solve any instance as soon as possible, or as many in-
stances as possible for any amount of time allocated. For
each case, we consider the states of multiple evidential vari-
ables observed during the observation horizon. In our ex-
periments, observational variables were collected over an
observational horizon of up to 1,000 solver choice points.
Choice points are the states in search procedures where the
algorithm assigns a value to variables where that assign-
ment is not forced via propagation of previous set values.
Such a situation occurs with unit propagation, backtracking,
look-ahead, and forward-checking. At these points in prob-
lem solving a variable assignment is chosen according the
solver’s particular heuristics.

For the studies described, we represented run time as
a probability distribution over a binary variable with dis-
crete states “short” versus “long.” We defined short runs
as cases completed before the median run time for the prob-
lem domain (see Table 1 for the median run times for each
benchmark). As described in Horvitz et al. (2001), we em-
ployed Bayesian learning methods (Chickering, Heckerman,
& Meek 1997) to generate graphical probabilistic models for
solver run time. The resulting probabilistic graphical mod-
els, and associated decision trees that represent a compact
encoding of the learned conditional probability distributions,
are thus formulated to predict the likelihood of a run com-
pleting in the less than the median time, on the basis of ob-
servations of the beginning of the run.

Each of the training sets contained 2,500 runs (where each
run is on a different instance), except for the QWH Boolean
encoded problems, where the training set was of size 5,000.
A separate test set of the same size as the training set for
each domain was also created for the final evaluation of the
different policies we considered.

Generating Distributions via Resampling
Using the inferred run-time distributions directly in our
studies would imply an assumption that the model’s infer-
ences are accurate, gold-standard distributions. However,
we know that the models are imperfect classifiers. The as-
sumption of perfect model accuracy can be appropriately re-
laxed by overlaying additional error modeling. Such error
modeling introduces terms that represent classification accu-
racy. To bypass the use of more cumbersome analyses that
include a layer of error analysis, we instead performed re-
sampling of the training data: we used the inferred decision
trees to define different classes (representing specific sets of
values of observed states of solver behavior), and relabeled
the training data according to these classes. In other words,
we use the branching structure of the decision trees—the
leafs indicated by different sets of observations—to define

each sub-distribution D1, D2, ...Dn and obtain statistics on
each of these distributions by running the training data back
through the decision tree, and computing the different run-
time distributions for each value of F . Resampling the data
to generate distributions lets us create distributions that en-
code predictive errors in an implicit manner.

Experiments with Dynamic Restarts
We performed experiments to compare dynamic restart
policies with the fixed optimal restart policy of Luby et
al. (1993). We considered two basic formulations of the
dynamic restart policies, that we refer to as binary and n-
ary policies. For the binary policy, runs are classified as
either having short or long run-time distributions, based on
the values of features observed during the observation phase.
Runs from the training data are first bucketed into the differ-
ent leafs of the decision tree based on the observed values
of run-time observations. We define long and short distribu-
tions in terms of the decision-tree path indicated by the set of
observations, asserting that all cases at a leaf of the decision
tree that contains more than 60% of short runs are classified
as a member of the short distribution, and otherwise as a
member of the long distribution5 For the n-ary policy, each
leaf in the decision tree is considered as defining a distinct
distribution.

For identifying the optimal set of cutoff–observation pairs
in a dynamic restart policy, we used Eqn. 3 to search for the
combination of cutoffs associated with minimum expected
run time. We also considered a range of different observa-
tion periods, ranging from 10 to 1,000 choice points. The
shortest window turned out to yield policies with the lowest
expected run times; below we discuss specific results on the
sensitivity of the policies to the length of the window.

For the binary dynamic restart case, the cutoff for the long
distribution was found to be optimal, in both Satz and CSP
experiments, when it is equal to the ideal observation hori-
zon; thus, the optimization indicated that runs falling into the
long distribution should be pruned in both of these cases. We
confirmed the optimality of the pruning of the long distribu-
tions with the pruning condition specified by the inequality
described in Eqn. 5.

For the n-ary restart case, we could not directly optimize
the cutoffs with brute-force optimization, given the size of
the decision trees. For example, in the Boolean-encoded
QWH domain, the decision tree has 20 leafs, and in prin-
ciple we would need to simultaneously vary 20 parameters.
Therefore we simplified the search problem by pruning all
runs that fell into leafs that contained less than 60% short
runs, and then performing brute-force search to find the set
of optimal cutoffs for the “short” leafs. Finally, we con-
firmed that pruning runs from the long leafs was indeed op-
timal by checking the pruning condition (Eqn. 5).

Beyond the dynamic policies and the fixed-optimal policy,
we investigated for comparative purposes the time to solu-
tion with Luby’s universal restart policy, and a binary–naive
restart policy, composed by selecting distinct, separately op-
timal fixed cutoffs for the long and for the short distributions
in the binary setting.

5Intuitively any threshold greater than 50% could be used. We
empirically found for the benchmark domains studied that using a
threshold of 60% gave the best performance for the restart policies
that were ultimately formulated.



Figure 1: A predictive decision tree for a CSP QWH multiple-instance problem learned using an observation horizon of 10
choice points. Nodes represent observed features and arcs show the branching values. The number of cases of short versus long
runs associated with the path are indicated at the leaves.

Figure 2: Analysis of the sensitivity of classification accuracy to the length of the observation horizon for CSP (left) and SATZ
(right) on QWH multiple instances.

Sensitivity of Predictions to the Observation
Horizon
As we highlighted in our earlier discussion of the pruning
condition (Eqn. 5), the length of the observation window T0

influences the optimal restart strategy. Long observation pe-
riods can limit the value of the dynamic methods by impos-
ing a high constant tax whether or not an instance should be
pruned immediately following the observation. Shorter hori-
zons shift relationships and allow for a more efficient over-
all restart analysis; for example, a shorter horizon allows for
the earlier pruning of runs following observations. Explicit
knowledge of the relationship between observation horizon
and accuracy thus provides another parameter for an opti-
mization procedure to consider. Therefore, we studied the
sensitivity of the predictive power of models to reduction of
the observational horizon.

For the QWH domain, for both CSP and SATZ solvers,
we collected run-time data for each instance over differ-
ent observational horizons, varying from 10 to 1,000 choice
points and constructed and tested the predictive power of
distinct models. Fig. 1 displays an example of a learned
decision trees for the CSP solver with observation horizon
of 10 choice points. The internal nodes are labeled with the

name of the low-level solver-trace variable branched on. For
example, along the left-hand branch we encounter the first
two decision variables are:

• AvgColor-Avg-L10 — the average number of available
colors for each empty square, averaged over the 10 choice
points.

• AvgColor-Avg-1st-L10 — the first derivative of the av-
erage number of available colors for each empty square,
measured at choice point 10.

The leaves are labeled with the number of short and long
runs that appear there in the training data. For example, 93
short runs and 11 long runs reached the left-most leaf.

The learned predictive models for run time were found to
overall show increasing classification accuracy with the use
of longer observation horizons. Fig. 2 shows the sensitiv-
ity of the classification accuracy of the two solvers on the
QWH multiple-instance problem to changes in the obser-
vation horizon. We found a steep increase in classification
accuracy when the observation horizon is extended from the
first 10 choice points to 100 choice points. Then the curve
rises only slightly when the observation horizon is extended
from 100 to 1,000 choice points. The sensitivity analysis

62/126 412/630 215/624

Bounded−Var−L10 VarRowCol−Avg−1st−L10

VarColor−Var−L10

Bounded−Min−1st−L10

AvgColor−Avg−L10

VarColor−Intercept−L10

AvgColor−Avg−1st−L10

AvgDepth−Slope−L10 548/316

VarColumn−Var−1st−L10

18/15 65/11

224/166288/11593/11

55/5

< 1.04>= 1.04

>= 0.0222 <0.0222 <0.0131 >=0.0131

<0.99>=0.99

>=0.209<0.209

<0.00453>=0.00453

<0.274 >=.0274

>=0.00183 <0.00183

<0.946 >=0.946

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Observation Length

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Observation Length



demonstrates that evidence collected in the first 100 choice
yields the most discriminatory information. We believe that
this finding makes intuitive sense; it is commonly believed
that the first few choice points in the search of backtrack
solvers have the most influence on the overall run time.

Despite the fact that predictive power was significantly
better after 100 choice points than following 10 choice
points, our optimization search over all possibly restart poli-
cies at different window sizes determined that the smallest
window actually had the best cost/benefit ratio.6 Thus, we
used a window of 10 steps for the final experiments.

Results
After all the policies were constructed as described in the
previous section, a fresh set of test data was used to evaluate
each. The results, summarized in Table 1, were consistent
across all of the problem domains: the dynamic n-ary policy
is best, followed by the dynamic binary policy. We believe
that the dominance of the n-ary dynamic restart policy over
the binary dynamic policy is founded on the finer-grained,
higher-fidelity optimization made possible with use of multi-
ple branches of the decision trees. Improvements in solution
times with the use of the dynamic policies range from about
40% to 65% over the use of Luby’s fixed optimal restart pol-
icy.

The “naive” policy of using observations to predict the
distribution for each run, and then using the optimal fixed
cutoff for that distribution alone, performed poorly. This
shows the importance of pruning long runs, and the value of
the compute-intensive optimization of key parameters of the
restart policy. Finally, the knowledge-free universal policy
is about a factor of six slower than the best dynamic policy.

Summary and Directions
We introduced dynamic restarts, optimal randomized restart
policies that take into consideration observations with rel-
evance to run-time distributions. Our analysis included a
consideration of key relationships among variables under-
lying decisions about pruning runs from consideration. To
investigate the value of the methods, we performed several
experiments that compare the new policies with static opti-
mal restart procedures. To highlight the general applicabil-
ity of the methods, studies were performed for quasigroup,
graph coloring, and logistics planning problems.

We are pursuing several extensions to the results on dy-
namic restarts presented here. In one vein of work, we are
exploring optimal randomized restart policies for the case of
probabilistically dependent runs. As we noted above, with
dependent runs, observations made in previously observed
runs may influence the distribution over future runs. De-
pendent runs capture the situation where a solver performs
restarts on the same instance. In this setting, observations
about the time exhibited until a restart of one or more prior
runs of the same instance can shift the probability distribu-
tion distribution over run time of current and future runs.
Beyond dependent and independent runs, we are interested
in policies for new kinds of challenges, representing mixes

6We also experimented with a window of 0 steps—that is, using
only static observations—but results were inconclusive. We are in-
vestigating the extent to which a carefully-chosen set of static fea-
tures for a problem domain can match the performance of dynamic
features for the multiple-instance case.

of dependent and independent runs. For example, we are
interested in the scenario where a solution can be gener-
ated either by continuing to restart a current instance until
it is solved or by drawing a new instance from an ensem-
ble. In another direction on generalization, we are explor-
ing ensembles of instances containing satisfiable as well as
unsatisfiable problems. In this work, we consider the like-
lihood of satisfiability in the analysis, given prior statistics
and the updated posterior probabilities of satisfiability based
on observations within and between runs. We are also ex-
ploring the use of richer observational models. Rather than
rely on a single observational window, coupled with offline
optimization, we are exploring the real-time adaptive con-
trol of when, how long, and which evidence is observed. As
an example, our efforts on characterizing the sensitivity of
predictive power of run-time predictions to the duration of
the observation window suggest that the window might be
controlled dynamically. In another thread of research, we
are interested in leveraging inferences about run-time distri-
butions to control search at a finer microstructure of problem
solving. That is, we can move beyond the implicit restriction
of being limited to the control of a parameter that dictates
a cutoff time. We believe that reasoning about partial ran-
domized restarts, using inferences about run time to guide
decisions about backing up a solver to an intermediate state
(rather than a complete restart) may lead to more flexible,
efficient solvers.

We are excited about dynamic restart policies as repre-
senting a new class of procedures that tackle difficult com-
binatorial search problems via increased awareness of crit-
ical uncertainties and informational relationships. We hope
that this work will stimulate additional efforts to integrate
and harness explicit representations of uncertainty in meth-
ods for tackling difficult reasoning problems.

References
Achlioptas, D.; Gomes, C. P.; Kautz, H. A.; and Selman,
B. 2000. Generating satisfiable problem instances. In
AAAI/IAAI, 256–261.

Baptista, L., and Marques-Silva, J. P. 2000. The interplay
of randomization and learning on real-world instances of
satisfiability. In Gomes, C., and Hoos, H., eds., Working
notes of the AAAI-2000 Workshop on Leveraging Proba-
bility and Uncertatinty in Computation. AAAI.

Chickering, D. M.; Heckerman, D.; and Meek, C. 1997. A
Bayesian approach to learning Bayesian networks with lo-
cal structure. In Proceedings of the Thirteenth Conference
On Uncertainty in Artificial Intelligence (UAI-97), 80–89.
Providence, RI: Morgan Kaufman Publishers.

Culberson, J. C., and Luo, F. 1996. Exploring the k-
colorable landscape with iterated greedy. In Johnson, D. S.,
and Trick, M. A., eds., Cliques, Coloring and Satisfiability,
volume 26 of DIMACS Series. AMS. 245–284.

Frost, D.; Rish, I.; and Vila, L. 1997. Summarizing CSP
hardness with continuous probability distributions. In Pro-
ceedings of the Fourteenth National Conference on Arti-
ficial Intelligence (AAAI-97), 327–334. New Providence,
RI: AAAI Press.

Gent, I., and Walsh, T. 1993. Easy Problems are Some-
times Hard. Artificial Intelligence 70:335–345.



Expected Runtime (Choice Points)
Restart Policy QCP (CSP) QCP (Satz) Graph Coloring (Satz) Planning (Satz)

Dynamic n-ary (pruned) 3,295 8,962 9,499 5,099
Dynamic binary 5,220 11,959 10,157 5,366
Fixed optimal 6,534 12,551 13,894 6,402
Binary naive 17,617 12,055 14,669 6,962

Universal 12,804 29,320 38,623 17,359
Median (no cutoff) 69,046 48,244 39,598 25,255

Table 1: Comparative results of restart policies. Units are in choice points, which scales linearly with run time. The dynamic-
binary policies pruned all runs classified as long. The fixed-optimal policy is that of Luby et al. (1993), based only on the
complete run-time distribution without observations. The universal policy is Luby’s log-optimal policy for unknown distribu-
tions. The binary-naive policy uses the decision tree to predict the distribution for the run, and then uses Luby’s fixed optimal
cutoff for that distribution.

Gomes, C., and Hoos, H. 2000. Aaai-2000 workshop on
leveraging probability and uncertainty in computation.
Gomes, C. P., and Selman, B. 1997. Problem Structure
in the Presence of Perturbations. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence
(AAAI-97), 221–227. New Providence, RI: AAAI Press.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence 126(1-2):43–62.
Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H.
2000. Heavy-tailed phenomena in satisfiability and con-
straint satisfaction problems. J. of Automated Reasoning
24(1–2):67–100.
Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-
tailed Distributions in Combinatorial Search. In Smolka,
G., ed., Principles and practice of Constraint Program-
ming (CP97) Lecture Notes in Computer Science, 121–135.
Linz, Austria.: Springer-Verlag.
Gomes, C. P.; Selman, B.; and Kautz, H. 1998a. Boost-
ing Combinatorial Search Through Randomization. In Pro-
ceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), 431–438. New Providence, RI:
AAAI Press.
Gomes, C. P.; Selman, B.; and Kautz, H. A. 1998b.
Boosting combinatorial search through randomization. In
AAAI/IAAI, 431–437.
Hogg, T.; Huberman, B.; and Williams, C. 1996. Phase
Transitions and Complexity (Special Issue). Artificial In-
telligence 81(1–2).
Horvitz, E.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B.;
and Chickering, M. 2001. A Bayesian approach to tackling
hard computational problems. In Proceedings of the 17th
Conference on Uncertainty in Artificial Intelligence (UAI-
2001), 235–244. Morgan Kaufmann Publishers.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard computational problems. Sci-
ence 275(51).
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI-96), 1188–1194. Portland, OR:
AAAI Press.
Kautz, H.; Ruan, Y.; Achlioptas, D.; Gomes, C. P.; Sel-
man, B.; and Stickel, M. 2001. Balance and filtering in

structured satisfiable problems. In Proceedings of the Six-
teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-01).
Kirkpatrick, S., and Selman, B. 1994. Critical behavior in
the satisfiability of random Boolean expressions. Science
264:1297–1301.
Li, C. M., and Anbulagan. 1997. Heuristics based on
unit propagation for satisfiability problems. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence, 366–371. AAAI Pess.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Opti-
mal speedup of las vegas algorithms. Information Process.
Letters 173–180.
Mitchell, D.; Selman, B.; ; and Levesque, H. 1992. Hard
and easy distributions of sat problems. In Proceedings
of the Tenth National Conference on Artificial Intelligence
(AAAI-92), 459–465. AAAI Press.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an efficient SAT
solver. In Design Automation Conference, 530–535.
Ruan, Y.; Horvitz, E.; and Kautz, H. 2002. Restart poli-
cies that consider dependence among runs: A dynamic pro-
gramming approach. Submitted for publication.
Selman, B., and Kirkpatrick, S. 1996. Finite-Size Scaling
of the Computational Cost of Systematic Search. Artificial
Intelligence 81(1–2):273–295.
Selman, B.; Kautz, H.; and Cohen, B. 1993. Local search
strategies for satisfiability testing. In Johnson, D., and
Trick, M., eds., Dimacs Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 26. AMS. 521–
532.
Smythe, R., and Mahmound, H. 1995. A survey of re-
cursive trees. Theoretical Probability and Mathematical
Statistics 51:1–27.
Walsh, T. 1999. Search in a Small World. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence.


